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Abstract

In this thesis I explore a wide range of applications of the so called on-shell methods to
Effective Field Theories of gravity and the Standard Model. I will first focus on the tree-
level and restrict my attention to four space-time dimensions where the use of spinor-
helicity formalism allows for very compact expressions of gauge-invariant quantities
as well as the simple classification of contact interactions from the assumptions of
locality, Lorentz-invariance and little-group covariance. I discuss how to use unitarity to
combine these contact terms into higher-multiplicity tree amplitudes and non-minimal
form factors, providing an algorithm which makes only use of on-shell seeds but at
the same time is applicable to any given EFT of massless particles. The tree-level
results obtained in this first section provide then the necessary input for the results
obtained in the remainder of the thesis, where unitarity and generalised unitarity is
used to obtain loop-results from trees. In particular, I first discuss the computation
of the one-loop mixing matrix of the full set of mass-dimension eight operators in a
Standard Model EFT setting and then move on to applications in the context of gravity.
Here, amplitudes techniques are used to extract classical information hiding in the
perturbative expansion of gravitational theories beyond leading order. More specifically
I will consider higher-derivative interactions involving powers of the Riemann tensor
and study their effect on observables such as the bending angle and the time delay in
a light particle deflection process. I also consider the interactions of heavy binaries
mediated by such operators and study their impact on the power radiated through
gravitational waves. Finally I discuss how to use six-dimensional spinor-helicity to
bypass intrinsic limitations of the four-dimensional unitarity calculations, generalising
known techniques for amplitudes to the case of form factors.
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Chapter 1

Introduction

What is our world made of? This is one of the most enticing questions mankind has
faced over the centuries, ever since the evolution of society allowed our species to focus
on problems going beyond mere day to day survival. Already almost two thousand
years before the establishment of the scientific method in the seventeenth century, a
group of greek philosophers led by Democritus, relying solely on logic reasoning, came
to a conclusion which is surprisingly close to the nowadays experimentally established
truth: atoms, inseparable basic constituents of the known universe, the word itself
coming from the greek atomon meaning “indivisible”. Indeed, not only can the atom
be split into a set of electrons orbiting a conglomerate of protons and neutrons, but the
latter can themselves be further split into what we call, in a rather oxymoronic way, sub-
atomic particles. Furthermore, while in the ancient Greeks’ view, atoms where thought
of as inert solids merely excluding other bodies from their volume, in our modern
models particles interact with each other in rather complicated ways through the four
fundamental forces of electromagnetism, gravity, the weak and the strong force. The
central task of high-energy theoretical physics could be summarised as trying to give
a complete, accurate and mathematically consistent description of these interactions
which form the barebones of every composite structure in the universe.

In order to test the fine-grained structure of matter, collider experiments have proven
to be among the most valuable tools at the experimentalists’ disposal. While in their
infancy these sort of experiments where essentially of table-top size, like for example the
Geiger-Marsden experiments establishing Rutherford’s model of the atom over Thom-
son’s, nowadays the required instrumentation is on a totally different level. The Large
Hadron Collider (LHC) operating at CERN is the world’s biggest single machine, with
a ring 27 kilometers in diameter used to accelerate particles at high-enough energies to
expose their internal structure when colliding inside one of the four detector areas at
a rate of around 109 collisions per second. At the time of writing, the LHC harnesses

7



CHAPTER 1. INTRODUCTION

among others the power of the largest particle detector ever to be built, in the form of
ATLAS with its 46 metres in length and 25 in diameter, as well as the largest scientific
collaboration in history, in the form of the Compact Muon Solenoid (CMS) collabo-
ration with about 5500 members. These incredible numbers have led throughout the
years to equally impressive scientific results, one of the most striking being the first
experimental observation of the Higgs boson back in 2012 [7,8]. The importance of this
observation could hardly be overstated as it confirmed the existence of a key piece of
the Standard Model (SM) of particle physics, which is accepted as the most accurate
description to date of all the fundamental forces excluding gravity.

The SM is set within the theoretical framework of Quantum Field Theory (QFT), which
encompasses both the quantum nature of the particles and the relativistic description
needed for fast moving objects. In this setting, in order to compare the experimental
observations with theoretical predictions, a key ingredient are scattering amplitudes,
which encode information about the interaction probabilities of particles, and are thus
needed to predict the scattering outcomes. These probabilities are typically computed
within perturbation theory: the couplings regulating the strengths of the interactions
are considered to be small, and scattering amplitudes are computed as a series expansion
around these. The more terms in the expansion one considers, the better the accuracy
of the final result, but also the greater the complexity of the computation. Each order
in the expansion can be computed as a sum of terms whose precise mathematical
formulation can be visually represented through Feynman diagrams. These provide an
intuitive interpretation of the process in terms of (virtual or off-shell) particles created
from an initial state, propagating in spacetime and then annihilating again, giving so
rise to the final state of the scattering process.

Figure 1.1: One of the first examples of Feynman diagrams to appear in a published paper,
representing the photon exchange between two electrons [9].
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CHAPTER 1. INTRODUCTION

These diagrams come with associated theory-dependent rules, which establish a bijec-
tive relation between sums of diagrams and the terms in the perturbative expansion,
the lowest order being represented by tree-level diagrams like the one in Figure 1.1,
while higher orders are made up of diagrams with an increasing number of closed
loops. While Feynman diagrams have certainly changed the way people thought about
QFT, and have provided a powerful computational tool for scattering processes, they
have the intrinsic flaw that the number of diagrams is subject to a factorial growth
with the number of external particles considered in the process or the number of loops
to be considered. In other words the combinatorics of this diagrammatic approach
scales badly with the complexity of the process or the increase in the perturbative
order one considers. As a consequence, over the past thirty years the focus started
to shift towards a set of techniques loosely denoted as on-shell methods [10–13] which
bypass the limitations of Feynman diagrams and also provide continuosly new theoret-
ical insights in the deeper structure and properties of scattering amplitudes. The main
idea is to replace some of the internal virtual off-shell states with on-shell particles.
As we will discuss, this leads to enormous simplifications because these states are far
more constrained than their off-shell counterparts. For example scattering amplitudes
are gauge-invariant objects, while individual Feynman diagrams are not, only sums of
diagrams are. Thus what typically happens in the diagrammatic approach is that a
proliferation of intermediate expressions may collapse into simple final results due to
cancellations among the terms.

The prototypical example is a 2 → n pure gluon amplitude at tree level. Already
for n = 4 this process gets contributions from 220 diagrams, and the number quickly
growing to around 107 for n = 8 [14], but for any helicity configuration involving
for example two negative- and n positive-helicity gluons all of these contributions can
be collapsed into a beautifully simple single term known as the Parke-Taylor formula
[15,16].

Considering the tree-level case, when we put an intermediate state on-shell (which we
call performing a unitarity cut) we witness a factorisation of the amplitude into products
of lower-point1 amplitudes, each of which is in itself gauge-invariant and thus bound to
be simpler than a sum of diagrams. This idea is exploited for example by the Britto-
Cachazo-Feng-Witten (BCFW) recursion relation [12,13], which is a very effective tool
to compute tree-level amplitudes recursively, see Section 2.4. On the other hand, at
higher-loop orders one can exploit the branch-cut singularities arising in the amplitude
and relate the associated discontinuities to (phase-space integrated) products of lower-
order amplitudes, or even better write the amplitude in terms of a basis of integrals
and compute the coefficients of the expansion from lower-point amplitudes [17, 18, 12].
All of these methods are based on unitarity of the considered theory, in other words

1Lower-point amplitudes are those which present a smaller number of external particles.
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CHAPTER 1. INTRODUCTION

conservation of probability, as we will discuss in Section 4.1.
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2

Figure 1.2: Pictorial representation of a so called double-cut of a one-loop amplitude, the
dashed line represents the unitarity cut through the propagators (we use an all-outgoing con-
vention for momenta). Every term in the full one-loop amplitude presenting a discontinuity in
the s12 = (p1 + p2)2 kinematic channel contributes to this double-cut, which is expressed in
terms of products of tree-amplitudes. Inverting the logic, considering all the possible combina-
tions of cuts allows to reconstruct the one-loop amplitude, see Section 4.1.

On-shell methods have proven to be very powerful in a variety of settings including
collider physics [19, 20], the study of the ultraviolet (UV) behaviour of N = 8 su-
pergravity [21, 22], the study of the inspiral phase of binary systems of celestial ob-
jects [23–33], the anomalous dimension matrix and non-mixing theorems for Standard
Model Effective Field Theories [34–37], the perturbative exploration of supersymmetric
gauge theories [38–40] and also the perturbative study of partially off-shell quantities
such as form factors [41–50].

In this thesis we focus on applications to effective field theories, in particular to the Stan-
dard Model Effective Field Theory (SMEFT) and EFTs of gravity including Einstein-
Hilbert (EH) along with some higher-derivative operators. Despite its many successes
over the years, the fact that so far LHC measurements are compatible with its pre-
dictions, and its undeniable beauty, the Standard Model is still expected to be an
incomplete description of nature: many theoretical puzzles are still unsolved, including
but not limited to the hierarchy problem, the magnitude of the quartic λ coupling of
the Higgs, the origin of CP violation in the quark sector, or the unnatural pattern of the
Yukawa couplings. If the SM is incomplete but still reproduces correct results at the
energy scales tested by experiment, it means that it can be considered as an Effective
Field Theory which requires some sort of UV completion to provide the further answers
we seek. To date there are no clear hints at what such a completion should look like,
and a very appealing approach to parametrize Beyond Standard Model (BSM) physics
is the SMEFT [51,52]: one considers a Lagrangian of the type

LSMEFT = LSM +
∑
i,j

c
(j)
i

Λj−4 O
(j)
i , (1.1)

where LSM is the SM Lagrangian and O(j)
i are additional non-renormalizable operators
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CHAPTER 1. INTRODUCTION

built from Standard Model fields and classified through their mass-dimension, which we
labelled by j. Here the couplings c(j)

i are dimensionless and the energy scale Λ, which
provides the cut-off scale of the validity of the EFT, compensates for the higher mass-
dimension of the operators. The additional operators can be thought as arising from
integrating out heavy modes with mass comparable to Λ in the complete theory, leading
to an effective description. The power of the method relies within the fact that as long
as one considers a complete basis of operators for the given mass dimension, it becomes
possible to study in one go the effects of all the theories which would produce any of
the effective operators considered, thus no a priori knowledge of the UV completion is
required.

One of the problems one has to address in this regard is the identification of a complete
basis of operators. The counting of non-redundant operators can be performed via
the Hilbert series method, as shown in [53–55], however an explicit construction of
the SMEFT operators is rather involved. Traditional techniques require taking care
separately of many sources of redundancy, e.g. Bianchi identities and Integration By
Parts (IBP) identities of operators with derivative insertions, field redefinitions and
Fierz identities. More recently, a more direct way of constructing this basis has been
proposed, which relies on the classification of the independent effective interactions
directly from their S-matrix elements [56–63], and has been used to classify all the
SMEFT operators up to mass dimension nine [64,65]. In other words, one can classify
operators by looking at the associated minimal amplitude, which assumes the form of
a contact term (no intermediate particles are exchanged). In Chapter 3 we discuss
a variation of this method presented in [5], allowing to build a complete operator
basis from a graph-based method, and show how to construct the SM from scratch
without relying on a Lagrangian but simply considering the amplitudes associated to
the minimal interactions of the model.

The operators Oi in general have a non-vanishing and usually non-diagonal anomalous
dimension matrix, meaning that they get renormalised and mix among themselves in
non-trivial ways. Consequently the Wilson coefficients of the operators at the scales
accessible to collider experiments differ from those at the high-energy matching scale.
Furthermore operator mixing implies that experimental constraints on one of them also
affects the others. Thus, evaluating the anomalous dimension matrix is a crucial aspect
of interpreting SMEFT results.

In this respect, on-shell methods have proven extremely powerful not only in the com-
putation of the anomalous dimension matrix, but even more so in the interpretation of
zeroes appearing in the matrix through selection rules implied by helicity [34], operator
lengths [35] and angular momentum [36]. Still from an on-shell perspective it has been
found that the structure of rational terms influences the zeroes, and that a smart choice
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of regularization scheme can lead to further cancellations: this has been studied at two
loops in the case of an SU(N) model which presents similarities with the SM but it
is far simpler and contains far less operators [37]. While the leading contributions to
the SMEFT come from dimension-six operators [66–72], there are interesting processes
for which the dominant contribution comes from even higher-dimensional operators.
Some examples include the light-by-light scattering [73], the light production via gluon
fusion [74] and the neutral bosons production [75] and even, in some scenarios, the
gµ− 2 [76] and Higgs production in association with a W boson [77], which receive the
first contribution from dimension-eight operators. Dimension-eight operators can play
a relevant role even when appearing as subleading contributions [78], and recently stud-
ies of their impact on SMEFT have been performed [79–83]. The first systematic and
complete computation of the one-loop anomalous dimension matrix for dimension-six
operators has been carried out in [84–86]. On the other hand, the study of the anoma-
lous dimension of SMEFT interactions at dimension eight has produced partial results
in [87–93], while the first full calculation (to linear order in the Wilson coefficients) was
presented in [5]. We discuss the latter results at the end of Chapter 4.

In Chapters 5 and 6 we move away from SMEFT and discuss applications to EFTs
of gravity involving also higher-derivative operators, thus going beyond the Einstein-
Hilbert (EH) theory. Very interestingly, in this context it has been shown that through
the use of QFT perturbative methods it is possible to compute classical corrections to
the gravitational potential, as well as to observables such as the bending angle and the
time delay experienced by a particle in gravitational background. These corrections at
higher orders in Newton’s constant G are hidden within the loops [94–96] of a theory
where heavy galactic objects are described as massive point particles, for example
scalars when considering Schwarzschild black holes, which interact through graviton
exchange. In this picture one wants to extrapolate the long-range physics, which is the
information we have experimental access to, and furthermore one wants to consider
those contributions arising from a gravitational interaction, or in other words from
virtual gravitons being exchanged among a pair of massive particles. The unitarity and
on-shell methods are ideally suited for the task: performing loop-level unitarity cuts in
four dimensions will automatically select those pieces of the complete amplitude which
present a discontinuity in one or more given kinematic channels. This means that
selecting the contributions purely related to a graviton exchange amounts to simply
perform the cuts in the correct kinematic channels, and furthermore terms which do
not contribute to long-range physics are ignored a priori with the right setup. In fact,
if we perform the unitarity cuts in four dimensions we will miss so called rational
terms: these are parts of the amplitude which do not present discontinuities in the
kinematic channels and thus cannot be detected by the cuts. What would usually
be a drawback leading to an incomplete amplitude, is in these specific circumstances
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an advantage, since rational terms correspond to local contributions to the potential
which can be ignored. Once the relevant terms of the amplitude have been recovered,
one can for example extract the corrections to the gravitational potential at a fixed
order in G through an EFT matching procedure [97, 98], which was used for example
to obtain the state-of-the-art results [29, 99]. On the other hand, it is also possible to
extract directly from the amplitude information about physical observables such as the
bending angle or the time delay experienced by a particle moving in the gravitational
background generated by a heavy object. Particularly well suited for this task is the
eikonal approach [100–105], in which one considers the limit where the mass of the
object generating the gravitational field is much larger than the energy of the deflected
particle particle and the gravitationally exchanged momentum. We make use of this
method in Chapter 5 to study the effect of higher-derivative interactions involving up
to four Riemann tensors on the above mentioned observables. The new interactions
will feature as modifications to the tree-level amplitudes entering the one-loop unitarity
cuts we consider and are thus easily accounted for.

While in this case our study focusses on four-point amplitudes with two external mas-
sive scalars, in Chapter 6 we consider instead five-point amplitudes where an external
soft graviton is produced by the two interacting scalars. Considering the gravita-
tional binary from far apart, one can approximate its behaviour as that of a single
small extended object emitting gravitational radiation through oscillations which can
be studied through a multipole expansion. The combination of information coming
from the multipole expansion with that of the potential allows to give a description of
the gravitational waves emitted by the coalescing binary, computing the wave flux as
well as the waveform. We study the impact of purely gravitational operators cubic in
the Riemann tensor as well as of some tidal interactions on the quadrupole, comparing
then our findings with earlier results which considered operators to quartic power in
the Riemann tensor [106].

In the final part of the thesis we take a step back and focus on the very nature of
the unitarity methods used so far, and specifically on their limitations. As already
mentioned, since unitarity cuts rely on the discontinuities of the loop-level scattering
amplitudes in the various kinematic channels, by construction the method is blind to
rational terms. This means that four-dimensional unitarity is sufficient to compute
complete amplitude results only in the cases where these rational terms are absent
such as in supersymmetric theories at one loop [10,11]. On the other hand, in order to
compute results relevant for collider physics in QCD rational terms appear ubiquitously
and are required to recover complete results, an example being the all-plus pure gluon
interaction at one-loop [107, 108] which are purely rational in the external spinors.
There are various methods allowing to compute these rational terms, one being simply
to perform the same unitarity calculation in a dimension D = 4 − 2ϵ [109, 110]: in
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CHAPTER 1. INTRODUCTION

order to keep mass-dimensions consistent, the deviation from four dimensions of the
coupling needs to be balanced by a kinematic invariant raised to the power −2ϵ, which
will produce a discontinuity in the given invariant and thus allow detection through
cuts.

The downside of moving to an arbitrary dimension D is that first of all one looses the
power of the spinor-helicity formalism, described in Chapter 2, which typically allows for
results to be expressed in a very compact form, and furthermore numerical evaluations
of the cut amplitudes are not possible. One way to work around this is to perform
a “dimensional reconstruction” [111–115], where one investigates the dependence of
the loop amplitude on the dimensionality of space-time. Considering for example pure
Yang-Mills, this dependence turns out to be polynomial, and the coefficients can be
fixed by a simple interpolation evaluating the amplitude in several different integer
dimensions. In these integer dimensions one can then again make use of spinor-helicity
and numerical methods if needed.

In Chapter 7 we derive the results of [1], where building on the previous amplitudes
result an extension of the dimensional reconstruction for form factors is proposed. A
form factor FO(1, . . . , n; q) is defined as the overlap of an n-particle state and the state
produced by an operator O(x) acting on the vacuum:

∫
d4x e−iq·x⟨1, . . . , n|O(x)|0⟩ = (2π)4δ(4)

(
q −

n∑
i=1

pi

)
FO(1, . . . , n; q) . (1.2)

Notice that at zero momentum transfer, i.e. q = 0 in (1.2), the form factor of an operator
O(x) represents the correction to the scattering amplitude due to the inclusion of a new
local interaction proportional to O(x). The form factors which will be considered are
related to scattering processes of the Higgs boson and many gluons: in the large top-
quark mass approximation, these can be described by an effective theory obtained
by integrating out the top quark in QCD. This generates an infinite series of higher-
dimensional interactions with the gluon field strength and its derivatives, in addition to
couplings to light quarks. The leading-order term in the expansion is H TrF 2 [116–118]
where after Wick-contracting the Higgs field, what is left to compute is precisely a form
factor of partons in the theory of interest, which we will take to be pure Yang-Mills.
In this setting we focus on form factors of operators of the form TrFn, for n = 2, 3, 4,
both in the minimal and non-minimal case up to four external gluons. The key point
of the extension of the dimensional reconstruction method we discuss is that it can
be applied to generic form factors of operators involving vector fields. Furthermore,
it is important to stress that the expectation is that generalizing the procedure to
higher loop orders, one needs to perform the same computation in multiple dimensions
so to extract the dependence on D through interpolation. However, the method we
propose requires evaluations in only one dimension independently of the loop-order one

14



CHAPTER 1. INTRODUCTION

wants to consider, thus bypassing what was one major drawback of the dimensional
reconstruction.

We conclude the thesis with some remarks and discussion of future directions, fol-
lowed by some auxiliary material required to reproduce the results presented in the
main discussion. These appendices include among others all the three-point tree-level
amplitudes of the standard model used as seeds for the recursive algorithm presented
in Chapter 3, the tree-level amplitudes needed for the unitarity calculations in the
EFTs of gravity considered in Chapter 5 and 6 and the six-dimensional amplitudes
and non-minimal form factors needed in Chapter 7. Furthermore, we also included the
expression of the relevant one-loop integrals used throughout the thesis.

Note: In the field of modern-day amplitudes it is often essential to use dedicated
symbolic computational software, such as Mathematica [119], in order to carry out the
computations of interest. Instead of the implementation of single-use codes, I decided to
invest some2 time in the development of dedicated Mathematica packages which would
allow to reproduce results easily and could be shared with the rest of the scientific
community, in line with the spirit of the SAGEX collaboration. In particular, the
packages I implemented include routines to deal with the four-dimensional and six-
dimensional spinor-helicity formalism (symbolically as well as numerically), and the
complete implementation of the algorithm for the computation of tree-level amplitudes
and non-minimal form factors described in Chapter 3. These packages will be made
available shortly at the github repository https://github.com/accettullihuber.

2Often a considerable amount actually...
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Chapter 2

An invitation to tree-level
techniques

We start by reviewing some well known tree-level techniques, including the powerful
spinor-helicity formalism in four dimensions and two different recursion relations for the
computation of amplitudes: the Berends-Giele and BCFW recursion. Focusing on the
latter, we will discuss advantages and limitations, setting the stage for the algorithm
introduced in Section 3.

2.1 Spinor helicity formalism

In this section we review the four-dimensional spinor-helicity formalism, which lies at
the core of many applications discussed in this thesis, with the main purpose of setting
our notations and conventions. We limit our discussion to Weyl spinors only, which
are our building blocks of choice. For a more detailed review of the topic see for
example [120–123].

Weyl spinors from fermion fields

Recall first of all that given a spin-1
2 particle, it can be described by the fermion field

ψ(x) =
∫

d3p⃗

(2π)3
1√
2Ep

∑
s=1,2

(
as(p⃗)us(p⃗)e−ip·x + b†

s(p⃗)vs(p⃗)eip·x
)
, (2.1)

and its conjugate, where us and vs are four-component Dirac spinors, satisfying the
momentum-space Dirac equation which for massless particles reduces to

i/∂ψ(x) = 0 ⇒

/pus(p) = 0

/pvs(p) = 0
, (2.2)

16



CHAPTER 2. AN INVITATION TO TREE-LEVEL TECHNIQUES

where /p = pµγ
µ with γµ satisfying the Clifford algebra relation {γµ, γν} = ηµν . Also,

in this thesis we consider a mostly minus convention for the space-time metric.

