Paper and ancilary files.


Zvi Bern, Scott Davies, Josh Nohle


The duality between color and kinematics enables the construction of multiloop gravity integrands directly from corresponding gauge-theory integrands. This has led to new nontrivial insights into the structure of gravity theories, including the discovery of enhanced ultraviolet cancellations. To continue to gain deeper understandings and probe these new properties, it is crucial to further improve techniques for constructing multiloop gravity integrands. In this paper, we show by example how one can alleviate difficulties encountered at the multiloop level by relaxing the color-kinematics duality conditions to hold manifestly only on unitarity cuts instead of globally on loop integrands. As an example, we use a minimal ansatz to construct an integrand for the two-loop four-point nonsupersymmetric pure Yang-Mills amplitude in $D$ dimensions that is compatible with these relaxed color-kinematics duality constraints. We then immediately obtain a corresponding gravity integrand through the double-copy procedure. Comments on ultraviolet divergences are also included.