Link(s):
Paper and ancilary files.
- One-loop matrix elements of effective superstring interactions: $α’$-expanding loop integrands
- ancilary files
Author(s):
Alex Edison, Max Guillen, Henrik Johansson, Oliver Schlotterer, Fei Teng
Abstract:
In the low-energy effective action of string theories, non-abelian gauge interactions and supergravity are augmented by infinite towers of higher-mass-dimension operators. We propose a new method to construct one-loop matrix elements with insertions of operators $D^{2k} F^n$ and $D^{2k} R^n$ in the tree-level effective action of type-I and type-II superstrings. Inspired by ambitwistor string theories, our method is based on forward limits of moduli-space integrals using string tree-level amplitudes with two extra points, expanded in powers of the inverse string tension $\alpha’$. Similar to one-loop ambitwistor computations, intermediate steps feature non-standard linearized Feynman propagators which eventually recombine to conventional quadratic propagators. With linearized propagators the loop integrand of the matrix elements obey one-loop versions of the monodromy and KLT relations. We express a variety of four- and five-point examples in terms of quadratic propagators and formulate a criterion on the underlying genus-one correlation functions that should make this recombination possible at all orders in $\alpha’$. The ultraviolet divergences of the one-loop matrix elements are crosschecked against the non-separating degeneration of genus-one integrals in string amplitudes. Conversely, our results can be used as a constructive method to determine degenerations of elliptic multiple zeta values and modular graph forms at arbitrary weight.