Clearly, up to normalization conventions, positive and negative energy solutions to
(2.2) will be the same. When considering massless particles, helicity is a Lorentz-
invariant quantity and it is thus convenient to describe particles in terms of definite
helicity solutions to the Dirac equation. Such solutions can be obtained by applying
the following projectors1

u±(p) ≡ 1± γ5
2 us(p) and u±(p) = us(p) 1∓ γ5

2 , (2.3)

in the fermionic case or equivalently in the anti-fermionic case

v∓(p) ≡ 1± γ5
2 vs(p) and v∓(p) = vs(p) 1∓ γ5

2 . (2.4)

These definite helicity solutions take a particularly simple form when considering the
Weyl representation of the gamma matrices

γµ =
(

0 σµ

σµ 0

)
, γ5 =

(
−12 0

0 12

)
, (2.5)

where σµ = {12, σ⃗} and σµ = {12,−σ⃗} such that the Clifford algebra relation {σµ, σν} =
ηµν holds. In this representation one can write

u−(p) = v+(p) =
(
|p⟩
0

)
, u+(p) = v−(p) =

(
0
|p]

)
, (2.6)

and
u+(p) = v−(p) =

(
⟨p| 0

)
, u−(p) = v+(p) =

(
0 [p|

)
, (2.7)

where |p⟩ and |p] is the so called bracket notation for the two-component objects λα(p)
and λ̃α̇(p), with α, α̇ = 1, 2. These objects are the Weyl spinors in terms of which we
will write the scattering amplitudes of all the theories considered in this thesis.

While the introduction of Weyl spinors from helicity projections of fermionic fields
might provide a good textbook introduction to these objects, it somewhat obscures their
deeper and more fundamental nature. Following the guiding philosophy underlying on-
shell methods, we would ideally like to avoid using gauge-dependent quantities and
focus our attention only on objects with a more direct physical interpretation where
redundancies are cut down as much as possible. In this light quantum fields are not the
building blocks we want to consider, and instead we use the Weyl spinors in virtue of
their intimate relation with the Lorentz-invariance of a given theory, be this a theory

1The projectors P ± = 1
2 (1 ± γ5) are actually chirality projectors, but for massless particles helicity

and chirality coincide for positive energy solutions and are opposite for negative energy solutions.
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CHAPTER 2. AN INVITATION TO TREE-LEVEL TECHNIQUES

including fermions or not.

Weyl spinors and the Lorentz group

The starting point for defining the Weyl spinors λ and λ̃ is Lorentz-invariance, a prop-
erty which we expect from any theory consistent with special relativity. The proper
orthochronous Lorentz group SO+(1, 3) admits a universal covering given by SL(2,C),
consequently there is a one-to-one correspondence between projective representations
of SO+(1, 3) on the Hilbert space and the infinite-dimensional unitary representations
of SL(2,C). The states of the theory transform under such unitary representations and
induce the fields to transform under finite-dimensional (non-unitary) representation.
All the irreducible finite-dimensional representations of SL(2,C) are labelled by a pair
of semi-integers (mL,mR)2, and can be obtained from completely symmetrized tensor
products of 2mL copies of the fundamental and 2mR copies of the anti-fundamental rep-
resentations, usually denoted as

(
1
2 , 0
)

and
(
0, 1

2

)
. The fundamental two-dimensional

objects transforming in the
(

1
2 , 0
)

are denoted by λα and the associated Lorentz indices
are greek undotted letters, whereas λ̃α̇ transform in the

(
0, 1

2

)
and the associated indices

are dotted greek letters. The spinor indices can be raised and lowered by contraction
with a two-dimensional Levi-Civita tensor as

λα = ϵαβλβ , λ̃α̇ = ϵα̇β̇λ̃
β̇ , (2.8)

where in our convention

ϵ12 = −ϵ12 = ϵ1̇2̇ = −ϵ1̇2̇ = 1 , (2.9)

and
ϵαβϵ

βγ = δα
γ . (2.10)

From here on whenever we will call the two-component Weyl spinors simply spinors, and
in order to avoid an often unnecessary cluttering of indices, we introduce the standard
shorthand bracket notation (as already used in (2.6) and (2.7)):

λi α ≡ |λi⟩ ≡ |i⟩ , λ̃α̇
i ≡ |λ̃i] ≡ |i] , λα

i ≡ ⟨λi| ≡ ⟨i| , λ̃i α̇ ≡ [λ̃i| ≡ [i| , (2.11)

where we use latin letters, i in this case, as momentum labels.

Lorentz-invariant structures are then simply built by complete contractions of the spinor
indices, in the simplest case this amounts to pairing left and right angle/square brackets

2Recall that the algebra sl(2, C) is isomorphic to su(2)L × su(2)R, and (mL, mR) are related to the
eigenvalues of the Casimir operators J2

L/R = (J1
L/R)2 + (J2

L/R)2 + (J3
L/R)2, with J i

L/R generators of the
su(2)L/R. Elements of the two-dimensional vector space su(2)L will be denoted with λ and elements of
su(2)R with λ̃.
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respectively as follows

⟨i j⟩ := ⟨λi λj⟩ := λα
i λj α = −⟨j i⟩ ,

[i j] := [λ̃i λ̃j ] := λ̃i α̇λ̃
α̇
j = −[j i] ,

(2.12)

these contractions will be called angle and square brackets respectively. Before moving
on to the construction of massless momenta from the spinor brackets, we stress the
following very useful property of the brackets. Given a triplet of spinors λα

i , λβ
j , λγ

k

any completely antisymmetrized combination of them gives zero, thus upon contraction
with a single Levi-Civita tensor one gets the so called Schouten identity

⟨i j⟩⟨k|+ ⟨j k⟩⟨i|+ ⟨k i⟩⟨j| = 0 , (2.13)

and analogously for the λ̃ spinors

[i j][k|+ [j k][i|+ [k i][j| = 0 . (2.14)

An alternative way for deriving the Schouten identity is to make use of the fact that λ
(and λ̃) is defined on a two-dimensional vector space, thus it is always true that

λα
i = aλα

j + bλα
k , (2.15)

for some scalar coefficients a and b. The latter can be easily determined by contracting
this identity left and right with λj α and λk α which thanks to the antisymmetry of the
brackets directly leads to

⟨i| = ⟨i k⟩
⟨j k⟩

⟨j|+ ⟨i j⟩
⟨k j⟩

⟨k| , (2.16)

which is exactly (2.13).

Massless momenta

Given a Lorentz four-vector pµ, it can be shown that the corresponding finite-dimensional
representation of SL(2,C) is

(
1
2 ,

1
2

)
. The map between the two representations can be

explicitly realized through

pαα̇ := pµσ
µ
αα̇ =

(
p0 − p3 −(p1 − ip2)
−(p1 + ip2) p0 + p3

)
, (2.17)

and similarly for pα̇α := ϵα̇β̇ϵαβpββ̇. If pµ is the momentum associated to a particle of
mass m, it is easy to see that

m2 = p2 = det(pαα̇) = 1
2p

α̇αpαα̇ . (2.18)
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If we consider now a massless particle, the masslessness condition given by the vanishing
of the determinant of pαα̇ is trivialized by setting

pαα̇ = λαλ̃α̇ , (2.19)

due the antisymmetry of the angle and square brackets. Furthermore, notice that in
momentum space the massless Dirac equation translates intopαα̇λ

α
p = 0

pαα̇λ̃
α̇
p = 0

(2.20)

which is again automatically satisfied by writing the momentum as in equation (2.19).

We can associate a vector pµ to a momentum given in the spinor representation pαα̇

through the inverse map of equation (2.17), given by

pµ = 1
2⟨p σ

µ p] = 1
2[p σ̄µ p⟩ . (2.21)

When considering a momentum k = −p, it is easy to see from equation (2.19) that we
can write the spinors λk and λ̃k in terms of λp and λ̃p, simply by defining

λα
−p ≡ iλα

p , λ̃α̇
−p ≡ iλ̃α̇

p . (2.22)

Notice that this is a convention, and in general one could set λα
−p ≡ eiϕλα

p and λ̃α̇
−p ≡

eiθλ̃α̇
p as long as ei(ϕ+θ) = eiπ = −1, the advantage of our choice being the symmetry

of the relations. The spinors λ and λ̃ are in general complex-valued, and the reality
condition on the momentum pµ, see equation (2.21), translates into

λ = λ̃∗ (2.23)

up to an arbitrary phase which we set to 1. Usually one is rather lenient towards this
condition, since it turns out that, both in some analytic and numeric settings it is
very convenient to allow for complex momenta3. Notice that there is no unique way of
associating spinors to a given momentum pµ, since the rescaling

λ 7→ t λ , λ̃ 7→ 1
t
λ̃ (2.24)

clearly leaves the momentum invariant. Here t ∈ C in general whereas it is just a
complex phase if equation (2.23) applies. Equation (2.24) is called little group scaling,
and it implements at the level of spinors those Lorentz transformations which preserve
the given momentum. One possible explicit parametrization of the spinors in terms of

3Or alternatively to consider a different space-time signature [124], which similarly invalidates equa-
tion (2.23).
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the momentum is given by

|p⟩ =

− p1 − ip2√
p0 + p3√
p0 + p3

 , |p] =


√
p0 + p3
p1 + ip2√
p0 + p3

 , (2.25)

and

⟨p| =
(√

p0 + p3
p1 − ip2√
p0 + p3

)
, [p| =

(
− p1 + ip2√

p0 + p3

√
p0 + p3

)
, (2.26)

which can be checked to satisfy (2.19) and (2.21). We stress here that spinors are not
rational functions of the momentum components, which in later sections will be a crucial
motivation for us to choose spinors rather than momenta as our fundamental objects.
Notice also that considering natural units, the mass-dimension of the momentum is
one, thus as can be seen from the explicit parametrization, or equivalently from (2.19),
one has that λ and λ̃ have mass dimension 1

2 . This fact will be used extensively in
subsequent discussions.

When discussing processes involving particles of spin one, polarization vectors are usu-
ally required. In our conventions these can be written as

εα̇α
+ (p, r) =

√
2
λ̃α̇

pλ
α
r

⟨r p⟩
=
√

2 |p]⟨r|
⟨r p⟩

, εα̇α
− (p, r) =

√
2
λ̃α̇

r λ
α
p

[p r] =
√

2 |r]⟨p|[p r] , (2.27)

or equivalently as vectors

εµ
+(p, r) = 1√

2
⟨r σµp]
⟨r p⟩

, εµ
−(p, r) = 1√

2
⟨p σµr]

[p r] . (2.28)

It can be checked that these satisfy all the properties required for polarization vectors
which (in the Lorentz gauge) read:

ε+(p, r)∗ = ε−(p, r) , pµ ε
µ
±(p, r) = 0 ,

|ε±(p, r)|2 = −1 , ε+(p, r) · ε−(p, r)∗ = 0 .
(2.29)

The arbitrariness of the reference vector can be seen by taking the difference of two
polarizations computed with different reference vectors r and s which leads to:

εµ
±(p, r)− εµ

±(p, s) = f±(p, r, s)pµ , (2.30)

where f± is a rational function of spinor brackets involving p, r, s, and is thus a Lorentz
scalar 4. In other words, the polarizations εµ

±(p, r) and εµ
±(p, s) differ by a quantity

proportional to the four-momentum pµ, which means that once they are dotted into an
4For an explicit calculation of f± in the spinor helicity formalism see for example [125].
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onshell amplitude the Ward identity ensures their complete physical equivalence.

Given two massless momenta pi and pj , the associated Mandelstam invariant is defined
as

sij := (pi + pj)2 = 2pi · pj = pα̇α
i pj αα̇ = ⟨i j⟩[j i] , (2.31)

where, using |p⟩[p| = p for massless momenta, we can rewrite

⟨i j⟩[j i] = ⟨i j i] . (2.32)

We will refer to structures such as this as chains. Other examples of chains include

⟨q p1 . . . p2n k⟩ = −⟨k p2n . . . p1 q⟩

[q p1 . . . p2n k] = −[k p2n . . . p1 q]

[q p1 . . . p2n+1 k⟩ = ⟨k p2n+1 . . . p1 q]

(2.33)

where the pi are not necessarily massless.

Finally we close this subsection by giving another useful identity, known as Fierz rear-
rangement, for the σ matrices it can be shown that the following holds:

σµ
αα̇σ

β̇β
µ = 2δβ

αδ
β̇
α̇ , (2.34)

which leads to the spinorial identity

⟨i σµ j][k σµ l⟩ = 2⟨i l⟩[k j] . (2.35)

Massive momenta

Considering massive particles, while equation (2.17) still applies, equation (2.19) does
not hold anymore. It is nonetheless still possible to write the momentum directly in
terms of the spinors λ and λ̃, by simply considering it as a linear combination of two
massless momenta [126]

Pµ := qµ + m2

2q · kk
µ → Pαα̇ = λαλ̃α̇ + m2

⟨k q⟩[q k]µαµ̃α̇ , (2.36)

with q2, k2 = 0 and qαα̇ = λαλ̃α̇ and kαα̇ = µαµ̃α̇. Notice that counting the number
of (real) degrees of freedom of the spinors in equation (2.36) one finds three too many.
These are spurious degrees of freedom corresponding to the little-group transforma-
tions of the massive momentum, which in four dimensions is implemented by an SO(3)
subgroup of the Lorentz group. Just as the massless spinors defined up to the transfor-
mation (2.24) are equivalent, one can use these spurious degrees of freedom to set the
spinors associated to k to arbitrary values. We will refer to µ and µ̃ as reference spinors.
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From equation (2.36), a possible approach is to define a pair of spinors associated to
the massive momentum P through

|P ⟩ = |q⟩+ m

[q k] |k] , |P ] = |q] + m

⟨q k⟩
|k⟩ , (2.37)

which have very different properties compared to the massless spinors, for example if P
and K are massive then in general for these new massive spinors one has ⟨PK] ̸= 0. The
advantage of the decomposition of equation (2.36) is that it allows to recycle much of the
technology introduced for massless particles. The price to pay however is that certain
symmetries of the amplitude are obscured, in particular the covariance of the amplitude
under little group transformations of the massive momenta. To make such property
manifest it is more convenient to introduce a new set of spinors λI

α, λ̃I
α̇, carrying an

additional SU(2) index5, accounting explicitly for little group transformations [127].
We then have

Pαα̇ = λI
αλ̃α̇I = ϵIJλ

I
αλ̃

J
α̇ , (2.38)

and the massive equivalent relation of (2.24) reads λI
α → U I

Jλ
J
α for U I

J ∈ SU(2). It can
be shown that the previously introduced spinors |P ⟩ and |P ] simply correspond to a
specific choice of the λI

α and λ̃I
α̇, where the little group index has been fixed.

2.2 Little-group transformations and the three-point am-
plitudes

The little group is defined as the subgroup of the Lorentz group which leaves a given
momentum p invariant. In general, in D dimensions, a one-particle state can be defined
by a ket |pµ, σ⟩ in a Hilbert spaceH, where p is the particles momentum and σ represents
any other label the particle could carry, an example being helicity in the case of massless
particles. Under a Lorentz transformation the ket transforms as

|pµ, h⟩ 7→
∑
h′

Ghh′ |Λµ
νp

ν , h′⟩ (2.39)

where Λ and G are Lorentz and little group transformations respectively. Considering
now a scattering amplitude An involving n particles whose spin is labelled by hi, equa-
tion (2.39) leads to a transformation of the amplitude which can be schematically
represented as

An 7→ φ(h1, . . . , hn)An . (2.40)

In general φ is a tensor determined by the little group transformations of all the particles
involved in the scattering, or in other words by the spins hi, and is such that φ†φ = 1.

5While for massless spinors the little group is just an U(1) phase, for massive particles in four
dimensions is given by SU(2).
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Scattering amplitudes are thus little group covariant, whereas the modulus squared of
the amplitude is invariant under the whole Lorentz group, as it should6.

Considering the case of massless particles in four space-time dimensions, ϕ is a simple
U(1) phase. More specifically, when considering the amplitude as a rational function
of the spinors λi, λ̃i and helicities hi of the external particles, one has that [124]

(
λi

∂

∂λi
− λ̃i

∂

∂λ̃i

)
An({λi, λ̃i, hi}) = −2hiAn({λi, λ̃i, hi}) , (2.41)

in other words the difference between the number of |i⟩ and |i] spinors in the amplitude
is proportional to the helicity hi. Thus, applying the little-group transformation

|i⟩ 7→ ti|i⟩ , |i] 7→ 1
ti
|i] , ti ∈ C (2.42)

the amplitude transforms as

An({λi, λ̃i, hi}) 7→ t−2hi
i An({λi, λ̃i, hi}) . (2.43)

Notice that equation (2.43) is valid at any loop order. Depending on the application
at hand, it might be convenient to factor the amplitude into a little-group covariant
part which we call Φn and depends only on the helicity of the particles, and a little-
group invariant part, which can be thought of as a rational function of the Mandelstam
invariants (at tree level). The expression for Φn can be fixed a priori but except for
specific cases it is usually not unique.

The little-group scaling provides a great deal of information, and in some instances
especially at low multiplicities it suffices to determine the complete expression of the
kinematic part of the amplitude up to a constant. A neat example of this situation
is represented by the three-gluon tree-level amplitude in Yang-Mills theory. What one
would usually do is start from the Yang-Mills lagrangian

LYM = −1
4F

a
µνF

a µν , with F a
µν = ∂µA

a
ν − ∂νA

a
µ + gY MfabcAb

µA
c
ν , (2.44)

where gY M is the coupling and fabc are the SU(3) structure constants, then take ap-
propriate functional derivatives to get the relevant Feynman rules, in particular the
three-point vertex rule, and then contract the latter with polarization vectors to get
the three-point amplitude. Let us approach the problem from a different angle: we start
off from a theory which involves spin one massless particles, the gluons, and which we
want to be self interacting and thus admit a three-point vertex. For the time being we
disregard the colour part of the amplitude, since we will get back to it in more detail

6|A|2 enters the cross-section which is a physical observable and must thus be invariant under the
Lorentz group.
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later in section 3.1, but we will still use the same notation An of the full amplitude
when discussing only the kinematic part, since there is usually no risk of confusion.

The theory we consider should of course satisfy locality and Lorentz-invariance, and we
want to find the expression for the three-gluon on-shell amplitude if it exists. First, if
we were to consider the Mandelstam invariants as building blocks for this amplitude,
it would trivially vanish since all the invariants themselves are vanishing. In fact, due
to p1 + p2 + p3 = 0 and the masslessness of the particles one has

s12 = ⟨1 2⟩[2 1] = 0 , s23 = ⟨2 3⟩[3 2] = 0 , s13 = ⟨1 3⟩[3 1] = 0 . (2.45)

Indeed A3 = 0 is the correct answer, provided we limit ourselves to consider only
momenta which are real. If we allow momenta to be complex we can do better [128],
since releasing this constraint invalidates (2.23), and thus ⟨i j⟩ = 0 does not imply
[i j] = 0 anymore and viceversa. This allows us to satisfy equation (2.45) by imposing
the vanishing of all the angle or square brackets and then using the set of non-vanishing
brackets (which are Lorentz-invariant and little-group covariant structures) to write the
amplitude. Considering for example [i j] = 0, since there are no other invariants for
the amplitude to depend on it must be of the form

A3(1h1 , 2h2 , 3h3) = c ⟨1 2⟩x3⟨2 3⟩x1⟨1 3⟩x2 , (2.46)

where the little-group transformation, equation (2.43), fixes x1 = h1 − h2 − h3, x2 =
h2−h3−h1 and x3 = h3−h1−h2. Taking into account that the three-point amplitude
must have mass dimension one7, only one helicity configuration for the gluons is allowed,
namely (−,−,+), leading to the three-point Yang-Mills amplitude

AMHV
3 (1−, 2−, 3+) = gY M

⟨1 2⟩3
⟨1 3⟩⟨2 3⟩ , (2.47)

where we included the dimensionless Yang-Mills coupling. A similar reasoning applies
to the case where ⟨i j⟩ = 0, from which we obtain8

AMHV
3 (1+, 2+, 3−) = − gY M

[1 2]3
[1 3][2 3] . (2.48)

The reason why the all-plus and all-minus helicity configurations are not allowed, is that
they would produce a spinor bracket expression of mass-dimension three, which would
require a dimensionfull coupling constant of dimension −2 to compensate. In fact sim-
ilar amplitudes do appear in non-renormalizable theories including an F 3 interaction,

7For now we take this as a given, we will further comment on mass dimension in Section 3.1
8The inclusion of the minus sign in the following expression is due to the additional condition we

impose that the parity-conjugate of the anti-MHV should be the MHV amplitude.
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but are prohibited in pure Yang-Mills which we are considering here

A3(1+, 2+, 3+) = 0 , A3(1−, 2−, 3−) = 0 . (2.49)

There is a simple argument [120] based on the counting of internal three-gluon vertices,
which combined with a smart choice of the reference vectors in the external polariza-
tions, allows to show that actually the all-plus and single-minus configurations (as well
as their parity conjugates all-minus and single-plus) vanish at tree-level for any number
of gluons

Atree
n (1+, 2+, . . . , i±, . . . , n+) = 0 . (2.50)

Remarkably, there is also a direct generalisation of equation (2.47) and (2.48) to arbi-
trary n, known as Parke-Taylor tree amplitudes [15,16]

AMHV
n (1+, . . . , i−, . . . , j−, . . . , n+) = i gYM

⟨i j⟩4

⟨1 2⟩⟨2 3⟩ · · · ⟨n− 1n⟩⟨n 1⟩ ,

AMHV
n (1−, . . . , i+, . . . , j+, . . . , n−) = i gYM

[i j]4
[1 2][2 3] · · · [n− 1n][n 1] ,

(2.51)

which are usually referred to as Maximally Helicity Violating (MHV) amplitudes. For
n > 3 complexification of momenta is no longer required, also the vanishing of all
the angle or square brackets respectively does not hold any more. The proof of equa-
tion (2.51) can be achieved inductively using either the Berends-Giele off-shell recursion
or the BCFW on-shell recursion, see for example [121, 122]. It is important to stress
that (2.51) is not the complete n-gluon amplitude, not even once the appropriate colour
factors are restored and multiplied to the kinematic part, it is just one of the many
colour-ordered sub-amplitudes constituting the complete result. Colour ordering is an
extremely powerfull property of Yang-Mills theory which allows to rewrite gluon tree-
level amplitudes as a sum of terms each of which is constituted by a kinematic part
and a colour part where the order of the gluons is fixed. Each term is gauge invariant
on its own, and only a minimal number of colour ordered sub-amplitudes needs to be
computed so that the full set can be recovered from symmetry relations and relabelling.
We will not discuss colour ordering in further detail here since for the greater part of
this thesis we are interested in gravity theories, where colour-ordering is not needed,
and Effective Field Theories of the Standard Model, where colour-ordering does not
apply. For a review of the topic we refer the reader for example to [120].

The takeaway message of this Section is that once the particle content of a (local
and Lorentz-invariant) theory is specified, little-group scaling combined with mass-
dimension analysis is sufficient to completely determine the on-shell three-point ampli-
tudes of the theory thanks to (2.46), as first shown in [128]. This fact is immensely
powerfull since we will see how the combination of these simple seeds with unitarity en-
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Jµ(1, · · · , n) = µ J

1

n

Figure 2.1: Graphical representation of the Berends-Giele current. The leg µ is off-shell, and
has been obtained by stripping off a polarization vector from the amplitude and attaching an
appropriate propagator to it, while legs from one to n are on-shell.

sures a completely consistent theory without need of a Lagrangian, see Chapter 3, and
also how higher multiplicity interactions follow from the three point ones, for example
through BCFW as described in Section 2.4 or more generally through the algorithm
described in chapter 3.

2.3 An off-shell recursion: Berends-Giele

Before discussing how to compute higher-multiplicity amplitudes from on-shell lower-
point seeds, we take a step back and try to understand why it is convenient to do so in
the first place.

For the sake of simplicity let us stick with the Yang-Mills theory we already used
as an example, and assume we want to get the n-gluon amplitude through a standard
Feynman diagram calculation. This computation for n = 4 requires only four diagrams,
for n = 6 it already becomes 220 and for n = 10 the number of diagrams is of order
107 [14]. The sheer combinatoric scale of the problem makes the Feynman diagrammatic
approach more and more unappealing the higher the multiplicity, and clearly also the
higher the loop-order which is affected by the same limitations. A very simple approach
to this combinatorial problem, which does not bypass its limitations but rather allows
to systematically account for all the different diagrams entering the calculation, is the
Berends-Giele recursion relation [129] which generates tree-level amplitudes recursively
in the number of external legs.

First of all one has to introduce an auxiliary quantity with one leg off-shell, a current
which we will denote Jµ(1, . . . , n), see figure figure 2.1. The current Jµ is the sum
of color-ordered n + 1-point tree-level Feynman graphs, where legs 1, . . . , n are on-
shell gluons and leg µ is off-shell, also an off-shell propagator carrying momentum
P 2

1,n = (p1 + . . . + pn)2 attached to the uncontracted µ leg is defined to be included
in the current. Notice that since Jµ is an off-shell quantity it is gauge-dependent, for
example it depends on the reference momenta chosen for the polarization vectors, and
consequently it must be kept fixed until an on-shell result has been extracted.

The Berends-Giele current can be shown to satisfy the following identities [120]:
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µ J

1

n

=
∑

i

J

J

µ

1

i

n

i+ 1

+
∑
i,j

µ

J

J

J

1

i

n

j + 1

i+ 1

j

Figure 2.2: Graphical representation of the Berends-Giele recursion in pure Yang-Mills theory.

• photon decoupling relation

Jµ(1, 2, 3, · · · , n) + Jµ(2, 1, 3, · · · ) + · · ·+ Jµ(2, 3, · · · , n, 1) = 0 , (2.52)

• reflection identity

Jµ(1, 2, · · · , n) = (−1)n+1Jµ(n, · · · , 2, 1) , (2.53)

• current conservation
Pµ

1,nJµ(1, · · · , n) = 0 . (2.54)

At this point the recursion relation is easily established. Since we are considering only
gluon interactions at tree-level, if we follow the off-shell line µ back inside the graph
there are only two possible scenarios, either we encounter a three-point or a four-point
gluon vertex. Attached to these vertices there will be subgraphs with exactly the same
form as the initial Jµ we constructed, but with a lower number of on-shell legs, see
figure 2.2. Thus the n-point amplitude will be expressible in terms of a sum over all
the possible lower-point currents contracted with the three and four-point vertex:

Jµ(1, · · · , n) = −i
P 2

1,n

[ n−1∑
i=2

V µνρ
3 Jν(1, · · · , i)Jρ(i+ 1, · · · , n)

+
n−2∑
i=2

n−1∑
j=i+1

V µνρσ
4 Jν(1, · · · , i)Jρ(i+ 1, · · · , j)Jσ(j + 1, · · · , n)

]
, (2.55)

where Pl,m = ∑m
i=l pi and the Vi are the color-ordered gluon self-interactions equa-

tion (2.56) and (2.57):

V µνρ
3 (P,Q) = i√

2
(
ηνρ(P −Q)µ + 2ηρµQν − 2ηµνP ρ) (2.56)
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V µνρσ
4 = i

2(2ηµρηνσ − ηµνηρσ − ηµσηνρ) (2.57)

The recursion terminates when only currents of the form Jµ(i), i ∈ {1, · · · , n} are left,
which can be easily identified as the polarization vectors

Jµ(i) = εµ(pi, qi) . (2.58)

Finally in order to get the An+1 partial amplitude associated to Jµ one first amputates
the off-shell propagator, then contracts with the appropriate polarization vector and
takes the limit P 2

1,n = p2
n+1 → 0. If we are not dealing with Yang-Mills theory, Berends-

Giele can still be applied by knowing all the particle vertex interactions and then
appropriately generalising the summation in (2.55).

From the perspective of finding the analytic expression of an amplitude, Berends-Giele
is not the most effective method for two reasons. Assuming the calculation one is tack-
ling goes beyond what can be achieved with pen and paper, computational software
like Mathematica could have a hard time dealing with fully analytic input of the size
of the one generated by the recursion: it is very likely that both the generation of the
amplitude as well as any computation involving it will be very slow due to its size. The
second reason is tightly related to the latter problem, the expression of the generated
amplitude might present itself in a complicated form which upon use of appropriate
identities like momentum conservation reduces to something much simpler. But the
simplification process in itself is not trivial at all, so even when Berends-Giele success-
fully returns an analytic amplitude it might not give any particular insight at all due to
its overcomplicated form. On the other hand, this recursion is extremely effective for
numeric evaluations of amplitudes. Given a numerical kinematic for the external parti-
cles, meaning a set of conserved on-shell momenta and a numeric reference momentum,
all the Jµ

1 , namely the polarisations, can be easily generated and from there every step
of the recursion is just a simple set of four numbers9, which translates in a very fast
computation. From the perspective of getting an analytic form of the amplitude this
might not seem very useful, but on the contrary in recent years many cutting edge
(loop-level) results were obtained through reconstructing analytic expressions from nu-
meric evaluations, consider [130–137] just to mention a few. These results rely heavily
on the use of so called finite fields to perform fast numeric evaluations but at the same
time avoiding precision loss typical of floating point numbers. Finite fields represent a
key ingredient also in the algorithm presented in Chapter 3 and will be further discussed
in Section 3.4.

9In this context the recursion is best performed bottom-up rather than top-down.
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2.4 BCFW-like recursions

In this Section we discuss how to compute amplitudes from on-shell lower-point infor-
mation through the Britto-Cachazo-Feng-Witten (BCFW) [12,13,138] recursion as well
as related methods which we call BCFW-like. Once again we focus on Yang-Mills the-
ory for simplicity, but at the end of the section we will dive deeper into generaisations
to other theories, since this a critical aspect of the method.

The idea behind the recursion is to exploit the knowledge about the pole structure of
tree level scattering amplitudes, in combination with a complex shift of the external
kinematics pi 7→ pi(z) for some momenta i and z ∈ C. This shift associates to the tree
amplitude A an auxiliary holomorphic function A(z), which is a rational function of
z and only presents simple poles coming from intermediate propagators going onshell.
As we will now see, the residues at these poles are products of lower-point onshell
amplitudes, allowing thus a recursive calculation until the seed of the recursion is
reached, i.e. until we are left with only three-point amplitudes.

The shift of the external kinematics is most conveniently performed at the level of
spinors, in particular we choose the following shift convention:

|̂i⟩ ≡ |i⟩ , |̂i] ≡ |i] + z |j] ,
|ĵ⟩ ≡ |j⟩ − z |i⟩ , |ĵ] ≡ |j] ,

(2.59)

which in terms of the momenta reads

p̂i = pi + z

2⟨iσj] , p̂j = pj −
z

2⟨iσj] . (2.60)

Notice that since p̂i + p̂j = pi +pj , momentum conservation is still satisfied, furthermore
the property ⟨iσµj]⟨iσµj] = 0 will be crucial in ensuring that only simple poles appear
in the auxiliary function A(z). Consider then the quantity

1
2πi

∮
CR

iA(z)dz
z

(2.61)

where CR is a circle in the complex z plane centred at the origin and of radius R, see
figure 2.3. As we take the limit of R→∞ we have that equation (2.61) evaluates to the
sum of all the residues of the integrand on the complex plane, including the residue at
infinity. For the time being we assume the latter residue to be zero, in other words we
assume that the falloff of A(z) at infinity is at least as fast as 1/z, condition which will
be discussed in more detail towards the end of the section. Obviously, by construction
one of the residues at finite values of z is found at z = 0, which can be immediately
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z0

z1

z3

z2

CR

z

Figure 2.3: The complex z plane on which the function A(z)
z is defined. The residue associated

to the pole in the origin corresponds to the physical tree-level amplitude we want to compute,
while red dots represent other poles at finite values of z. Complex analysis ensures that the
sum over all the residues in the complex plane vanishes, thus we can re-express the physical
amplitude as a sum over all the residues zα plus the residue at infinity.

recognized as the physical tree-level amplitude we want to compute. Thus, we can write

iA(z = 0) = Resz=0
iA(z)
z

= −
∑

poles α

Resz=zα

iA(z)
z

, (2.62)

where the values zα are all finite and are fixed by the poles of A(z), which can only
arise from vanishing propagators, or in other words intermediate states going on-shell.
In particular, since only propagators featuring a dependence on z can lead to poles,
one has to consider all the possible partitions of the external momenta of the type
represented in figure 2.4, where the tree diagram is split into two subdiagrams AL(z)
and AR(z) each containing one of the shifted complex momenta p̂i, p̂j . The value of z
for which the propagator carrying momentum Q̂(z) = pa + . . .+ p̂j + . . .+ pb diverges
can be computed to be

zab = Q2

⟨i|Q|j] , (2.63)

with Q = Q̂(0), and the associated residue is given by

Resz=zab

iA(z)
z

= iAα
L(zab)

iηαβ

Q2 iAβ
R(zab) (2.64)

where we used the fact that

lim
z→zab

z − zab

z

1
Q̂2(z)

= 1
Q2 . (2.65)

In equation (2.64), Aα
L and Aβ

R are on-shell tree-level amplitudes but stripped of a
polarization vector. To recover the complete amplitudes recall the completeness relation
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Resz=zab

iA(z)
z

= î

a− 1

b+ 1

AL

q

Q̂

a

ĵ

b

AR

−Q̂

Figure 2.4: Graphic representation of one of the terms in the BCFW recursion. Poles at finite
values of z can only come from internal propagators going on-shell, which in turn leads to a
factorization into lower point on-shell amplitudes, which can then be recursively computed.

for polarization vectors

−ηµρ = ϵµ+(Q̂, q)ϵρ−(Q̂, q) + ϵµ−(Q̂, q)ϵρ+(Q̂, q)− qρQ̂µ + qµQ̂ρ

q · Q̂
, (2.66)

where q is an arbitrary reference vector and Q̂ = Q̂(zab). Notice that due to the Ward
identity the last term in equation (2.66) vanishes when dotted into AL or AR. We get
then to the final expression for the physical tree-level amplitude

A(z = 0) =
∑
a,b

[
A(b+ 1, . . . , a− 1, Q̂±(za,b))

1
Q2A(Q̂∓(za,b), a, . . . , b)

]
, (2.67)

which is written in terms of lower-point on-shell tree amplitudes. These can be again
computed in a similar fashion establishing the recursion and concluding the derivation.
Notice how unitarity explicitly enters the derivation through the completeness relation
(2.66).

As already mentioned, an important feature in establishing the recursion is the vanish-
ing of the residue at infinity, which requires a sufficiently fast falloff of the holomorphic
function A(z). The behaviour of A(z) at large z not only depends on the theory one is
considering, but it turns out to depend also on the polarizations of the particles whose
momenta have been shifted. For a detailed discussion of the topic we refer the inter-
ested reader to [139], where BCFW shifts of various theories are studied, and among
others Yang-Mills and General Relativity in D ≥ 4 dimensions. It can be shown that
in the pure Yang-Mills case that we are considering, using the shift convention in equa-
tion (2.59), the worst possible falloff in relation to the polarizations of the particles i,
j is given by

(i, j) (+,+) (−,−) (−,+) (+,−)

A(z →∞) ∼ 1
z

1
z

1
z

z3
, (2.68)
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which implies that for any given helicity configuration of the external particles there is
always a suitable shift allowing to construct the amplitude through the BCFW recur-
sion. An interesting example where the residue at infinity is non-vanishing is the λϕ4

theory, nonetheless it can be shown that tree-level amplitudes can still be computed
recursively [121]. In fact, the interaction of the theory is so simple that the residue
at infinity can be itself computed (also recursively), thus completely determining the
n-point amplitude from the four-point interaction which is the seed of the recursion.

The BCFW recursion is certainly powerful and versatile, consider that it can be ap-
plied to supersymmetric theories [140–143], string theory [144, 145], theories involving
massive particles [146–151] and theories in higher dimensions [152,115], however it also
comes with limitations, an example being its applicability to the Standard Model and
Effective Field Theories. In order to make BCFW viable one needs to always make
sure the residue at infinity vanishes, which is often not a trivial requirement.

Extensions of the BCFW recursion allow for applicability to a wider range of theories by
shifting a larger number of external legs which then results in a better behaviour of A(z)

z

at infinity and thus the vanishing of the residue at z →∞. The common foundation of
these generalisations are (see for example [121]) that, given a set of conserved on-shell
momenta {pi}i=1,...,n and defining a set of complex valued vectors {qi}i=1,...,n, some of
which possibly vanishing, which satisfy

• ∑
i qi = 0

• qi · qj = 0 for all i, j = 1, . . . , n

• pi · qi = 0

One can define a new set of shifted momenta p̂i = pi + zqi with z ∈ C. It is easy
to see that these new momenta still satisfy momentum conservation as well as p̂2

i =
0, and furthermore propagators involving combinations of these momenta will have
denominators which are at most linear in z, which is a crucial property to ensure all
poles of the amplitude are simple poles. BCFW is then just a particular case which
can be obtained for example by setting q1 = ⟨1σ n], qn = −⟨1σ n] and qk = 0 for
k = 2, . . . , n − 1. The simplest generalisation is to shift three external momenta, this
can be done neatly through the so called Risager shift, which takes advantage of the
Schouten identity (2.13) by setting

qi = ⟨j k⟩⟨i σ η] , qj = ⟨k i⟩⟨j σ η] , qk = ⟨i j⟩⟨k σ η] , (2.69)

with η some reference spinor, so that

ri + rj + rk =
(
⟨j k⟩⟨i|+ ⟨k i⟩⟨j|+ ⟨i j⟩⟨k|

)
σ η] = 0 . (2.70)
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This shift allowed to establish a direct proof of the CSW rules [153] previously con-
jectured in [154]. Another common shifting scheme is the all-line shift where all the
external momenta are shifted, in particular it is convenient to do so by acting once
again directly at the level of the spinors. We define the anti-holomorphic shift (or
equivalently the holomorphic shift where the roles of the angle and square brackets are
swapped) to be given by

|i] 7→ |̂i] = |i] + z wi |η] , |i⟩ 7→ |i⟩ , (2.71)

with the wi satisfying ∑iwi|i⟩ = 0 and |η] being once again an arbitrary reference
spinor. It can be shown [155] under very general assumptions that with such a shift
one has

Ân(z)→ zs (or better) as z →∞ , with 2s = 4− n− c−
∑

i

hi , (2.72)

where n is the number of external legs, c is the mass-dimension of the coupling and
hi are the helicities of the external states. This condition ensures the vanishing of
the residue at infinity for a wide class of theories, which also includes EFTs [156–
158]. This wider applicability compared to BCFW comes however at the price of
introducing an arbitrary reference spinor |η]. At the end of the calculation the result
will usually depend explicitly on such spinor despite actually being independent from it
(independence can easily be verified through the generation of numerical kinematics),
which means that ideally one needs to massage the result until the spinor dependence
drops out. Clearly this is in general not a trivial task, even more so if it needs to be
automated through some computer software. In the next chapter we will discuss an
algorithm for the computation of tree-level amplitudes which has at the same time a
wide spectrum of applicability but is free of the issues affecting BCFW-like recursions.
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Chapter 3

On-shell bootstrapping of
tree-level amplitudes

The computation of tree-level scattering amplitudes is a rather ubiquitous task in high-
energy physics since it often represents either the starting point or a stepping stone for a
variety of different calculations. Considering that state of the art results range from two-
loop five parton interactions in QCD (see for example [133–135,159]) to eight-loop three-
point form factors in N = 4 supersymmetric Yang-Mills [160], it would be only natural
to consider tree-level a solved problem, which indeed it is. However only in principle: in
practice the computation of trees within certain theories or at high multiplicities might
still prove challenging. Clearly there are no conceptual obstructions to the computation
of tree-amplitudes: given the Lagrangian of the theory one might be content with
computing the Feynman rules, feed them into a computer along with an algorithm to
do the combinatorics and wait for the result. There are however a few issues with this
approach, which make it usually suited at most for numerical evaluations or verification
purposes. First, one has to build an algorithm which appropriately takes care of all
the possible contractions of the Feyman rules leading to a complete sum of all the
diagrams contributing to the process of interest. An example of such an algorithm is the
Berends-Giele recursion which we presented in Section 2.3, which thanks to its recursive
nature allows to recycle information and lessen the problem of factorial complexity
of the calculations. Nevertheless, the combinatorics might be still involved enough
for results to require minutes or even hours to be obtained with the final expression
being in an unwieldy form due to its sheer size, so much so that further processing
can become difficult. A more effective technique is represented by the BCFW-like
recursion relations, see Section 2.4, which make use of a complex-parameter shift of
the kinematics and use on-shell data at every stage of the calculation. These on-shell
expressions are typically more compact and furthermore the involved combinatorics is
easier, making on-shell recursions very well suited for the task. On the other hand, these
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techniques are not guaranteed to work for any theory, in fact the shifted quantities need
to be sufficiently well-behaved at infinity (along particular directions in the complex
plane). This is typically the case for most theories once an appropriate complex shift
is chosen, however often it comes at the price of introducing some sort of reference
spinor/momentum which might be hard to get rid of, and thus appear in the final
expression despite being completely arbitrary and physically inconsequential. Another
slight disadvantage of these sort of recursions is that often the final expressions depend
on spurious poles, which obscure the physics of the process while being removed through
the use of spinorial identities and momentum conservation.

In this section we are going to present an algorithm developed in [5] for the on-shell
construction of scattering amplitudes in a generic EFT. This algorithm enjoys the ad-
vantages of using only on-shell intermediate quantities typical of BCFW-like recursions
without suffering from the issues related to large-z behaviour or appearance of reference
spinors in the final results. Furthermore, results are directly computed in a compact
form which only presents physical poles in the Mandelstam invariants, and are thus
well suited for unitarity applications. It is important to stress that, to the best of our
knowledge, this procedure for constructing amplitudes is the first to boast all of the
above mentioned advantages at the same time. In practical terms, its recursive nature
makes it extremely implementation-friendly, with various aspects being also suitable for
parallelization. Furthermore, its applicability to essentially any theory combined with
the absence of any sort of unphysical reference momentum in the final results, makes
it ideal for any application requiring the computation of analytic tree-level amplitudes,
be it as intermediate steps for unitarity calculations (as done for example in Chapter 4)
or for example as a stepping stone for the study of the analytic properties of a theory
itself.

Before diving into the construction of higher-multiplicity amplitudes, we first summarise
and discuss a series of results from the literature which allow to build the Standard
Model from scratch without the need of ever introducing a Lagrangian or quantum
fields1. Combining these results with our algorithm and the use of generalised unitarity
allows in principle for a complete on-shell construction of the theory at any multiplicity
and any loop order. The techniques presented in this chapter will provide the tree-level
input required for the computation of the SMEFT anomalous dimension matrix at one
loop discussed in Chapter 4.

1It goes without saying that in a wide variety of contexts the Lagrangian perspective provides very
simple and clear insights, so for the sake of clarity we will still make use of it when appropriate.
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3.1 The Standard Model from on-shell techniques

In this section we present a perturbative on-shell construction of the Standard Model,
through the consistency of its S-matrix elements, under the following assumptions:

• The scattering amplitudes are invariant under Poincaré transformations but trans-
form under some representation of the Little Group specified by their particle
content. In four dimensions, under Little Group transformations each massless
state transforms with a phase ei hiϕ where hi is the helicity of the ith-state. These
assumptions make the Spinor Helicity variables the most suited for the description
of scattering amplitudes.

• In natural units, the mass dimension of an n-point scattering amplitude, at any
loop order L2, is [

A(L)
n

]
= 4− n . (3.1)

This can be easily seen by writing the amplitude (in an all-outgoing convention)
in terms of the transition matrix T defined by S = 1 + iT and the single particle
states as ⟨p1 · · · pn|T |0⟩ = (2π)4δ4(p1 + . . .+pn)An, where the single particle state
|p⟩ has mass dimension −1 and [δ4] = −4.

• Locality: the non-analytic terms of the scattering amplitudes correspond to in-
termediate particles going on-shell. In particular, locality manifests itself in the
analytic expression of an amplitude through the sole appearance of simple poles
in the Mandelstam invariants, corresponding to single-particle exchanges with the
intermediate particle going on-shell. Terms in the amplitude which include higher
order poles in the invariants must thus be expressible as combinations of simple
pole terms in order for locality to hold.

• Unitarity: the discontinuities of the amplitudes are given by a proper sum of
products of lower-point (and lower-loop) amplitudes. In particular, the residues
on the simple poles are given by

−i Res
s1...m

A(0)
n (ph1

1 . . . phn
n ) = f

∑
sI,hI

A(0)
m+1(ph1

1 . . . phm
m , phI

I )A(0)
n−m+1(phI

I → p
hm+1
m+1 . . . p

hn
n ) ,

(3.2)
where f = (−1)∆s with ∆s the respective signature of the fermion ordering be-
tween the LHS and the RHS, sI and hI are the type and the helicity of the
intermediate state propagating3. More concretely, unitarity manifests through
conservation of probability encoded by the completeness relation which schemat-

2In the following, when the number of loops is not specified as superscript, we mean tree-level.
3We adopt the following convention: we indicate with An(ph1

1 . . . phn
n ) an n-point scattering ampli-

tude with all the momenta outgoing and with An(ph1
1 . . . phm

m → p
hm+1
m+1 . . . phn

n ) an n-point amplitude
with m incoming and n − m outgoing states.
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ically reads ∑ |X⟩⟨X| = 1, where the sum is over all the physical states of the
theory. It is through insertion of this completeness relation that the right-hand
side of (3.2) comes to be, in the limit where an intermediate virtual particle
exchange goes on-shell exposing the corresponding simple pole (analyticity) cap-
tured by the residue.

Gauge invariance is not assumed a priori. Indeed, it has been proven that the Lie
algebra structures are required by consistent factorisation of the four-point tree-level
amplitude [128]. We will briefly review and extend this considerations to the Standard
Model in Section 3.1.1. Moreover, since we work purely on-shell (in four dimensions)
with spinor helicity variable, there is no need for polarisation tensors or Ward identities.

As we already discussed in some detail in Section 2.2, three-point scattering amplitudes
in the Standard Model can be fixed by symmetry, helicity weight and mass dimension
considerations (up to a constant) [128]. In particular, recall that the kinematic part of
any massless three-point amplitude can be be written as

A(1h1 , 2h2 , 3h3) ∝


g ⟨1 2⟩h1+h2−h3⟨2 3⟩h2+h3−h1⟨3 1⟩h3+h1−h2

∑
i hi = −1

g [1 2]h1+h2−h3 [2 3]h2+h3−h1 [3 1]h3+h1−h2
∑

i hi = 1
, (3.3)

where for the time being we take the mass dimension of the coupling constant to be zero
[g] = 0. This singles out the renormalizable interactions of the Standard Model from
the non-renormalizable EFT interactions ([g] < 0) as well as the super-renormalizable
ones ([g] > 0) for example of the ϕ3 theory. Now, choosing the particle content to match
the one of the SM (see Table A.1), building the complete list of all the tree-level three-
point amplitudes reduces to a simple classification task. We list all these structures
in appendix A.2, including flavour and colour structures. In order to correctly fix the
latter we need to make use of unitarity and factorization properties of the four-point
amplitudes, as discussed in the following sections.

3.1.1 Four-point amplitudes from factorisation

All the four-point amplitudes in the Standard Model, but A(H̄ i, H̄j , Hk, H l), can be
completely fixed by factorisation. This will be proven in Section 3.3.1 but we assume
it for the moment. Consistency between different factorisation channels at tree-level
for four-point amplitudes then constrains many of the structures in the three-point
amplitude. These constraints fix the (gauge-invariant) structures appearing and impose
relations between couplings.

The constraints imposed by factorisation are completely equivalent to those found when
we construct a consistent gauge-invariant Lagrangian describing a unitary QFT of self-
interacting vector bosons [161] and their minimal coupling to fermions and scalars,
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i.e. the Lie algebra structures and the universality of Yang-Mills coupling (see, for
example, [162]). Moreover, we generalise this argument and find that factorisation
also imposes relations between the hypercharges associate to the minimal coupling of
matter with (non-self-interacting) U(1)-vectors, which are equivalent from a Lagrangian
perspective to the requirement that the Yukawa interactions are U(1)Y invariant, i.e.
scattering amplitudes are non zero only for hypercharge-conserving processes.

Jacobi identities from factorisation

In this subsection we review the observations in [128]. We want to bootstrap the
four-gluon amplitude through factorisation by considering as seeds the three-gluon am-
plitudes4

A(GA
−, G

B
−, G

C
+) = g3 f

ABC ⟨1 2⟩3
⟨2 3⟩⟨3 1⟩ , A(GA

−, G
B
+, G

C
+) = −g3 f

BCA [2 3]3
[1 2][3 1] ,

(3.4)
where the fABC have been introduced in order to satisfy Bose-Einstein symmetry: due
to the complete antisymmetry of the kinematic part, one needs to have fABC = f [ABC]

for the three-point amplitude to be invariant under particle exchanges. The most
generic (slightly redundant) ansatz for the four-point amplitude which is compatible
with locality and unitarity is

A(GA
−, G

B
−, G

C
+, G

D
+)

⟨1 2⟩2[3 4]2 = fABEfCDE

s12

(
c1
s13

+ c2
s14

)
+ fACEfBDE

s13

(
c3
s12

+ c4
s14

)

+ fADEfBCE

s14

(
c5
s12

+ c6
s13

)
.

(3.5)

The coefficients ci can be fixed from factorisation using (3.2) which in the 4-point case
reduces to5

−iRes
sij=0

A4 = A3 · A3 . (3.6)

Imposing this constraint for all the three distinct channels, we find
fABEfCDE(c1 − c2) + fACEfBDEc3 − fADEfBCEc5 = −g2

3 f
ABEfCDE

fABEfCDEc1 + fACEfBDE(c3 − c4)− fADEfBCEc6 = −g2
3 f

ACEfBDE

fABEfCDEc2 − fACEfBDEc4 + fADEfBCE(c5 − c6) = −g2
3 f

ADEfBCE

. (3.7)

This linear system in general has no solutions, unless we impose the following quadratic
4The relative minus sign between the so called MHV and MHV amplitudes is fixed by requiring

parity invariance of the theory (at the perturbative level).
5We remind the reader that when fermions are present in the amplitudes, the RHS of (3.6) might get

a minus sign contribution from fermion reordering and a further factor of −i when crossing a fermion
from initial to final state. This subtlety will be relevant in the computations of the following sections.
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relations among the constants fABC :

fABEfCDE + fBCEfADE + fCAEfBDE = 0 , (3.8)

which can be recognised as the Jacobi identities for the structure constants of a Lie
algebra.

Notice that, even ignoring spin-statistics requirements which led us to introduce the
tensors fABC to begin with, one could still not do without them. In fact, repeating
the above procedure setting all the f to 1 in (3.5) leads to a system without solutions.
In other words, the only consistent way of building a self-interacting theory of spin 1
bosons is by introducing the standard colour factors for the gluons, thus getting Yang-
Mills theory. For further discussion on the topic see [127], where on a similar footing
it is also shown that the only consistent massless spin 2 particles must reproduce the
standard gravity four-point amplitude.

Lie algebras from factorisation

We can apply the same reasoning to scalars and fermions coupled to the non-abelian
spin-1 particles and find that also their minimal coupling is tightly constrained by
locality and unitarity [127]. We consider as an example the four-point amplitude
A(GA

−, G
B
+, ū

a, ub). The three-point minimal coupling is fixed by little group and in
principle can take the general form

A(GA
−, ū

a, ub) = i g3,m τA a
b

⟨1 2⟩2
⟨2 3⟩ , A(GA

+, ū
a, ub) = i g3,m τA a

b

[1 3]2
[2 3] , (3.9)

where, for the moment, τA a
b is some generic matrix encoding the interaction properties

of the fermions ua (ūa) and the vector bosons, and we factored out an overall numerical
coefficient. The most general ansatz for the four-point is then

A(GA
−, G

B
+, ū

a, ub)
⟨1 3⟩2[2 3][2 4] = fABCτC a

b

s12

(
c1
s13

+ c2
s14

)
+ τAB a

b

s13

(
c3
s12

+ c4
s14

)

+ τBA a
b

s14

(
c5
s12

+ c6
s13

) (3.10)

where τAB a
b = τA a

c τ
B c

b . Again taking the residues and matching with the factorisa-
tion channels as in equation (3.6), we find:


fABCτC a

b (c1 − c2) + τAB a
b c3 − τBA a

b c5 = i g3 g3,m fABCτC a
b

fABCτC a
b c1 + τAB a

b (c3 − c4)− τBA a
b c6 = g 2

3,mτ
AB a

b

fABCτC a
b c2 − τAB a

b c4 + τBA a
b (c5 − c6) = g 2

3,mτ
BA a

b

, (3.11)
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This linear system has solutions if and only if

g3,m = g3 , (3.12)

τAB a
b − τBA a

b = i fABCτC a
b , (3.13)

i.e. iff the coupling constant of the interaction is universal and the matrices τA a
b are

representations of the elements of a Lie algebra, with fABC the structure constants.

Charge conservation and Yukawa coupling

Next we generalise the procedure of the previous sections to the minimal coupling of the
abelian vectors with scalars and fermions interacting via Yukawa coupling. Unitarity
and locality will then imply that the hypercharge associated to the minimal coupling
of the matter states to the abelian vector is conserved. The relevant three-point am-
plitudes are

A(B−, ē, e) = i g1Ye
⟨1 2⟩2
⟨2 3⟩ , (3.14)

A(B−, L̄
i, Lj) = i g1YLδ

j
i

⟨1 2⟩2
⟨2 3⟩ , (3.15)

A(B−, H̄
i, Hj) = i g1YHδ

j
i

⟨1 2⟩⟨3 1⟩
⟨2 3⟩ , (3.16)

A(Li, e, H̄j) = i Ȳ(3)δi
j [1 2] , (3.17)

where Yi is the hypercharge associated to the i-th state, and Y(3) is the Yukawa coupling
matrix for the electron family, with Ȳ(3) =

(
Y(3)

)†
. The most generic ansatz consistent

with locality and unitarity is

A(B−, L
i, e, H̄j)

⟨1 2⟩⟨1 3⟩[2 3]2 = δi
j

(
c1

s12s13
+ c2
s12s14

+ c3
s13s14

)
, (3.18)

and probing the three different factorisation channels we find the system:
c1 − c2 = −g1Ȳ(3)YL

c1 − c3 = +g1Ȳ(3)Ye ,

c2 − c3 = +g1Ȳ(3)YH

(3.19)

which has solutions if and only if we impose the hypercharge conserving condition:

YL = YH − Ye . (3.20)
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Analogously, one can also find the charge conservation conditions for the processes
involving quarks, instead of leptons:

YQ = YH − Yd , (3.21)

YQ = −YH − Yu . (3.22)

It is interesting to stress that there are further relations on the hyper charges in the
Standard Model, namely those coming from anomaly cancellation conditions at loop-
level. In Section 4.2 we will show how to reproduce these conditions using generalised
unitarity in four dimensions.

3.2 The on-shell classification of SMEFT operators

In this section we are going to extend the on-shell methods to the classification of effec-
tive interactions [56,60,63] in the SMEFT [57–59,61], corresponding in the Lagrangian
formalism to insertions of marginal operators [163–166]. First we are going to classify
all the independent kinematic structures in a generic theory in four dimensions intro-
ducing an algorithm in terms of graphs [5] and then we will consider the specific case
of the Standard Model, combining these with the colour structures6.

3.2.1 Kinematic structures from spinor helicity variables

Each effective interaction will be identified by its minimal amplitude, this is an ampli-
tude which does not vanish in free theory (if we switch off all the other interactions),
crucially it contains no poles because it includes no particle exchanges7. In other words,
classification of the effective interactions will be achieved by classifying contact terms,
namely interactions where there are no intermediate modes propagating, which in prac-
tical terms means that we need only to considers those structures involving positive
powers of the angle and square spinor brackets.

As a first step in the classification procedure, we fix the mass-dimension [O] of the
operators for which we want to find a complete basis. From the minimal amplitudes
we strip off the coupling of the effective interaction, which is related to the dimension
of the corresponding marginal operator by

[gO] = 4− [O] . (3.23)
6The approach presented in this section has been coded in Mathematica [119], the code and an

example notebook are available at the link https://github.com/StefanoDeAngelis/SMEFT-operators.
7From a Lagrangian perspective, it is simply the amplitude obtained by fully contracting a vertex-

interaction Feynman rule with the appropriate external states.
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What we are looking for are the kinematic structures which have mass dimension

[O]− n ≥ 0 , (3.24)

where n is the number of external legs in the corresponding minimal amplitude. Equa-
tion (3.24) provides a constraint on n which can be further refined by taking into
account which types of particles are found in the amplitudes. In fact, in order to
get helicity weights right, each vector in the minimal amplitude will contribute at least
with two spinor variables and each fermion at least with one. This leads to the stronger
constraint8

[O]− n ≥ 2× 1
2 × ng + 1

2 × nf =⇒ 2ng + 3
2nf + ns ≤ [O] , (3.25)

where ng, nf and ns are respectively the number of vectors, fermions and scalars and
clearly n = ng+nf +ns. Next, we need to take into account the constraints coming from
the condition that our kinematic structures must be SL(2,C) invariant. This requires
to further distinguish between helicities of the different particles, and to find all the
(ng− , ng+ , nf− , nf+ , ns)9 compatible with the constraint (3.25). Once ng, nf and ns are
fixed, we take into account that every state can contribute to the kinematic structures
with powers of its momentum, which correspond to derivates in the operator language.
The total number of momenta n∂ is fixed by saturating the mass dimension constraint
to

n∂ = [O]− 2ng −
3
2nf − ns . (3.26)

A simple way of finding all the possible structures is to identify them with an oriented
multigraph, where each vertex is associated to a particle, and the edges correspond
to angle (red) or square (blue) SL(2,C) invariants. The orientation of the edges then
keeps track of the ordering of particles in the brackets and thus provides potential
minus signs.

The valence of each vertex is given by two natural numbers vi = (vi
a, v

i
s) such that

vi
s − vi

a = 2hi is the helicity of the ith particle (see, for example, Figure 3.1). Finally,
for reasons which will become clear in the next section, we consider a circular embedding
for our graphs, in other words we take all the nodes to be ordered points on a circle.
This method has proven to be a computationally efficient way of finding a basis of
independent structures up to Schouten and momentum conservation identities. Notice
that the former act separately on angle and square invariants, while the latter mixes
the two structures. In the following sections we are going to show how to deal with
these identities in terms of above mentioned multigraphs.

8This condition is not only necessary but also sufficient for having local interactions.
9The superscript of the subscript specify the helicity of the particles: ng = ng− + ng+ and nf =

nf− + nf+ .
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1
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4

Figure 3.1: The graph associate to the kinematic structures ⟨1 2⟩2⟨1 4⟩⟨3 2⟩[2 3][1 3]2[3 1] and
⟨1 3⟩⟨1 4⟩⟨2 5⟩[2 3][3 4] respectively.

4

1 2

3

=

4

1 2

3

+

4
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3

Figure 3.2: Schouten identities are equivalent to untying crossings for both the two graphs in
the multigraph: ⟨1 3⟩⟨2 4⟩ = ⟨1 4⟩⟨2 3⟩+ ⟨1 2⟩⟨3 4⟩.

Schouten identities

We recall that the Schouten identities for angle and square brackets for four spinors
labelled 1,2,3,4 can be written as

⟨1 2⟩⟨3 4⟩+ ⟨2 3⟩⟨1 4⟩+ ⟨3 1⟩⟨2 4⟩ = 0 ,

[1 2][3 4] + [2 3][1 4] + [3 1][2 4] = 0 .
(3.27)

Thinking of the kinematic structures in terms of graphs, specifically using the already
mentioned circular embedding, one way of implementing (3.27) is by untying crossing
edges as shown in Figure 3.2. In a generic graph, this can be applied recursively until,
after a finite number of steps, we end up with graphs which do not have any crossing. It
is then clear that a basis of kinematic structures which are independent under Schouten
identities can be obtained by building a basis of planar graphs only.

Momentum conservation

In general, it is often the case that the number of momenta in the n-point amplitude
(or equivalently derivatives in the interaction) we consider is n∂ > 0. Each momentum
in the amplitude can be assigned to any of the n particles, and doing so increases
the valence of the corresponding vertex by (1, 1). On the other hand, looking at a
given vertex in a graph representing the kinematics of an interaction, the number
of momenta associated to the considered vertex is min{vi

a, v
i
s}, where we remind the

44



CHAPTER 3. ON-SHELL BOOTSTRAPPING OF TREE-LEVEL AMPLITUDES

reader that the difference in vi
s − vi

a gives the helicity of the particle. When building
a base, it is then important to take into account how momentum conservation relates
different kinematic structures, and once again this can be done at the level of the graphs.
First of all, when enumerating all the possible basis elements we simply remove those
containing the momentum of the nth-particle, which we choose as the redundant one,
the nth-vertex thus having valence of exactly ( |hn|+hn

2 , |hn|−hn

2 ). This is not sufficient
however to completely remove redundancies coming from momentum conservation, in
fact writing |n⟩[n| = −∑j |j⟩[j| and contracting both sides of the equality with |n]⟨i|
and |i]⟨n| respectively we get

0 =


n−1∑
j=1
⟨i j⟩[j n] hn > 0

n−1∑
j=1
⟨n j⟩[j i] hn < 0

(3.28)

where we took into account antisymmetry of the spinor brackets10, and contracting
instead with |i]⟨i|

n−2∑
i=1

n−1∑
j=i+1

sij = 0 . (3.29)

Both the equations in (3.28) are valid identities independently of the helicity of the
n-th particle, however only one of them will actually appear in the expressions and
needs thus to be accounted for. Some observations are in order:

• The Schouten identities do not change the valences of vertices in the multigraph,
so they do not change the number of momenta associated to each vertex.

• Since we want a basis of planar graphs, we solve all but one of the (3.28) for one
of the momenta which maximises the number of planar multigraphs, the natural
choice being either p1 or pn−1 (a different choice would give an over-counting of the
independent structures). The considered identities are then taken into account by
simply discarding all the structures involving ⟨i n−1⟩[n−1n] or ⟨nn−1⟩[n−1 i]
according to the helicity of the nth-particle (or equivalently ⟨i 1⟩[1n]

/
⟨n 1⟩[1 i]).

• Among (3.28), there is one relation which does not involve neither pn nor pn−1.
This is taken into account by discarding those structures where ⟨n−1 1⟩[1n]

/
⟨n 1⟩[1n−

1] appears (or ⟨1n− 1⟩[n− 1n]
/
⟨nn− 1⟩[n− 1 1]).

• Finally, the constraint (3.29) forces us to discard the terms proportional to s1 n−1.

This algorithm classifies efficiently all the SL(2,C)-invariant structures which are poly-
nomial in the spinor variables with fixed mass dimension and helicity configuration,
associated to each (ng− , ng+ , nf− , nf+ , ns). It also provides a very simple way of writ-

10Or equivalently the Dirac equation in its form pn αα̇ λ̃α̇
n = 0 = λα

n pn αα̇.
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ing the dependent structures as linear combinations of the independent ones. We also
notice that this algorithm can be applied beyond gauge theories and in fact we make use
of a simplified version of it for the classification of the R4 interactions in Section 5.2.3.

3.2.2 The classification of SMEFT interactions

The classification of the helicity structures is completely theory-independent and is
indeed not limited to gauge theories, but can be applied to effective field theories
of gravity, with (massive and spinning) matter as well, see [167]. Information about
the Standard Model enters only in the SU(3) × SU(2) × U(1) (invariant) structures
associated to the chosen set of particles.

The gauge group structures

The classification of the invariant structures of the gauge groups can be worked out
using standard group theory techniques. In particular

• U(1): to each (ng− , ng+ , nf− , nf+ , ns) structure we associate all the possible com-
binations of Standard Model states for which the total hypercharge is zero.

• SU(2): we notice that the algorithm presented in the previous section can be
generalised to the case of SU(2) invariants with a single graph associated to the
invariants. Each oriented edge from the nth to the mth vertices corresponds to an
ϵinim tensors and the valence of each vertex vi is fixed by the representation of the
ith-particle, labelled by its dimension vi + 1. The indices associated to the same
vertex must be taken as completely symmetric. In the case of the SU(2) group
there is no analogous of momentum conservation, so the independent structures
can be taken to be in one-to-one correspondence with planar graphs.

• SU(3): the SU(N) invariants have been widely studied both in the mathemat-
ics and in the physics literature (see, for example [168–170]), and our related
algorithms are just implementations of the standard techniques, in particular we
adopt the standard Littlewood-Richardson rule [171,172] as suggested in [64,65].

Once the kinematic structures associated to (ng− , ng+ , nf− , nf+ , ns) have been gener-
ated and a compatible set of gauge singlets was found, we combine all the invariants
in order to find a basis of independent structures enclosing information about both the
kinematics and the colour. If no identical fields are present, these structures coincide
with the minimal amplitudes, else one needs to impose Bose-Einstein and Dirac-Fermi
statistics as explained in the next section.
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Repeated fields and Young projectors

In general the minimal amplitudes we consider can involve identical states, for [gO] =
−2 two simple examples are the amplitudes for (G+, G+, G+) or (Q,Q, u, d). The treat-
ment of this subtlety has been systematically taken into account in [64, 173]. Starting
from their classification, we take a slightly different approach, since we deal with min-
imal amplitudes and not with operators. We distinguish between identical bosons and
fermions at the level of the minimal amplitude and impose Bose-Einstein statistic on
the former and Dirac-Fermi statistic on the latter. In practice, we consider all the
previously classified independent structures and we act on them with a proper Young
projector over the labels of the identical states:

• in the case of n identical bosons we act on the structures with the symmetriser
projector

Y 1...
n

= 1
n!

n!∑
i=1

pi , (3.30)

where pi are all the permutations of the n labels associated to the identical bosons.

• in the case of n identical fermions we act on the structures with the total anti-
symmetriser projector

Y 1 ··· n = 1
n!

n!∑
i=1

si pi , (3.31)

where si is the signature of the permutations pi.

Once, we apply the Young projectors to the independent minimal amplitudes, we will
end up with a sum over terms which will not necessarily belong to the basis of indepen-
dent structures chosen. In order to find the minimal amplitudes, we need to re-write
these symmetrised amplitudes in terms of elements of our structure basis and check if
they are linearly independent from each other (which in general will not be the case,
some structures will even be automatically zero after projection).

A further subtlety arises in the case of the Standard Model, due to the flavour of
fermions: to each particle we can associate a further SU(Nf ) index, where Nf is the
number of flavours. The independent minimal amplitudes can then be classified in
terms of inequivalent irreducible representations of SU(Nf ), which are in one-to-one
correspondence with the irreducible representations of the symmetric group Sn, where
n is the number of identical fermions in the same family. For example, for dimension
6 operators we can consider the barion number violating effective interactions with
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(Q,Q,Q,L) (n = 3). Then we have a basis of four independent structures:

ϵa1a2a3ϵi1i4ϵi2i3 ⟨1 2⟩⟨3 4⟩ , (3.32)

ϵa1a2a3ϵi1i2ϵi3i4⟨1 2⟩⟨3 4⟩ , (3.33)

ϵa1a2a3ϵi1i4ϵi2i3⟨1 4⟩⟨2 3⟩ , (3.34)

ϵa1a2a3ϵi1i2ϵi3i4⟨1 4⟩⟨2 3⟩ . (3.35)

There are three inequivalent representations of S3, corresponding to the Young diagrams
, and . Then we can act on the independent structure with the projectors

associated to the standard Young tableaux 1 2 3 , 1 2
3

, 1
2
3

11. There is a unique linearly

independent structure associated to each irreducible representation:

C{3},{1}
m1m2m3,m4 Y 1

2
3

◦ ϵa1a2a3ϵi1i4ϵi2i3 ⟨1 2⟩⟨3 4⟩ , (3.36)

C{2,1},{1}
m1m2m3,m4 Y 1 2

3
◦ ϵa1a2a3ϵi1i4ϵi2i3 ⟨1 2⟩⟨3 4⟩ , (3.37)

C{1,1,1},{1}
m1m2m3,m4 Y 1 2 3 ◦ ϵa1a2a3ϵi1i4ϵi2i3 ⟨1 2⟩⟨3 4⟩ , (3.38)

where Cπ,{1}
m1m2m3,m4 is a Wilson coefficient tensor associated to each effective minimal

amplitude, with π being the integer partition corresponding to the Young diagram for
the Q fields. Notice that Dirac-Fermi statistics forces the Wilson coefficient tensor to
have the “opposite” symmetry properties with respect to the Young tableau associ-
ated to the projector: e.g. C{3},{1}

m1m2m3,m4 = C
{3},{1}
(m1m2m3),m4

, C{2,1},{1}
m1m2m3,m4 = C

{2,1},{1}
[m1m2]m3,m4

,
C

{2,1},{1}
[m1m2m3],m4

= 0 and C
{1,1,1},{1}
m1m2m3,m4 = C

{1,1,1},{1}
([m1m2m3],m4

. The number of independent op-
erators for this specific case is12 (Nf +2) (Nf +1) Nf

6 , (Nf +1) Nf (Nf −1)
3 and Nf (Nf −1) (Nf −2)

6
for each tensor respectively.

3.3 Bootstrapping the tree-level amplitudes

In the amplitudes literature, the computation of higher-point tree-level amplitudes from
on-shell data is usually performed through BCFW recursion relations [12, 13, 174], or
its generalisations [153, 155, 157, 175, 176]. These recursion relations are particularly
well-suited for the computation of amplitudes involving vector bosons and gravitons,
for which the BCFW (2-line) shift gives rather compact results summing over a small
subset of the actual factorisation channels. The most general criteria for the shifted
amplitude to be well-behaved in the z → ∞ limit are given in [156]: all renormaliz-

11The fourth standard tableau 1 3
2

would not give an independent minimal amplitude, because it
could be obtained from the second one by relabelling: Y 1 3

2
= (2 3) ◦ Y 1 2

3
◦ (2 3), where (2 3) is the

permutation of the labels 2 and 3.
12The counting can be performed using the Hook Content Formula.
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able theories are shown to be 5-line constructible and, in particular, theories involving
fermions and scalars charged under a U(1) are 3-line constructible, as in the case of the
Standard Model. Moreover, non-renormalizable amplitudes with no-derivative opera-
tor insertions are on-shell constructible, but it is not generally true for operators with
derivatives. Finally, n-line shifts with n ≥ 3 give rather cumbersome results and in no
case locality is manifest in the final amplitude.

In this section we present an alternative approach to the above mentioned recursion
relations, which is completely general in the type of interactions one can consider and at
the same is entirely on-shell. The general strategy has been outlined in the Section 3.1,
and in the following section we are going to argue that in our framework any effective
field theory is fully on-shell constructible from unitarity and locality. In particular, the
singularity structure will be manifest in the final result.

3.3.1 Higher-point amplitudes in the SM

The procedure can be roughly divided into two parts: the construction of an ansatz
and a matching procedure on the single-particle cuts to fix the free-parameters, which
we perform numerically over finite fields to speed up the computation.

Constructing an ansatz

A generic tree-level amplitude can be schematically written as

An(pa1,h1
1 , . . . , pan,hn

n ) =
∑
i,j,k

C a1···an
i,j

Di
ci,j,kNi,j,k + Pa1···an , (3.39)

where pai,hi
i represents a generic state with helicity hi and gauge-group index ai. The

tensors Ca1···an
i,j are the gauge-group invariant structure of the amplitude, whereas Dj

and Ni,j,k are kinematic denominators and numerators respectively, where the latter
carry the dependence on the helicity structure. The ci,j,k are rational coefficients as-
sociated to the different helicity structures Ni,j,k. Finally, the Pa1···an are terms with
polynomial dependence in the kinematic variables, in other words contact terms, which
vanish whenever we probe any factorisation channel. We will show that in our frame-
work the contact terms are irrelevant and the tree-level amplitudes are fully determined
by lower-point amplitudes from factorisation.

First we motivate this assumption for renormalizable theories through a simple di-
mensional analysis consideration: due to (3.1), for n > 4 we have [An] < 0. More-
over, all the couplings in the SM are dimensionless, we are considering only massless
states (there are no dimension-full parameters in the amplitude), and by construction
[Pa1···an ] ≥ 0. These considerations imply necessarily that for renormalizable massless
theories for n > 4 Pa1···an = 0 and every term in the amplitude must posses some

49



CHAPTER 3. ON-SHELL BOOTSTRAPPING OF TREE-LEVEL AMPLITUDES

kinematic denominators Di. This means that the amplitudes can be fully determined
from factorisation, through a recursive procedure described below in this section.

This argument is somehow subtle for n = 4, because it is possible to build terms of
mass dimension zero which are ratios of spinor variables but vanish on any cut. An
example of such a structure for the all-plus four-gluon amplitudes is

[1 2]2[3 4]2
s2

12
= [1 3]2[2 4]2

s2
13

= [1 4]2[2 3]2
s2

14
, (3.40)

whose residue is zero on any of the three invariants s12, s13 and s14. These structures
do not introduce any correction to the factorisation channels of four-point amplitudes
(i.e. they are polynomial in the kinematic variables). We can however discard such
contact terms at four points, in fact they are absent at tree-level13, and instead appear
as one-loop finite rational terms [110, 177–181, 114, 1] and can be computed through
d-dimensional generalised unitarity techniques.

The only contact term exception is the four-scalar contact term corresponding in the
Lagrangian formalism to the λϕ4 interaction, which in the case of the four-scalar am-
plitude we will add to the factorisable part as

A4(H̄ i1H̄ i2H i3H i4) = −
(
g2

1 Y
2

H δi3
i1
δi4

i2
+ g2

2 σ
I i3

i1
σI i4

i2

) s12 − s14
s13

− λ δi3
i1
δi4

i2
+ (3↔ 4) ,

(3.41)
where one can easily see that the kinematic dependence is trivial and not captured
by factorization. We stress that for n > 4 non-singular terms such as (3.40) cannot
appear: this can be easily seen focusing on real kinematics and by dimensional anal-
ysis considerations, which tell us that there must be a singularity for renormalizable
amplitudes with more than four external particles.

The argument presented so far for the SM cannot be generalised to the case of scattering
amplitudes with insertions of effective interactions. Let us introduce the notation

Fn,d,i(pa1,h1
1 , . . . , pan,hn

n ) (3.42)

for the effective amplitudes, which encodes the number of external states n, the mass
dimension of the operator d, and a label i for the minimal interactions when multiple
ones are present, if no confusion can arise we use the operator itself instead of the label i.
So consider for example the six-scalar amplitude with an insertion of a ∂2ϕ4 interaction,
in the above notation we call it F6,6,∂2ϕ4 . There is no argument allowing us to discard
a ϕ6-like contact term contribution arising in the calculation of this amplitude. On the
other hand, any physical process involving six external scalars will receive a contribution

13For example, we know that such terms can never be generated by any local Lagrangian interaction
at tree-level.
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from both the F6,6,∂2ϕ4 as well as F6,6,ϕ6 (when these are both included in the theory),
where the latter is the contact interaction due to the operator ϕ6 itself. This means that,
physically the two contact term contributions cannot be disentangled, any distinction
between the terms is only a matter of different descriptions of the same process. As a
consequence, if we are already considering an effective field theory with both ∂2ϕ4 and
ϕ6 interactions in our operator basis, neglecting the ϕ6-like contact term in F6,6,∂2ϕ4

can be compensated by appropriately shifting the Wilson coefficient of the ϕ6 operator.

This argument can be generalised to more generic theories, like the SMEFT which
we are interested in. What we wanted to convey is that, as long as we consider a
complete basis of operators up to a given dimension, contact terms can only contribute
shifting the Wilson coefficients of a different operator. Then we choose our basis of EFT
interactions such that it does not generate polynomial terms when computing higher-
multiplicity amplitudes and thus we can effectively neglect them in the computations,
so Pa1···an = 0.

We present now the algorithm to compute higher-point tree-level amplitudes from fac-
torisation.

1. We begin by enumerating all the possible singularity structures of the amplitude
consistent with locality, which are provided by all the possible ways the amplitude
can consistently factorise into trivalent graphs14. We enumerate all the possible
tree graphs with trivalent and quadrivalent internal vertices, and then a selection
criterion is applied to discard channels which are not compatible with Standard
Model interactions.

2. To each trivalent graph a unique kinematic denominator Di is associated, this is
the product of the propagators corresponding to internal edges in the graphs, i.e.
it is a product of the Mandelstam invariants characterising the channels.

3. Unitarity also fixes the colour structures associated to each graph {Ca1···an
i,j }j=1,...,s.

In particular, different colour structures correspond to different particles propa-
gating in the internal lines. Once the internal particles are determined, the colour
structures are obtained from the product of the colour structures in the three-
point amplitudes.

4. Finally the kinematic numerators are generated with the algorithm presented in
Section 3.2.115. The {Ni,j,k}k=1,...,h are h independent spinor structures in our

14When talking about trivalent graphs or three-point amplitudes in this section we always mean the
building blocks of our theory, which strictly speaking includes not only the three-point amplitudes but
also the four-point scalar interaction −λ(H̄H)2/4 (with the corresponding quadrivalent vertices in the
graphs) and, if we are considering amplitudes with effective operator insertions, also any of the relevant
effective interaction classified in Section 3.2.

15The full algorithm presented in this section can be applied to the case of form factors as well. If
this was the case we were interested in, we should consider at this point a simplified version of the
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basis, and a set of these numerators is associated to each of the colour structure
Ca1···an

i,j corresponding to the denominator Di. The latter fixes the mass dimension
of the numerators through [Ni,j,k] = [An] + [Di] whereas the helicity weights
are given by the external particles. Each of the Ni,j,k is multiplied by arbitrary
(rational) coefficients ci,j,k which will be fixed by the matching procedure over the
different factorisation channels described in detail in Section 3.3.1. Notice that
the basis of numerators does obviously not depend on the colour structures, but
only on the mass dimension of the denominator structure: i.e. Ni1,j1,k = Ni2,j2,k

if [Di1 ] = [Di2 ] for any colour structure labelled by j1 and j2. This fact has been
exploited heavily to speed up the numerical evaluation of the ansatz when solving
for the coefficients {ci,j,k}.

5. Some of the coefficients can be fixed before the matching procedure by demanding
that the ansatz is not redundant. In particular, the simplifying observation is that
the various coefficients cannot combine in such a way that the sum over the related
structures is proportional to any of the Mandelstam invariants appearing in the
denominators.

6. Finally we solve for the {ci,j,k} by matching over the different factorisation chan-
nels as described in 3.3.1.

We consider, as an example, the five-point amplitude A5(Qa1,i1 , ua2 , H̄ i3 , H i4 , H i5).
There are 21 trivalent graphs compatible with this process, and some of them are shown
in Figure 3.3. Most of the graphs do not involve the scalar quadrivalent interaction,
except the last one, we then have [Di] = 4 for i = 1, . . . , 20 and [D21] = 2 with:

{Di}i=1,...,21 = {s12s35, s14s35, s24s35, s12s34, s15s34, s25s34, s13s25, s14s25, s25s34, s13s24,

s15s24, s24s35, s15s24, s15s34, s14s25, s14s35, s13s24, s13s25, s12s34, s12s35, s12}
(3.43)

Next we build the kinematic numerators whose structure is fixed by the helicity of the
external particles along with the mass dimension of the amplitude and of the denomi-
nators as

[An] = [Ni,j,k]− [Dj ] ⇒ [Ni,j,k] = 4− n+ [Dj ] . (3.44)

In our example we have then

{Ni,j,k}k=1,...,6 = {s12[1 2], s13[1 2], s23[1 2], s24[1 2], s34[1 2], ⟨3 4⟩[1 4][2 3]} , (3.45)

{N21,j,k}k=1 = {[1 2]} , (3.46)

for i = 1, . . . , 20. Computing the amplitude then reduces to fixing the rational co-

algorithm presented in Section 3.2.1, in which we ignore momentum conservation.
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,
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+ ϵi1i5 δi4
i3

)
s12

Figure 3.3: The splitting of A5(Qa1,i1 , ua2 , H
i3
, Hi4 , Hi5) into trivalent graphs and the as-

sociated colour factors and kinematic denominators. There are a total of 21 possible trivalent
graphs associated with this amplitude, we showed explicitly the first, the second and the last, as
significant examples. The second is a trivial instance of trivalent graphs and there is a unique
choice compatible with the Standard Model interactions of internal particle propagating. The
same is not true for the first factorisation channel, for which we can have both Bs and W s
propagating, which give us two different colour structures C1,1 and C2,1, respectively. The last
channel is the only one for this amplitude which involves an insertion of the quadrivalent Higgs
interaction.
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efficients ci,j,k. In fact, before proceeding with the system solution we can fine tune
the ansatz in order to remove combinations which would lead to cancellations in the
denominators. In particular, since there are two Mandelstam invariants for the first
twenty denominators, this would fix a priori two coefficients for each denominator and
for each colour structures. We consider, for example, the first two trivalent graphs,
shown in Figure 3.3. The general algorithm to fix the coefficient is the following:

• We have a set of independent helicity structures with a specified mass dimension
d, i.e. {Ni,j,k}k=1,...,h1 , and we assume the existence of a set of structures with
the same helicity configuration and mass dimension d − 2, i.e. {Mi,j,l}l=1,...,h2 .
If the latter do not exist, this procedure can be skipped.

• For each Mandelstam invariant si1···in appearing in the denominator Di we fix
some coefficients d(p)

i,j,k through

h1∑
k=1

d
(p)
i,j,kNi,j,k = si1···inMi,j,l ∀ l . (3.47)

These conditions provide us with p = 1, . . . , [Di]
2 · h2 vectors d(p)

i,j,k.

• Finally, we impose the orthogonality condition for the c’s with respect to the d’s

h1∑
k=1

ci,j,k d
(p)
i,j,k = 0 ∀ p , (3.48)

which fixes some of the ci,j,k, as anticipated.

In our specific example, for D1 we find c1,j,1 = 0 and c1,j,5 = −c1,j,2−c1,j,3 with j = 1, 2
and for D2 we find c2,1,4 = −c2,1,1 and, again, c2,1,5 = −c2,1,2 − c2,1,3.

The case of external vector bosons

The procedure described so far works very well when we are dealing with amplitudes
with scalars and fermions as external particles. But when vector bosons are involved, or
more in general massless particles with |h| ≥ 1, an extension of the method is required.
One has to take into account that these particles provide further kinematic denomi-
nators which are not due to intermediate particle exchanges. A simple example has
already been shown in Section 3.1.1, where we considered the four-gluon amplitude. In-
deed, the four-point amplitude has mass-dimension zero, the helicity structure with the
smallest mass dimension is ⟨1 2⟩2[3 4]2 which has mass-dimension 4, and consequently
a single 1

sij
(associated to a trivalent graph) is not enough to get the mass-dimensions

right16. Typically, once a set of denominators has been generated as described in the
16When we think of the problem in terms of a Feynman diagrammatic approach for |h| = 1, this

additional kinematic dependence is hidden in the polarisation vectors which in terms of spinor-helicity
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previous section, we need to add at least one Mandelstam invariant to each denomina-
tor or possibly more in case of higher-point amplitudes. This is done in iterated steps:
we first add to every denominator a single Mandelstam invariant sij in all the possible
ways compatible with locality17, then we build the complete ansatz and try to solve
it. If the number of invariants considered for the denominators is insufficient we will
find no solution for the c’s, so we add all the possible terms with a further invariant in
the denominator and try to solve again. At every step clearly the number of possible
denominators grows quite drastically, and so does the number of possible numerators
since higher and higher mass-dimensions become available. The latter effect is however
counteracted by discarding those numerators which cancel any power of Mandelstam
invariants from the denominator, which would indeed reproduce a term of the ansatz
already present from previous iterations. This part of the method proves to be the
bottleneck when it comes to computing higher-multiplicity amplitudes.

This procedure of adding Mandelstam invariants to the kinematic denominators is
clearly responsible for the “mixing” process between different factorisation channels
which brought us to the identities between colour structures at the level of the four-
point amplitudes in Section 3.1.

Solution of the ansatz

So far we have built an ansatz of the form (3.39), where each of the Ni,j,k has an
associated coefficient ci,j,k. In order to fix these coefficients we impose the validity
of (3.2) in every single kinematic channel, and we do so through repeated numerical
evaluations:

−i Res
si1...im

An(ph1
1 . . . phn

n )︸ ︷︷ ︸
ansatz

= f
∑
sI,hI

Am+1(phi1
i1

. . . p
him
im

, phI
I )An−m+1(phI

I → p
him+1
im+1

. . . p
hin
in

)︸ ︷︷ ︸
lower point on-shell amplitudes

.

(3.50)
The lower point amplitudes in the RHS of (3.50) are known, because our algorithm
is recursive. On the LHS we take the residue on the ansatz, which selects a subset of
the denominator structures. Next we decompose, through the algorithms described in

variables can be written as

ϵ+
αα̇(p, ξ) =

√
2 ξαλ̃α̇

⟨ξ λ⟩ , ϵ−
αα̇(p, ξ) =

√
2 λαξ̃α̇

[λ̃ ξ̃]
, (3.49)

where pαα̇ = λαλ̃α̇ and ξ is an arbitrary reference spinor. In our approach, it is either a simple
dimensional analysis as for the four-gluon amplitude which forces us to add more denominators, or for
higher-point amplitudes it will be unitarity itself that does so.

17By this we mean exhausting the combinatorics of possible invariants without however adding those
already present in the denominator, which would of course lead to unphysical higher order poles.
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Section 3.2.2, the colour structures on both sides of (3.50) in a suitable basis {C a1···an
l }:

C a1···an
i,j =

∑
l

bi,j,l C
a1···an
l . (3.51)

Then, we impose the matching of the coefficients of the colour structures in this basis
on both sides of the equality (3.50). Here we are taking advantage of the same principle
which makes colour-decomposition in Yang-Mills theory so powerful, namely that the
kinematic coefficients of the colour structures are by themselves gauge-invariant quan-
tities and can be dealt with independently from each other. So we end up with a set
of equations of the type

−i
∑
i′,j,k

bi′,j,l

D̃i′
ci′,j,kNi′,j,k = Kl . (3.52)

Here i′ runs over the trivalent graph structures for which the specified Mandelstam
invariant si1...im appears, the D̃i′ are the Di′ stripped of a factor si1...im and the ci,j,k

are the rational coefficients to be fixed. The Kl are kinematic coefficients defined by
the product of lower point amplitudes as

f
∑
sI,hI

Am+1(phi1
i1

. . . p
him
im

, phI
I )An−m+1(phI

I → p
him+1
im+1

. . . p
hin
in

) :=
∑

l

C a1···an
l Kl (3.53)

where the colour structures C a1···an
l are elements of the chosen colour basis. The Kl

are known analytic functions of the spinor invariants and Mandelstam invariants, and
they also contain the dependence on the couplings gk, Y(f) and λ. Each equation
(3.52) now only contains kinematic invariants, the ci,j,k for which we want to solve and
products of couplings. Thus we repeatedly evaluate the kinematics numerically and
so obtain a linear system in the ci′,j,k which upon solution yields a subset of the ci′,j,k

as functions of the couplings and possibly other c’s. Since numerical evaluations are
performed on very special kinematic points where intermediate states go on-shell, some
of the coefficients ci′,j,k might in principle drop out of the system. These coefficients
are identified by an a priori numerical evaluation, which then allows to only solve the
system in the actually relevant variables.

Repeating this procedure in every kinematic channel might still not completely fix the
ansatz, since some of the ci,j,k might be spurious in the sense that using momentum
conservation and Schouten identities appropriately they actually drop out altogether
from the final result. In particular this happens when we consider amplitudes with
external vectors. At the very end of the calculation, we take advantage of the arbitrary
nature of these coefficients to set them, for example, either to a value which makes the
final result more compact or to zero.

In order to get exact solutions and avoid possible issues tied to precision loss in floating
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point arithmetic, we make use of finite fields arithmetic18 which is made possible by
the fact that at tree-level the kinematic dependence of the amplitudes in the spinor
variables is rational. More specifically for each subamplitude we generate a set of
momentum-twistors [184, 185] with components on Zp, where twistors associated to
different subamplitudes but to the same internal momentum are by construction taken
to be on the same plane19. From these components then we compute the kinematic
invariants and from there the products of the tree-amplitudes, all of which naturally live
on the field Zp. This approach in general greatly speeds up the calculations, having
as single minor drawback the fact that to obtain the solution to the linear system
on Q once it has been computed on Zp would generally require repeated sampling for
different values of the prime p (see Section 3.4). However, since the coefficients involved
in our calculations are typically very small compared to the prime p we consider, the
use of a single field is usually enough, further strengthened by checking the solutions a
posteriori on rational kinematic points. The system solution itself is done through row
reduction: the matrix A to be reduced is obtained from numerically evaluating (3.52)
t+ 1 times, with t being the number of ci′,j,k appearing in the latter linear equation20,
and can be schematically written as



∑S
s=1 a0,sms = 0∑S
s=1 a1,sms = 0

...∑S
s=1 at+1,sms = 0

7→


a0,0 · · · a0,S

...
...

at+1,0 · · · at+1,S


︸ ︷︷ ︸

A


m0
...
mS


︸ ︷︷ ︸

V

= 0 , (3.54)

where the ai,j are numeric constants (from the numerical evaluations of the kinematic
parts) and the ms are the unknowns ci,j,k or monomials in the couplings g, Y and λ and
the imaginary unit i. The explicit mention of the imaginary unit is due to the fact that
this needs to be treated with some care when using finite fields. Imaginary units are
almost ubiquitous in our construction and we decided to treat them as symbolic objects
on the same footing as the coupling constants. Square roots would in principle require a
similar treatment, but these are easily removed by choosing appropriate normalisations
of the colour factors, and thus are never present in our calculation. Getting back to the
system solution, upon row-reducing the numeric matrix A on finite fields one gets to a
matrix B in row echelon form, which of course still satisfies V ′ ≡ B V = 0, with V the

18The use of finite fields in high-energy physics has been introduced in [182] in the context of IBP
reductions, and further pioneered in [183] where a much wider range of applications was explored. A
brief overview of the topic will be given in Section 3.4.

19In twistor space, two intersecting lines define a null momentum, and a closed contour with n edges
defines n conserved null momenta. When generating kinematics for the two subamplitudes Am+1 and
An−m+1 in (3.53), pI is defined by the same intersecting lines for both of them.

20Generating and solving a system with an additional redundant equation ensures that when a
determined solution is found this is kinematics-independent and thus a true solution. Impossible
systems might still admit determined kinematic-dependent solutions which are clearly unacceptable.
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vector of constants ci,j,k and couplings. The relation V ′ = 0 can then be trivially solved
for the couplings ci,j,k corresponding to the leading (the first non-vanishing) entries in
each row of B. These relations provide the solution to the system.

It is worth stressing that, differently from either a Feynman diagrammatic approach
or a BCFW-like calculation where the solidity of the code can only be tested a pos-
teriori through cross-checks or other methods, when using factorisation every step of
the calculation is in itself a consistency check on the code. The systems of equations
we obtain in the end always have a (possibly vanishing) solution, unless there is some
physical obstruction. This is indeed the case when vector bosons are present among
the external states (or more in general massless particles with helicity |h| ≥ 1) and not
enough invariants have been considered in the denominator construction, see Section
3.3.1. An impossible solution is symptomatic of unitarity breaking telling us that the
ansatz was not general enough.

Thanks to many small, but at times significant, expedients21 the construction of the
numeric system is rather fast despite our use of Mathematica rather than dedicated
low-level language implementations, for example in C, which are usually better suited
for the task. As a consequence, the main bottleneck of the system-solving procedure
is the system solution itself. As an aside, we note that our ansatz construction is of
course independent of the ansatz solution method. More specifically, if the reader was
interested in getting analytic expressions for tree-level amplitudes and already had at
her/his disposal a routine for numerically evaluating the amplitude itself, say Berends-
Giele [186] recursion for example, then the ansatz solution could be clearly done in
one go solving a single large system in all the ci,j,k. Despite being viable, we consider
our approach far more appealing, not only conceptually because of the use of just on-
shell quantities but also practically: solving the ansatz on the different factorisation
channels leads to many small systems whose solution is faster than a single large one
and furthermore lends itself to effective parallelisation.

3.4 Analytics from numerics through finite fields

In this section we describe in some more detail how it is possible to recover exact analytic
results from numerical evaluations over finite fields, and we discuss why the procedure
is advantageous compared to direct analytic calculations and more traditional floating
point numerical evaluations, as well as the caveats of the method. We feel that it is
worthwhile to discuss the topic in some more detail in order to also convince the reader
that the algorithm presented in the previous section indeed produces exact analytic

21These include, for example, recycling numeric data whenever possible, storing and reusing directly
the exact invariant products making up the numerators instead of the single invariants, and generating a
minimal parametrization of the kinematic points first, reducing thus the numerical kinematic generation
to evaluations of polynomials in one/two variables.
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results despite the use of numeric evaluations, which a priori should not be taken for
granted.

There is a wide mathematical literature on the topic, we refer the interested reader
for example to [187], but we will only deal here with the few key aspects entering
our calculations. On a similar footing we will not address the topic of functional
reconstruction over finite fields, which is one of the contemporary major applications
in high energy physics, for a discussion of that subject and further applications of finite
fields we refer to [183,188].

Why use finite fields

The term finite field refers to the cyclic group of order p, usually denoted Zp, which
can be represented as the set of integers from one to p− 1

Zp ≡ {0, 1, . . . , p− 1} . (3.55)

The key aspects of Zp are

1. it is a field which can be represented through a finite number of elements

2. for small enough values of p the elements of Zp can be represented exactly through
machine size integers. Concretely speaking, if we have a 32-bit system and choose
for example p = 231 − 1 (which is a Mersenne prime number) all the elements of
Zp can be represented exactly by the machine without incurring in precision loss
and without need of any sort of additional software. This means the machine will
be extremely fast when processing operations over Zp.

3. it is possible to map the field of rational numbers Q to Zp, but more interestingly
under appropriate circumstances it is possible to map elements of Zp back to Q.
Notice that the simple fact that the field of rationals has infinite elements while
Zp is finite, is what makes the inverse mapping a non-trivial operation.

Assume now we are interested in obtaining an analytic expression of some sort, where we
know that whatever the expression will be, this is a rational function of some variables;
an example might be a tree-level amplitude which is a rational function of the spinor
components or even better of the momentum-twistor variables. Let us assume that
obtaining the result directly through an analytic computation is too challenging, for
example because the computational time required could is too large for a result to
be successfully obtained. In similar situations it might be a good idea to change the
perspective on the problem and try to reformulate it using a numeric approach. In
our case this amounts to switching from trying to directly obtain the amplitude from
simplifying (3.2) analytically, to building numeric systems to be solved as in 3.3.1.

59



CHAPTER 3. ON-SHELL BOOTSTRAPPING OF TREE-LEVEL AMPLITUDES

The advantage of numerical computations is that in principle they are much faster,
since potentially large intermediate expressions are replaced with numbers. This is
certainly true when dealing for example with floating-point arithmetic. On the other
hand, if we want to obtain a final result which is exact we will need to keep intermediate
numeric expressions exact as well, meaning that we have to make use of software keeping
arbitrary precision of the numbers, so to avoid the possible precision loss which might
occur with floating-point numbers. Using arbitrary precision arithmetics however can
in general be time consuming, since intermediate and final expressions can be ratios of
arbitrary size numbers, and this might lead to a similar issue we started from with the
analytics. Here is where finite fields enter the game, since we can map our problem from
Q to Zp, which avoids the precision loss of floating point numbers, and then perform
the numeric computations on Zp, which is extremely fast provided we choose p to be
a machine-size prime and thus the whole computation will only involve machine-size
natural numbers. The obvious issue is that once the problem at hand has been solved
on Zp we need to map the solution back to Q, through a map which cannot by any
means be a bijection. Since this can be done, and we will later discuss how, mapping
to a finite field complicated problems which allow for numerical evaluations is often a
winning strategy.

Mapping the rationals Q to the finite field Zp

First of all, we give a more rigorous definition of Zp through equivalence classes of
the modulo operation. Given a natural number p ∈ N, we say that a is equivalent to
b modulo p if a − b = n p for some n ∈ Z. The equivalence relation is then usually
denoted as a = bmodp, and the equivalence class of which a is a representative is called
[a]p. Given the set S ≡ {[0]p, [1]p, . . . , [p− 1]p}, one can show that the group structure
under addition in Z induces a group structure on S as well through the map a 7→ [a]p.
Considering also the multiplication operation induced by Z, S becomes a ring which
we denote Zp. Now, the modulo operation provides a natural mapping from Z to Zp,
which we would like to extend to

Fp : Q→ Zp

a

b
7→ q

(3.56)

Since
a

b
mod p = a (b−1 mod p) mod p , (3.57)

for the modulo operation to be defined on Q one needs b−1 mod p to be well defined
meaning that b must admit a multiplicative inverse such that

b−1 ∈ Zp | bb−1 = b−1b = 1 mod p . (3.58)
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If such an inverse exists for every non-zero element in Zp, then the latter becomes a
field. It can be shown that Zp is indeed a field when p is a prime number, there are
many ways of doing so, but we decided to rely on the following

Proposition 3.4.1. Given a generic p ∈ N defining the ring Zp of integers modulo
p, and an element a ∈ Zp such that a and p are coprimes, we have that the product ·
maps a over the entire ring. In other words for any c ∈ Zp there exists b ∈ Zp such
that a · b = c mod p, furthermore b is unique.

Proof. First prove the uniqueness, i.e. given

ab = c mod p, ab′ = c′ mod p

if b ̸= b′ then c ̸= c′. Suppose we had c = c′ mod p then

c− c′ = 0 mod p ⇒ a(b− b′) = 0 mod p

meaning that a(b − b′) is a multiple of p. Being a and p coprimes their least common
multiple is ap, however clearly (b− b′) < p, which would lead to a contradiction. Thus
a(b− b′) can’t be a multiple of p so c ̸= c′.

From uniqueness, it follows that the image of the map Pa : Zp → Zp defined by
Pa(b) = ab must be the whole Zp in order for no product to yield the same result.

Due to proposition 3.4.1 if a ∈ Zp and p are coprimes, there exists a unique b ∈ Zp such
that ab = 1 mod p, i.e. a admits a uniquely defined inverse under multiplication. In
order for Zp to be a field such an inverse must be defined for every element of Zp so p
must be coprime with {0, 1, · · · , p− 1} meaning that p must be a prime.

The different behaviour of multiplication in Zp for p generic and p prime can be seen
using the Cayley table22 for the product operation, take as an example the ring Z8 and
the field Z7 as shown in Table 3.1. As can be seen 2, 4, 6 ∈ Z8, which are not coprime
with 8, are not mapped over the entire ring, moreover they are mapped several times
over 0: each of these zeros is a common multiple of the given element a ∈ Z8 and 8
smaller than a ·8. On the other hand, every non-zero element in Z7 is mapped over the
entire field exactly once.

It is important to stress here that the zero element of Zp does never admit a multi-
plicative inverse. This means that given c = a

b , if b is a multiple of p then c will not
admit an image under mod in Zp. In practical terms this does not however represent
an issue for the applications we have in mind: since we are always performing some

22A Cayley table for a given operation is a table reporting the outcome of that operation when
applied to any possible pair of elements of the group, ring or field.
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· 0 1 2 3 4 5 6 7
0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7
2 0 2 4 6 0 2 4 6
3 0 3 6 1 4 7 2 5
4 0 4 0 4 0 4 0 4
5 0 5 2 7 4 1 6 3
6 0 6 4 2 0 6 4 2
7 0 7 6 5 4 3 2 1

(a)

· 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6
2 0 2 4 6 1 3 5
3 0 3 6 2 5 1 4
4 0 4 1 5 2 6 3
5 0 5 3 1 6 4 2
6 0 6 5 4 3 2 1

(b)

Table 3.1: Cayley tables for the product in Z8 and Z7 respectively. As can be seen 2, 4, 6 ∈ Z8,
which are not coprime with 8, are not mapped over the entire ring, moreover they are mapped
several times over 0.

random sampling over kinematic points, if at any step of the computation we run into
a a

0 mod p case we simply discard that kinematic point and consider a different one.

Mapping from Zp to Q and the Chinese remainder theorem

On the uniqueness of the anti-image

The mapping Fp : Q → Zp is clearly not invertible, in the sense that it is not possible
to properly define an inverse function F−1

p . This is due to the fact that the map Fp

is not injective: starting from an element c ∈ Zp there are infinite possible rationals
z = a

b ∈ Q that are mapped to that c. Notice however that there are only finitely many
such that a, b < p simply because p is finite, and crucially there is only one23 value of
z such that a2, b2 < p

2 :

Proposition 3.4.2. Given an element c ∈ Zp, there is only one z = a
b ∈ Q such that

a2, b2 < p
2 and z = c mod p

Proof. Suppose that there were another pair of values a′, b′ such that a′

b′ = c mod p

and (a′)2, (b′)2 < p
2 , then we would have

a

b
= a′

b′ mod p ⇒ ab′ = ba′ mod p

meaning that there is an integer n such that ab′ − ba′ = np. However |ab′| < p
2 and

same goes for |ba′| < p
2 , thus

−p < np < p

which fixes n = 0 and so ab′ = ba′, then a
b = a′

b′ and x is thus uniquely determined.
23See for example [189].
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In other words, given a rational z = a
b there is an infinite set of primes Iz ≡ {p1, p2, · · · }

with pi+1 > pi, such that c = Fpi(z) and c is not the image of any other rational z′ = a′

b′

with (a′)2, (b′)2 < pi
2 .

For the sake of concreteness, suppose now we want to solve the system (3.54) and we
map our problem to the field Zp. Upon solving we will be left with a set of coefficients
{c1, . . . , ck} with values in Zp, for each of which we need to obtain the corresponding
value on Q, say {z1, . . . , zn}. If the order p of the field is such that p ∈ Iz1 ∩ · · · ∩
Izn , thus if p is large enough compared to the numerators and denominators of the
zi, the coefficients ci can be mapped back to Q without any ambiguity24. Clearly, a
priori we cannot know the size of the rationals zi, thus in general in order to correctly
reconstruct them from the ci one performs the same procedure on multiple different
fields Zp1 , . . . ,Zpn and then compares the reconstructed coefficients. If the primes
p1, . . . , pn are large enough the reconstructed values will agree. On the other hand, in
order to unambiguously identify the zi one might need to use a value of p which exceeds
machine size, thus bringing us back to the problem of avoiding arbitrary precision
arithmetic which was the whole point of introducing finite fields in the first place. This
issue can be circumvented through the so called Chinese remainder theorem.

The Chinese remainder theorem

The Chinese remainder theorem allows to recombine the images of z in various fields
Fp1(z) ∈ Zp1 , . . . , Fpn(z) ∈ Zpn into the single image X = Fp1 p2 ···pn(z) ∈ Zp1 p2 ···pn

where Zp1 p2 ···pn is a finite ring whose order is the product of all the pi. Since the
product p1 · · · pn becomes easily very large even considering a small number n of fields
(say two or three), thanks to the proposition 3.4.2 and performing cross-checks on
multiple values of the pi, the anti-image z = F−1

p1 p2 ···pn
(X) can be unambiguously

recovered. Notice that the proof of the Proposition 3.4.2 works even when p is not a
prime, so when Zp is simply a ring rather than a field, as long as the inverse element
b−1 is well defined25. We now state the theorem and give a sketch of the proof.

Theorem 3.4.3 (Chinese remainder). Let n1, · · · , nm be integers greater than 1 and
pairwise coprime, let a1, · · · , ak be integers such that 0 ≤ ai < ni for every i, then there

24So far we avoided to discuss how such an inverse map F −1
p is obtained in practice. There are

several different routes, the simplest one being probably to use the extended Euclidean algorithm, we
will however not go into further detail here.

25In the case of Fp1 p2 ···pn (z) this is essentially true by construction, as long as each of the Fpi (z) is
well defined.
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exists only one 0 ≤ X < N with N = ∏
i ni such that

X = a1 mod n1
...

X = ak mod nk

(3.59)

Proof. Uniqueness: In order to prove the uniqueness of the solution suppose that two
numbers x and y both solve all the congruences. When divided by ni they give the
same remainder ai, so their difference x − y is a multiple of each of the ni. As the ni

are pairwise coprime x− y must also be a multiple of N , say x− y = cN . But x < N

and y < N so we must have c = 0 and x = y.

Existence: The existence can be proven by constructing a solution, here we will only
provide the final expression for X and show that indeed it satisfies all the requirements.
Defining N = ∏

i pi and Ni = N/ni, and making use of Bezout’s identity for the
coprimes N and ni to define two integers mi and Mi as

MiNi +mini = 1 , (3.60)

we can write the solution X as

X =
k∑

i=1
aiMiNi mod N . (3.61)

It can be easily seen that this expression solves all the congruences in (3.59). In fact
notice that Nj is a multiple of ni for i ̸= j in particular

Nj = Ni

nj
ni

then isolating the i-th term and using MiNi = 1−mini

X =
m∑

j=1
ajMjNj

= ai(1−mini) +
∑
j ̸=i

ajMj
Ni

nj
ni

= ai +
(∑

j ̸=i

ajMj
Ni

nj
− aimi

)
ni

= ai mod ni

being the term in parenthesis an integer. This is true for every i and completes the
proof.
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Having at disposal the Chinese remainder theorem, what one does in practice is to
perform the computation at hand on one prime field Zpi at a time and then recursively
merge the results into Zp1···pn until the anti-images on successive iterations match. So
for example one starts with two fields and gets a1 ∈ Zp1 , a2 ∈ Zp2 which are then merged
into some A1,2 ∈ Zp1p2 , then the anti-images F−1

p1 (a1) and F−1
p1p2(A1,2) are compared. If

no match is found a new prime p3 is considered, and a new value a3 ∈ Z3 is computed
and merged into A1,2,3 ∈ Zp1p2p3 . Then one checks for a match between F−1

p1p2(A1,2)
and F−1

p1p2p3(A1,2,3), the procedure is iterated until a positive match is found. In the
specific case of the algorithm presented in Section 3.3.1 we never really need to resort to
Chinese remainder theorem because of the typically small size of the coefficients which
solve the system (3.54) so the use of a single field is sufficient. Furthermore the rational
solutions are checked by plugging them back into the original system.
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Chapter 4

Loop-level unitarity and the
SMEFT

In the first part of this chapter we introduce the one-loop unitarity techniques required
for the calculations in the remainder of the thesis. We start by briefly discussing
the general structure of loop-level amplitudes and the general strategy to tackle their
calculation, but then we immediately focus our attention on the one-loop case which is
the one of direct interest to us. This special case is extremely well understood and the
deep analytic insights at our disposal make it the perfect playground for unitarity and
generalised unitarity methods.

At loop-level, making use of unitarity essentially amounts to1 perturbatively expanding
the transfer matrix T , defined by S = 1 + iT , and taking advantage of the consistency
conditions imposed by S†S = 1 to relate higher-loop orders to products of lower-
loop ones integrated over a phase-space: this defines the unitarity cut, more precisely
a double-cut which in diagrammatic terms can be thought of as an interaction with
two internal propagators going on-shell. The phase space integral is then actually not
performed, instead the cut is uplifted [11, 10] and the integral is promoted to a full-
fledged Feynman integral which has by construction the correct analytic properties
and is a piece of the complete loop-amplitude one wants to compute. Performing
an appropriate combination of these cuts then allows to obtain the complete2 loop-
amplitude piece by piece.

Generalized unitarity [17, 18, 12] is an extension of this method which aims at a more
systematic extraction of the various pieces of the answer by putting on-shell a larger
number of internal states, i.e. increasing the number of cuts one applies. These meth-

1See for example [122] for a very clear explanation.
2Depending on whether we are in four dimensions or not we might miss rational terms. Later in

the thesis, when we refer to a complete loop-level amplitude we mean including these rational terms.
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ods allow to completely bypass the construction of the amplitude based on Feynman
diagrams, and leave as bottleneck of the modern-day calculations the computation of
sets of integrals which are used as a basis in which to express the loop-amplitude itself.

In the second part of this chapter, having now one-loop unitarity at our disposal, we
complete the on-shell construction of the Standard Model initiated in Section 3.1. We
apply the insights of [190,191] to recover anomaly cancellation conditions from unitarity
and locality constraints. The key idea is that building the one-loop amplitudes through
cuts will automatically ensure unitarity is respected, but on the other hand locality
might be lost: spurious unphysical poles may appear, which in the complete one-loop
amplitude must cancel out. These cancellations must be provided by the only part of the
amplitude which is not detectable through four-dimensional cuts, namely the rational
terms, which can then be fixed precisely so that the desired cancellations happen, at
the same time recovering the full one-loop result in the process. There are instances
however where, in order for the desired cancellations to happen, one would need to
add pieces to the amplitude which are themselves cut-constructible. This leads to a
contradiction, which can only be resolved if these terms cancel through other means, in
particular thanks to the Standard Model hypercharges satisfying the relations known
as anomaly cancellation conditions.

In the final part of the section we discuss an application of the previously men-
tioned loop-level unitarity techniques: the computation of the operator mixing ma-
trix for mass-dimension eight operators in the Standard Model Effective Field Theory
(SMEFT). In recent years EFT approaches have risen to prominence as systematic
means to quantify deviations form the Standard Model in a way which does not rely
on an understanding of the underlying complete high-energy theory, and because of
this it allows to address in one go a variety of models. In the SMEFT, new physics is
parametrized by higher-dimensional operators built from Standard Model fields [51,52],
whose classification and organization into a complete operator basis we discussed in Sec-
tion 3.2. These operators in general present a non-vanishing and usually non-diagonal
anomalous dimension matrix, meaning that under the running of the coupling constant
the operators get renormalised and mix among each other in non-trivial ways.

Consequently the Wilson coefficients of the operators at the scales accessible to collider
experiments differ from those at the high-energy matching scale, and furthermore the
mixing of the operators implies that experimental constraints on one of them also
affects other operators. Hence, evaluating the anomalous dimension matrix is a crucial
aspect of interpreting SMEFT results. In this respect, on-shell methods have proven
extremely powerful not only in the computation of the anomalous dimension matrix, but
even more so in the interpretation of zeroes appearing in the matrix through selection
rules implied by helicity [34], operator lengths [35] angular momentum [36].
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Still from an on-shell perspective, it has been found that the structure of rational terms
influences the zeroes, and that a smart choice of regularization scheme can lead to fur-
ther cancellations: this has been studied at two loops in the case of an SU(N) model
which presents similarities with the SM but it is far simpler and contains far less oper-
ators [37]. For the complete SMEFT, the first systematic and complete computation of
the one-loop anomalous dimension matrix for dimension-six operators has been carried
out in [84–86]. On the other hand, the study of the anomalous dimension of SMEFT
interactions at dimension eight has produced partial results in [87–93], the first full
calculation (to linear order in the Wilson coefficients) being presented in [5] and being
reviewed in this chapter. The recent interest in dimension-eight terms in SMEFT has
various reasons, one of them being that for a number of physically relevant observables,
the leading dimension six terms actually vanish, as shown for example by means of
some helicity selection rules in [192]. Furthermore, the dimension-eight operators are
the first subject to positivity constraints on the couplings, namely theoretical bounds on
the signs of certain combinations of the Wilson coefficients, which come solely from the
requirements of the S-matrix satisfying the principles of unitarity and analyticity [193].
Experimentally finding a violation in any of these bounds would invalidate the EFT
itself, for example due to the existence of new light degrees of freedom and thus new
physics. In all of these circumstances, the computation of the operator mixing matrix,
whose computation we discuss at the end of this chapter, is a key ingredient for the
matching procedure to experimental results.

4.1 One-loop unitarity

In this section we give a very brief introduction to the generalized unitarity method,
focussing especially on the one-loop case. Our goal is to simply highlight some of
the key features which make it so powerfull and to somewhat prepare the ground for
the calculations featured in the remainder of the thesis. There are several reviews on
generalized unitarity and related topics available in the literature to which we refer the
interested reader, among others [121–123,194,195].

Loop amplitudes

Schematically we can write an L-loop amplitude as

AL
m(ph1

1 , . . . , phn
n ) = t

∑
j

∫ L∏
i=1

(
dDli

(2π)D

)
cj

Sj

Nj({pα}α=1,...,n, {lβ}β=1,...,L)∏
mj
Dmj

, (4.1)

where the sum in j is over all the contributing L-loop Feynman diagrams, t is a normal-
isation constant dependent on convention, li are the L loop momenta, the cj contain
the colour and coupling information of the diagrams, Sj are possible symmetry factors,
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Nj are the kinematic numerators and mj label the denominators of the jth term. The
denominators take the form Da = K2

a −m2
a (having omitted the iϵ prescription) where

K is a linear combination of the external momenta pi and the loop momenta li, and ma

is the mass of the particle associated to the given denominator. While tree amplitudes
can be expressed as rational functions of the external kinematics, loop amplitudes have
typically a more involved structure since the integration can give rise to various gener-
alized logarithms and special functions. As a consequence, loop amplitudes present not
only simple poles but usually also branch cuts: the key feature is that this richer ana-
lytic structure can be exploited to reconstruct the amplitude from lower-order on-shell
data.

When discussing loop amplitudes one can focus on three distinct aspects of the problem:

• the loop integrand, meaning the rational function under the integration sign.

• the loop integral, as the combination of the integrand and the loop-momentum
integration region.

• the full loop amplitude, meaning the integrated result, where one needs to take
care of possible Infrared (IR) and Ultraviolet (UV) divergences by means of ap-
propriate regulators.

In general, just as in the tree-level case, when building the loop amplitudes one would
like to avoid dealing with the increasingly complex combinatorics of the Feynman di-
agrams in order to get the integrands, and this is were generalized unitarity is very
powerfull. But after having computed the integrand, one is still left with a number
of non-trivial integrations to carry out. The general strategy is to try and reduce the
amplitude into a (possibly minimal) sum of integrals which form a basis for the space of
allowed integrals, so that once the integrated form of the basis is known, computing any
other process expressible in the same basis does not require further integrations. There
are a variety of related techniques, including for example integrand reduction [196–203],
Integration-by-Parts identities (IBPs) [204,205] and differential equations [206,207] or
more recently projection techniques through intersection numbers [208–212]. Comput-
ing the integrals is a hard and interesting problem in its own right, and major efforts
have been made over the last years to get a better understanding of the integral struc-
tures and the algebra they satisfy, see for example [213–217] and references therein.

Restricting our attention to the L = 1 case, the structure of the amplitude is extremely
well understood. In particular, it can be shown that any tensor integrals (integrals
with dependence on the loop momentum in the numerator as well as denominator)
can be reduced to a combination of scalar integrals (integrals with dependence on the
loop momentum only in the denominator) with appropriate tensor coefficients [218] and
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furthermore any scalar integral can be written in terms of a basis [219] of the form

A(1)
n =

∑
i

diIi
4 +

∑
i

ciIi
3 +

∑
i

biIi
2 + R , (4.2)

where I4 represents so called box integrals, I3 triangles and I2 bubbles3, more precisely

Ii
n =

∫
dDl

(2π)D

1
l2(l −Ki,1)2 · · · (l −Ki,n−1)2 , (4.3)

and Ki,j being appropriate subsets of the external momenta. In (4.2) the coefficients
di, ci, bi are rational functions of the external kinematics, the indices i schematically
label all the possible inequivalent cyclic orderings of external momenta in the diagrams
of Figures 4.1 and 4.2, which show the diagrams associated to the integral basis of
(4.2). R represents the rational terms and does not present discontinuities in any of
the kinematic invariants, we will get back to it later, in particular it will be the focus
of Chapter 7. The power of the expansion (4.2), is that all the integrals I2, I3 and
I4 are known, we report some of them in the Appendix C.3, for a complete list see
for example [11]. Once the one-loop amplitude is written in this basis, i.e. once the
coefficients di,ci,bi have been computed, there is no need for any integration to be
performed. It is also worth noting that the coefficients in the integral expansion are
specifically rational functions of the external kinematics: this feature holds true also
for higher-loop integral expansions and makes these coefficients a perfect target for
functional reconstruction over finite fields, see for example [183].

Unitarity and the double-cut

Conservation of probability in a given quantum field theory reflects in the unitarity of
the S matrix. The latter can be written as S = 1 + iT , where the identity accounts for
the no-interaction scenario when initial and final states are the same, and the transfer
matrix T accounts for the actual interaction processes. From the unitarity of the S
matrix one immediately gets that

S†S = 1 ⇒ T †T = −i(T − T †) , (4.4)

furthermore, one can perturbatively expand T in terms of the coupling constant parametriz-
ing the interaction, say g

T = g2T (0) + g4T (1) + g6T (2) + . . . . (4.5)
3In general one should also consider tadpoles, i.e. integrals with only one massive external leg, but

in dimensional regularization with massless particles such integrals vanish.
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Figure 4.1: Possible box integrals appearing in the Feynman integral decomposition of a
one-loop amplitude, simple lines represent massless legs while the dotted corners represent the
massive ones.

Figure 4.2: Possible triangle and bubble integrals appearing in the Feynman integral decom-
position of a one-loop amplitude. Once again simple lines represent massless legs while the
dotted corners represent the massive ones.

Combining the above with (4.4) we get relations between contributions to T at different
perturbative orders, in particular at the two lowest orders we have

T (0) = T (0)† , −i(T (1) − T (1)†) = T (0)T (0) (4.6)

Relating the T matrix elements to the amplitude as

⟨f |T |i⟩ = (2π)4δ4(pi − pf )A(i→ f) , (4.7)

where |i⟩, |f⟩ are the initial and final states and A(i → f) is the amplitude involving
the given states. So if we take relation equation (4.4), sandwich it between an initial
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and final state and make use of the completeness relation

1 =
∑
X

∫
dΠX |X⟩⟨X| , (4.8)

where X represents all the states in the theory and the integration is over the appro-
priate phase space, one gets the following4

2Im(A(1)(i→ f)) = i
∑
X

∫
dΠX(2π)4δ4(pi − pf )A(0)(i→ X)A(0)(f → X) . (4.9)

In other words, from integrating a product of tree-amplitudes one is in principle able
to get the imaginary part of the one-loop amplitude, or equivalently the discontinuity
across a branch cut singularity as a function of the kinematic invariants from which
such imaginary parts arise.

Next one could in principle perform the dispersive integral
∫
ds′ A(s′)

s−s′ for some Man-
delstam invariant s to obtain the full amplitude, but this is usually hard and not very
practical especially once the number of external legs is greater than four. So what we
usually do instead is to make use of the information contained in the expansion (4.2)
and compute discontinuities on the left- and right-hand-side. In particular, if we denote
the discontinuity in the kinematic channel si···j = (pi + · · ·+ pj)2 as Disc(si···j), we can
compute

Disc(si···j)A(1)
n =

∑
i

diDisc(si···j)Ii
4 +

∑
i

ciDisc(si···j)Ii
3 +

∑
i

biDisc(si···j)Ii
2 (4.10)

where Disc(si···j)R = 0 by definition5 of R, and similarly for those integrals Ii
n which do

not have a discontinuity in the considered channel. The discontinuity of the amplitude
on the left-hand-side can be easily obtained thanks to (4.9), we call this a two-particle
cut or double-cut, where a unitarity cut essentially promotes an off-shell internal line
to an on-shell leg through the replacement of the Feynman propagator with

i

p2 + iε
→ 2πδ(+)(p2) . (4.11)

More explicitly (4.9) can be written as

Disc(si···j)A(1)
n =

∑
h1,h2

∫
dDl

(2π)D−2 δ(l
2
1)δ(l22)A(0)(−l−h2

2 , i, . . . , j, lh1
1 )×

A(0)(−l−h1
1 , j + 1, . . . , i− 1, lh2

2 ) ,
(4.12)

where the sum runs over the possible internal helicities. A pictorial representation of
4On the left-hand-side we implicitly make use of time-reversal invariance.
5In four dimensions.
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the previous definition is given in Figure 4.3.

j

i

A(0)

q

lh1
1

−l−h2
2

j + 1

i− 1

A(0)

−l−h1
1

lh2
2

Figure 4.3: Pictorial representation of the double-cut in (4.12), the considered channel is si...j

and all the momentum lines are considered as out-going. The dashed line represents the cut,
and the two propagators it runs through are considered as being on-shell.

Now one could perform the phase space integral, but following the approach of [10,
11] we instead uplift the cuts to Feynman propagators by the inverse relation (4.11)
replacing δ(l2i )→ i/l2i which allows us to obtain a full-fledged Feynman integral that by
construction has the correct discontinuity in the considered kinematic channel si...j . The
so obtained integral can be reduced to the basis (4.2) from which we can then directly
read off a subset of the coefficients di, ci, bi, namely those associated to integrals which
present a discontinuity in si···j . Reiterating this procedure for all the different invariants
si···j , which we describe as taking cuts in different invariant channels, one can piece by
piece obtain the complete expression for A(0). Clearly, when iterating over different
invariant channels one has to take care not to repeatedly count the same coefficient in
the basis (4.2) since the same integral Ii

n might have multiple discontinuities and thus
be identified by multiple different cuts. Also, one needs not to consider all the available
invariant channels, but only those giving rise to a set of “spanning cuts”, meaning a
set of cuts under which all the integrals Ii

n can appear at least once.

Notice that as long as we are on the cut, so while we consider the two internal propaga-
tors as on-shell, great simplifications in the integrand of (4.12) occur, furthermore while
we consider four-dimensional tree amplitudes we can make use of the spinor-helicity for-
malism to get the easiest possible expressions. On the other hand, by doing so we only
get the part of the amplitude which we call cut-constructible namely everything except
the rational term R. There are different available approaches for the reconstruction of
rational terms, for example via Feynman diagrammatic reduction techniques [220–223]
or using loop-level recursive techniques combined with the previous knowledge of the
cut- constructible part of the amplitude [178,224,225]. Another approach is to consider
intermediate states in D dimensions instead of four, i.e. dimensional regularization,
which allows to recover the full amplitude from unitarity cuts with no rational ambi-
guity [110, 179, 226]. From a cut construction point of view we have that moving from
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four to D = 4− 2ϵ dimensions6 requires every piece of the amplitude to contain a new
term with mass dimension −2ϵ, to compensate for the shift in the dimension of the
coupling and keep the dimension of the amplitude fixed. Considering only massless
internal particles there is no mass available to supply such a term thus the only option
left is something like (−s)−2ϵ, with s some kinematic invariant7. Expanding in ϵ:

(−s)−2ϵ ≃ 1− 2ϵ ln(−s) + · · · , (4.13)

which contains a discontinuity in s > 0. Thus also the rational term R, which in
D = 4−2ϵ becomes R(−s)−2ϵ, is now visible to unitarity cuts. In Section 7 we consider
a modification of this approach where instead of taking D arbitrary we consider it to
be an integer, specifically D = 6 so to be able to still make use of the power of
spinor-helicity for simplifications (as well as numeric approaches if required) but being
nonetheless able to get the full amplitude including rational terms.

Generalized unitarity

The procedure of cutting propagators in an amplitude selects only those contributions
that have those propagators in the first place. When we sew two tree-amplitudes
together as in (4.12), out of all the Ii

n in (4.2) only those that posses both cut propaga-
tors can show up in the result. Clearly, assigning a given pair of propagators to be cut
uniquely isolates an integral of the bubble-type Ii

2, but there are in general multiple
triangles Ii

3 and boxes Ii
4 featuring those propagators, and so what we find through

double cuts are combinations of multiple integrals at once. The idea of generalized
unitarity [17, 18, 12] is that the larger the number of cuts one performs, i.e. the more
propagators one requires to be present in the integrals, the less integrals can contribute
until performing a maximum cut (which at one loop in four dimensions amounts to
four cuts) one is left with a single integral of the basis. Thus applying a quadrupole-
cut will relate directly the coefficient di of a single box integral to a product of four
tree-amplitudes evaluated on a completely constrained internal kinematics: four cuts
means four delta functions which completely constrain the internal loop momentum8.
In a similar fashion, performing a triple-cut will isolate a single triangle integral from
our basis however this time also some box integrals sharing the same propagators will
appear and one has to subtract out this “pollution” in order to access the triangle
coefficient. This can be done for example as in [229] or [230], or in a systematic way
as proposed in [196, 231]: performing the cuts in descending order, i.e. starting from
the maximum cut and then one by one cutting less propagators until one ends up with
double-cuts, allows to use previously extracted information to subtract the redundant

6External states can still be kept in four dimensions following the four-dimensional helicity scheme
[227,228].

7s can be different in different terms of the amplitude, it just needs to be an invariant.
8Specifically, the four cut conditions allow for two complex valued solutions.
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(because already known) information and directly access a single coefficient from each
set of cuts. Clearly, the whole method is made extremely powerful by the a priori
knowledge of the integral basis expansion (4.2).

The natural question at this point is whether there is a general way to access the
single integrals’ coefficient without having to perform any sort of subtraction or further
manipulations. In N = 4 super-Yang-Mills such a strategy has been devised and is
called prescriptive unitarity [232–234], while in non-supersymmetric theories the idea of
directly projecting out single integral coefficients is addressed in the already mentioned
works on intersection numbers [208–212]. While extremely powerful, these techniques
go well beyond what was needed to perform the calculations in the rest of this thesis,
for which the presented one-loop unitarity and generalised unitarity methods were
sufficient.

4.2 Hypercharge constraints from gauge anomalies

Armed with the previous discussion of unitarity and generalized unitarity, in this section
we complete the on-shell construction of the Standard Model initiated in Section 3.1,
making use of locality constraints on the on-loop amplitudes to find the anomaly con-
ditions which relate some of the SM hypercharges among each other.

It has long been known that in gauge theories with chiral fermions anomalies arise from
fermion loops [235, 236]. These gauge anomalies impose consistency conditions on the
theory, which in the case of the SM translate into relations among the hypercharges of
the fermions. Interestingly, as first noticed in [190,191], the same cancellation conditions
are required from a purely on-shell point of view by a clash of unitarity and locality
in some one-loop amplitudes. In this section we apply this method to recover the SM
anomaly cancellation conditions.

The core of the idea is that one-loop amplitudes can be computed and entirely fixed
using generalised unitarity methods, up to rational terms which have no branch points.
Such amplitudes by construction are unitary, however locality is not guaranteed (spuri-
ous poles can appear in the final result) but can be restored by appropriately fixing the
rational terms to which the unitarity methods are blind. These rational terms might in
turn introduce new corrections to the factorisation of the four-point amplitude, which
is inconsistent with the fact that the three-point amplitudes are tree-level exact and
fixed by helicity and mass dimension. When this happens additional properties of the
theory need to be required for these terms to vanish. In particular, in this section we
will show that for the Standard Model this leads to well known anomaly constraints on
the fermion hypercharges.

We will specifically consider a fermion loop coupled to four external gauge bosons in
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Figure 4.4: Kinematic coefficients from generalised unitarity [229], here a kinematic contri-
bution of the type ⟨2 4⟩2[1 3]2

s12s14
has been factored out.

the MHV configuration. The full one-loop amplitudes in the Standard Model can be
schematically written as

A(1)) = A(1)
vec +A(1)

ferm +A(1)
scal , (4.14)

where the three contributions correspond respectively to vector bosons, fermions or
scalars running in the internal loop, the specific type of these particles depending on
the external states. We want to focus here on the fermion loop contributions, which
are infrared finite and are the only part contributing to the chiral anomaly, since the
latter is due to the coupling of vector bosons (which will be chosen as external states)
to chiral fermions. The one loop amplitudes we consider have an internal fermion
loop coupled to four external gauge bosons in alternating helicity configuration. The
kinematic information of these amplitudes is entirely captured by the coefficients of
Figure 4.4 with cyclic rotations providing the other orderings. For later convenience
we define the following kinematic combinations, which turn out to be ubiquitous in the
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one-loop amplitudes

Keven := ⟨2 4⟩2[1 3]2
s12s14

∑
i,j

(cf
i,j + cf

i,j)Ii(j) , Kodd := ⟨2 4⟩2[1 3]2
s12s14

∑
i,j

(cf
i,j − c

f
i,j)Ii(j) ,

(4.15)
with i = 2, 3, 4 and j = s12, s14, and I2, I3 and I4 being the bubble, triangle and
box integrals given in Appendix C.3. Notice that in the chosen helicity configuration
in the one-loop amplitude there are no discontinuities in the s13 channel, because all
the tree-amplitudes entering the fermion loop contribution in the generalised unitarity
calculation vanish in this channel.

Then we consider as a first example the one-loop amplitude with two W s and two Bs as
external states, and consequently Q/Q̄ and L/L̄ as the only possible fermions running
through the loop. We find

A1−loop
ferm (W I

+, B−,W
J
+, B−)

∣∣∣
cut

= g2
1g

2
2(Y 2

L + 3Y 2
Q) δIJ Keven . (4.16)

The presence of only Keven was to be expected due to the interplay of the colour part
with the kinematics. The SU(3) colour part is trivial being absent in the case of the
L/L circulating in the loop and contributing a numeric factor δa

a = 3 for the Q/Q loop.
The SU(2) part on the other hand contributes with a factor of Tr σIσJ = 1

2δ
IJ in both

the s12 and s14 channels, which then leads to an additive combination of the kinematic
parts into Keven. Studying the behaviour of Keven in the small-s13 limit one finds that

Keven
s13→0−−−−→ ⟨2 4⟩2[1 3]2

s12s14

(
−s

2
12
s2

13
− s12
s13

+O(s0
13)
)
, (4.17)

thus, in order to restore locality, this amplitude requires a rational term whose kine-
matic part is of the form

Reven = −⟨2 4⟩2[1 3]2
s2

13
, (4.18)

which cancels both the spurious poles of (4.17) and does not produces any modification
to the residues in the s12 and s14 channels. Adding together the cut-constructible and
rational piece one gets the complete fermion loop contribution

A1−loop
ferm (W I

+, B−,W
J
+, B−) = g2

1g
2
2(Y 2

L + 3Y 2
Q) δIJ (Keven +Reven) . (4.19)

On the other hand, considering three external W and a single B, one ends up with

A1−loop
ferm (W I

+,W
J
−,W

K
+ , B−)

∣∣∣
cut

= i

2 g1g
3
2(YL + 3YQ) ϵIJK Kodd , (4.20)

where once again the SU(2) colour structure, which is Tr σIσJσK = i
4ϵ

IJK in the s12
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channel and Tr σIσKσJ = − i
4ϵ

IJK in the s14 channel, is responsible for the relative
sign among the kinematic structures and the combination into Kodd.

Now Kodd in the small-s13 limit goes as

Kodd
s13→0−−−−→ ⟨2 4⟩2[1 3]2

s12s14

(
−s12
s13

+O(s0
13)
)
, (4.21)

requiring a compensating rational term of the form

Rodd = ⟨2 4⟩2[1 3]2 s12 − s14
2s12s13s14

, (4.22)

which would lead to a complete fermion loop contribution of

A1−loop
ferm (W I

+,W
J
−,W

K
+ , B−) = i

2 g1g
3
2(YL + 3YQ) ϵIJK (Kodd +Rodd) . (4.23)

However, Rodd introduces (unphysical) corrections to the residues in the s12 and s14

channels, because the one-loop four-point amplitude cannot have any factorisation
channel and thus it cannot appear in the one loop amplitude9. In order to get an
answer which satisfies both unitarity and locality we must then enforce the coefficient
of the amplitude to vanish, which means imposing

YL + 3YQ = 0 . (4.24)

In a similar fashion, when looking at the one-loop interaction of three gluons with a
single B we get the condition

2YQ = Yu + Yd , (4.25)

which is necessary for the fermion-loop contribution to recombine in the physically
meaningful form

A1−loop
ferm (GA

+, G
B
−, G

C
+, B−)

∣∣∣
τABC

= −2g1g
3
3(Yu + Yd) (Keven +Reven) . (4.26)

This case is somewhat peculiar compared to the previous ones, in the fact that in-
stead of requiring the condition on the hypercharges to cancel a Kodd contribution,
it is necessary for a correct recombination into Keven. The Q (Q) part, which gets a
factor of 2 from a trace over an SU(2) delta, comes together with the u (u) and d (d)
contributions, and upon requiring (4.25) leads to (4.26). Notice the crucial interplay
between the fermions Q and the anti-fermions u, d (and vice versa) which transform
alike under SU(3): if the SU(3) interaction was chiral this could not have happened.
Not only that, one would find additional cancellation conditions arising for example

9Three-point amplitudes are exact at tree-level and fixed by helicity and mass dimensions consider-
ation. This makes the poles of four-point amplitudes tree-level exact, i.e. there are no loop corrections
to the residues of these poles.
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from the four-gluon one-loop interaction, where this interplay is equally relevant.

Finally, in order to obtain the additional textbook constraint on the hypercharges(
2Y 3

L − Y 3
e

)
+ 3

(
2Y 3

Q − Y 3
u − Y 3

d

)
= 0 , (4.27)

we need to look at four-point amplitudes involving a fermion loop with three external B
and a boson which interacts through the same coupling with all the fermions (leading
thus to this coupling dropping out of the constraint), in other words a graviton g.
Similarly, considering the fermionic contribution to the one-loop interaction of three
gravitons with a single B will lead to the anomaly cancellation condition

(2YL − Ye) + 3 (2YQ − Yu − Yd) = 0 . (4.28)

4.3 Anomalous dimension matrix from on-shell techniques

In this section we discuss how to make use of some of the tools introduced in Section
3 and the unitarity methods of Section 4.1 in order to compute the one-loop operator
mixing matrix for mass-dimension eight operators in the SMEFT [5]. In this context
two are the major challenges: the complete classification of the independent operators
for the given mass-dimension, which we dealt with in Section 3.2, and the computation
of the mixing matrix itself. In this thesis we will be only concerned with contributions
to the matrix which are leading order in the Wilson coefficients, but we stress that
the machinery we utilise, in particular the algorithm allowing for the construction of
arbitrary multiplicity amplitudes and non-minimal form factors presented in Section
3.3.1, allows to compute sub-leading contributions as well.

In the first section we briefly review how to compute the anomalous dimension matrix
from on-shell methods, for a more complete and general discussion including two-loop
applications (for an SU(N) theory) we refer the interested reader to [37]. Since at
dimension eight in the SMEFT there are almost a thousand operators, it is not possible
for us to display here the complete results computed in [5], instead we present the
running of the Wilson coefficients for the dimension six and eight operators relevant
for the Higgs production in association with a W boson via photon scattering.

4.3.1 A review of the method

Sticking to the notation introduced in Section 3.3.1, we write the effective amplitudes
as Fn,d,i(pa1,h1

1 , . . . , pan,hn
n ), where d is the dimension of the operator and i labels the

minimal interactions (for example, in the case of Nf = 1 and d = 6, i = 1, . . . , 84), in
order to distinguish it from renormalizable amplitudes A. The central formula for our
computations has been presented in [237] and gives the action of the dilatation operator
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D = ∂
∂ log µ on the amplitude in terms of its discontinuity10:

e−iπD F∗ = S ⊗F∗ , (4.29)

where S is the full S-matrix and on the RHS the product has to be interpreted as
a matrix product weighted over a proper Lorentz phase space integral which, via the
Optical Theorem, correspond to the discontinuity of the effective amplitude.

The dilatation operator is linked to the UV mixing matrix γUV
i→j by the Callan-Symanzik

equation [238–240]:

DFi =
(
γUV

j→i − γIR
i δij + +β(g2

k) ∂

∂g2
k

δij

)
Fj , (4.30)

where β(g2
k) is the beta-function for the coupling gk and γIR

i is the IR contribution
to the anomalous dimension of the amplitude Fi which depends only on its external
states.

Combining (4.29) and (4.30), expanding to leading order in the coupling and at linear
order in the effective interactions, one finds11

γUV
j→i Fj(ph1

1 . . . phn
n ) = − 1

π

n∑
l=1
l<m

∑
{l1,l2}

∫ dΩ2
32π2

[
A4(phl1

l1
p

hl2
l2
→ phl

l p
hm
m )−

3∑
k=1

g2
k Tk,l1 · Tk,l2

cos2 θ sin2 θ

]

· Fi(. . . p
hl1
l1

. . . p
hl2
l2

. . . )

+ Fi(ph1
1 . . . phn

n ) ·
n∑

l=1

γ
(l)
coll

16π2 ,

(4.31)

where ∫ dΩ2
4π =

∫ 2π

0

dϕ
2π

∫ π
2

0
dθ 2 cos θ sin θ (4.32)

is the Lorentz phase space integral, the sum over {l1, l2} is over the species and the
helicity configurations of the internal particles, γ(l)

coll is the IR collinear anomalous di-
mension associated to the lth-particle and the term with Tk,l1 · Tk,l2 takes care of the
subtraction of the (divergent) IR cusp anomalous dimension (the label k runs over the
three factors of the gauge group U(1) × SU(2) × SU(3)). In particular, the latter is
non-zero if the in- and out-states of the four-point amplitude are the same and, if this is
the case, it is a proper contraction of the Lie algebra generators (or the product of the

10This formula has been first presented in [237] for F being a form factor, but it trivially holds for
(effective) amplitudes as well, by setting qµ = 0 in the form factor.

11In order not to clutter up the notation with factors of 2 and π, the results provided at the end of
this section, as well as those for the complete dimension-eight mixing matrix given in the ancillary files
of [5] are given in terms of the matrix γUV

ij ≡ 16π2γUV
j→i, where we factored out the usual loop factor

1
16π2 .
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hypercharges in the case of U(1)) associated to the outgoing (or equivalently incoming)
particles. For example, if the four-point amplitude is A4(Q̄l1 Ql2 → Q̄l Qm), then

3∑
k=1

g2
k Tk,l · Tk,m =

(
−1

6

)
· 1

6 g
2
1 + g2

2 σ
I im

j σI j
il

+ g2
3 τ

A am
b τA b

al
. (4.33)

The helicity variables associated to the internal momenta, on the cut configuration,
can be written in terms of the Lorentz phase space angles θ and ϕ and the external
momenta pl and pm, as first shown in [241]:

(
λl1

λl2

)
=
(

cos θ − sin θ eiϕ

sin θ e−iϕ cos θ

)(
λl

λm

)
, (4.34)

together with the complex conjugate rotation for the spinors λ̃l1 and λ̃l2 . The collinear
anomalous dimensions for the particles in the Standard Model can be obtained by
studying the anomalous dimension of UV protected operators, such as the stress-tensor
as emphasised in [237]:

⟨ph1
1 ph2

2 |T
µν |0⟩ ·

2∑
l=1

γ
(l)
coll

16π2 = 1
π

∑
{l1,l2}

∫ dΩ2
32π2

[
A4(phl1

l1
p

hl2
l2
→ ph1

1 ph2
2 )

−
3∑

k=1

g2
k Tk,l1 · Tk,l2

cos2 θ sin2 θ

]
· ⟨phl1

l1
p

hl2
l2
|Tµν |0⟩ ,

(4.35)

A list of the collinear anomalous dimensions computed from the stress-tensor form
factor can be found in Appendix A.3.

4.3.2 The Higgs production in association with a W boson

As an illustrative application of the techniques discussed so far, we consider a subset
of dimension-six and dimension-eight operators relevant for the Higgs production in
association with a W boson via proton scattering, i.e. the operators contributing to
the scattering p p→ hW as considered in [77], with the difference that here we consider
a single fermion family so Nf = 1. In this section, we will compute the mixing among
dimension-six and dimension-eight effective interactions separately. First, we present
the relevant minimal amplitudes found using the algorithm presented in Section 3.2,
which are in one-to-one correspondence with the independent operators considered
in [77]. Then, using the techniques just reviewed we compute the two UV mixing
matrices, comparing the mixing matrix for dimension-six operators with known results
in the literature [84–86, 242–244]. The full mixing matrix for all the operators in the
SMEFT up to dimension eight can be found in the ancillary files of [5].

There are thirteen dimension-six operators (five of which are self-hermitian) contribut-

81



CHAPTER 4. LOOP-LEVEL UNITARITY AND THE SMEFT

# Hilbert series Minimal amplitude
1 H̄3H3 Y 1 2 3 ◦ δ

i4
j1
δi5

j2
δi6

j3

2 2D2H̄2H2 Y 1 2 ◦ Y 3 4 ◦ ⟨1 3⟩[1 3]δi3
j1
δi4

j2

3 Y 1 2 ◦ ⟨1 2⟩[1 2]δi3
j1
δi4

j2

4 2DQ̄QH̄H ⟨1 3⟩[2 3]δi2
j1
δi4

j3
δa2

b1

5 ⟨1 3⟩[2 3]δi2
j3
δi4

j1
δa2

b1

6 B−B−H̄H ⟨1 2⟩2δi4
j3

7 B+B+H̄H [1 2]2δi4
j3

8 W−W−H̄H ⟨1 2⟩2δI1I2δi4
j3

9 W+W+H̄H [1 2]2δI1I2δi4
j3

10 G−G−H̄H ⟨1 2⟩2δA1A2δi4
j3

11 G+G+H̄H [1 2]2δA1A2δi4
j3

12 B−W−H̄H ⟨1 2⟩2σI2i4
j3

13 B+W+H̄H [1 2]2σI2i4
j3

Table 4.1: The table shows the thirteen dimension-6 operators and their multiplicity as a
result of the Hilbert series method. To each independent operator we associate and enumerate
a set of independent minimal amplitudes.

ing to the scattering p p→ hW and such counting can be performed using Hilbert series
method. In Table 4.1 and Table 4.2 we show the content of the various operators and
their multiplicities as shown in reference [55] and the corresponding independent min-
imal amplitudes, respectively for the dimension-six and the dimension-eight effective
interactions.

In the following we present the running of the Wilson coefficients defined by

ċi = 16π2µ
∂

∂µ
ci , (4.36)

we first show the results for dimension six operators, ċ(6)
i and then those for dimension

eight ċ′(8)
i = ċ

(8),UV
i − ċ

(8),IR
i where IR subtraction has already been performed. In

the presented results the dots12 indicate that the operator associated to the given
coefficient mixes with other operators which we are not considering, i.e. already at
leading order in the couplings the sector we are looking at is not closed. The last term
in the RG evolution of each coefficient is needed to isolate the UV contributions from
the diagonal IR anomalous dimension. The six-dimensional results fully match with
previous calculations in the literature, after a proper change of basis, and have thus
provided a useful cross-check for the on-shell techniques discussed so far. While the
following pages of renormalisation coefficients may not appear as very enlightening,
they provide an idea of the type of the result we were aiming to get for the mixing and
should also give a sense of non-triviality (in computational terms) of the calculation of
the full dimension-eight case.

First the dimension-six coefficients:
12We explicitly display these only for dimension six, for dimension eight they would be present for

most coefficients and we omit them.
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# Hilbert series Minimal amplitude # Hilbert series Minimal amplitude
1 H̄4H4 Y 1 2 3 4 ◦ δ

i4
j1
δi5

j2
δi6

j3
δi8

j4
34 2D2B−W−H̄H

⟨1 2⟩3[1 2]σI2i4
j3

2 B2
−H̄

2H2 Y 3 4 ◦ ⟨1 2⟩2δi5
j4
δi6

j3
35 ⟨1 2⟩2⟨2 3⟩[2 3]σI2i4

j3

3 B2
+H̄

2H2 Y 3 4 ◦ [1 2]2δi5
j4
δi6

j3
36 2D2B+W+H̄H

[1 2]3⟨1 2⟩σI2i4
j3

4 B−W−H̄
2H2 Y 3 4 ◦ Y 5 6 ◦ ⟨1 2⟩2δi6

j4
σI2i5

j3
37 [1 2]2⟨2 3⟩[2 3]σI2i4

j3

5 B+W+H̄
2H2 Y 3 4 ◦ Y 5 6 ◦ [1 2]2δi6

j4
σI2i5

j3
38 D2B−W+H̄H ⟨1 3⟩2[2 3]2σI2i4

j3

6 2W 2
−H̄

2H2 Y 3 4 ◦ ⟨1 2⟩2δI1I2δi5
j4
δi6

j3
39 D2W−B+H̄H ⟨1 3⟩2[2 3]2σI1i4

j3

7 Y 1 2 ◦ ⟨1 2⟩2σI2i5i6σI1
j3j4

40 2D2W−H̄
2H2 Y 2 3 ◦ Y 4 5 ◦ ⟨1 2⟩⟨1 4⟩[2 4]ϵi4i5σI1

j2j3

8 2W 2
+H̄

2H2 Y 3 4 ◦ [1 2]2δI1I2δi5
j4
δi6

j3
41 Y 2 3 ◦ Y 4 5 ◦ ⟨1 2⟩⟨1 3⟩[2 3]δi5

j3
σI1i4

j2

9 Y 1 2 ◦ [1 2]2σI2i5i6σI1
j3j4

42 2D2W+H̄
2H2 Y 2 3 ◦ Y 4 5 ◦ [1 2][1 4]⟨2 4⟩ϵi4i5σI1

j2j3

10 G2
−H̄

2H2 Y 3 4 ◦ ⟨1 2⟩2δA1A2δi5
j4
δi6

j3
43 Y 2 3 ◦ Y 4 5 ◦ [1 2][1 3]⟨2 3⟩δi5

j3
σI1i4

j2

11 G2
+H̄

2H2 Y 3 4 ◦ [1 2]2δA1A2δi5
j4
δi6

j3
44

3D4H̄2H2
Y 1 2 ◦ ⟨1 2⟩2[1 2]2δi3

j1
δi4

j2

12 B−W
2
−H̄H ⟨1 2⟩⟨2 3⟩⟨1 3⟩ϵI2I3X6σX6i5

j4
45 Y 1 2 ◦ Y 3 4 ◦ ⟨1 3⟩2[1 3]2δi3

j1
δi4

j2

13 B+W
2
+H̄H [1 2][2 3][1 3]ϵI2I3X6σX6i5

j4
46 Y 1 2 ◦ Y 3 4 ◦ ⟨1 2⟩⟨1 3⟩[1 2][1 3]δi3

j1
δi4

j2

14 W 3
−H̄H ⟨1 2⟩⟨2 3⟩⟨1 3⟩ϵI1I2I3δi5

j4
47

4DQ̄QH̄2H2

Y 3 4 ◦ Y 5 6 ◦ ⟨1 3⟩[2 3]ϵj3j4δ
i5
j1
δa2

b1

15 W 3
+H̄H [1 2][2 3][1 3]ϵI1I2I3δi5

j4
48 Y 3 4 ◦ Y 5 6 ◦ ⟨1 3⟩[2 3]δi2

j3
δi5

j1
δi6

j4
δa2

b1

16 G3
−H̄H ⟨1 2⟩⟨2 3⟩⟨1 3⟩fA1A2A3δi5

j4
49 Y 3 4 ◦ Y 5 6 ◦ ⟨1 5⟩[2 5]δi2

j3
δi5

j4
δi6

j1
δa2

b1

17 G3
+H̄H [1 2][2 3][1 3]fA1A2A3δi5

j4
50 Y 3 4 ◦ Y 5 6 ◦ ⟨1 3⟩[2 3]δi2

j1
δi5

j4
δi6

j3
δa2

b1

18 2D2H̄3H3 Y 1 2 3 ◦ Y 4 5 6 ◦ ⟨1 2⟩[1 2]δi4
j1
δi5

j2
δi6

j3
51

6DW−Q̄QH̄H

⟨1 2⟩2[2 3]δi5
j4
δa3

b2
σI1i3

j2

19 Y 1 2 3 ◦ Y 4 5 6 ◦ ⟨1 4⟩[1 4]δi4
j1
δi5

j2
δi6

j3
52 ⟨1 2⟩⟨1 4⟩[3 4]δi5

j4
δa3

b2
σI1i3

j2

20 D2B−B+H̄H ⟨1 3⟩2[2 3]2δi4
j3

53 ⟨1 2⟩2[2 3]δi3
j4
δa3

b2
σI1i5

j2

21 2D2W−W+H̄H
⟨1 3⟩2[2 3]2δI1I2δi4

j3
54 ⟨1 2⟩⟨1 4⟩[3 4]δi3

j4
δa3

b2
σI1i5

j2

22 ⟨1 3⟩2[2 3]2ϵI1I2X6σX6i4
j3

55 ⟨1 2⟩2[2 3]δi3
j2
δa3

b2
σI1i5

j4

23 D2G−G+H̄H ⟨1 3⟩2[2 3]2δA1A2δi4
j3

56 ⟨1 2⟩⟨1 4⟩[3 4]δi3
j2
δa3

b2
σI1i5

j4

24 D2B−H̄
2H2 Y 2 3 ◦ Y 4 5 ◦ ⟨1 2⟩⟨1 4⟩[2 4]δi4

j3
δi5

j2
57

6DW+Q̄QH̄H

[1 3]2⟨2 3⟩δi5
j4
δa3

b2
σI1i3

j2

25 D2B+H̄
2H2 Y 2 3 ◦ Y 4 5 ◦ [1 2][1 4]⟨2 4⟩δi4

j3
δi5

j2
58 [1 3][1 4]⟨2 4⟩δi5

j4
δa3

b2
σI1i3

j2

26 D2B2
−H̄H ⟨1 2⟩3[1 2]δi4

j3
59 [1 3]2⟨2 3⟩δi3

j4
δa3

b2
σI1i5

j2

27 D2B2
+H̄H [1 2]3⟨1 2⟩δi4

j3
60 [1 3][1 4]⟨2 4⟩δi3

j4
δa3

b2
σI1i5

j2

28 2D2W 2
−H̄H

⟨1 2⟩3[1 2]δI1I2δi4
j3

61 [1 3]2⟨2 3⟩δi3
j2
δa3

b2
σI1i5

j4

29 Y 1 2 ◦ ⟨1 2⟩2⟨2 3⟩[2 3]ϵI1I2X6σX6i4
j3

62 [1 3][1 4]⟨2 4⟩δi3
j2
δa3

b2
σI1i5

j4

30 2D2W 2
+H̄H

[1 2]3⟨1 2⟩δI1I2δi4
j3

63

4D3Q̄QH̄H

⟨1 3⟩⟨2 3⟩[2 3]2δi2
j3
δi4

j1
δa2

b1

31 Y 1 2 ◦ [1 2]2⟨2 3⟩[2 3]ϵI1I2X6σX6i4
j3

64 ⟨1 2⟩⟨1 3⟩[1 2][2 3]δi2
j3
δi4

j1
δa2

b1

32 D2G2
−H̄H ⟨1 2⟩3[1 2]δA1A2δi4

j3
65 ⟨1 3⟩⟨2 3⟩[2 3]2δi2

j1
δi4

j3
δa2

b1

33 D2G2
+H̄H [1 2]3⟨1 2⟩δA1A2δi4

j3
66 ⟨1 2⟩⟨1 3⟩[1 2][2 3]δi2

j1
δi4

j3
δa2

b1

Table 4.2: The table shows all the dimension-8 operators, their multiplicity and a set of
independent minimal amplitudes.

ċ
(6)
1 = c

(6)
1

(
6g2

1Y
2

H + 9g2
2

2 + 108λ
)

+ 6c(6)
1 γH

coll ,

ċ
(6)
2 = c

(6)
5

(
8g2

1YHYQ − 6g2
2 + 48Y1Ȳ1 + 24Y2Ȳ2

)
+ c

(6)
2

(
−8g2

1Y
2

H

3 + 8g2
2 + 24λ

)

+ c
(6)
3

(
2g2

1Y
2

H + 17g2
2

2 − 12λ
)

+ c
(6)
4

(
16g2

1YHYQ + 24Y1Ȳ1 − 24Y2Ȳ2
)

+ 4c(6)
2 γH

coll + . . . ,

ċ
(6)
3 = c

(6)
3

(
26g2

1Y
2

H + 33g2
2

2 + 12λ
)

+ c
(6)
4

(
32g2

1YHYQ + 48Y1Ȳ1 − 48Y2Ȳ2
)

+ c
(6)
5

(
16g2

1YHYQ + 24Y1Ȳ1 − 24Y2Ȳ2
)
− 40

3 c
(6)
2 g2

1Y
2

H

+ 4c(6)
3 γH

coll + . . . ,
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ċ
(6)
4 = c

(6)
4

(
28g2

1Y
2

H

3 + 14g2
1Y

2
Q + 21g2

2
2 + 8g2

3 + 12Y1Ȳ1

)
+ c

(6)
4

(
2γH

coll + 2γQ
coll

)
+ c

(6)
5

(
2g2

1Y
2

H

3 + 4g2
1Y

2
Q + 11g2

2
6 − 4Y1Ȳ1 + 8Y2Ȳ2

)

+ c
(6)
3

(
g2

1YHYQ −
g2

2
12 + 2Y1Ȳ1 − Y2Ȳ2

)
+ c

(6)
2

(
−1

3g
2
1YHYQ + g2

2
12 − Y1Ȳ1

)
+ . . . ,

ċ
(6)
5 = c

(6)
5

(
8g2

1Y
2

H + 6g2
1Y

2
Q + 41g2

2
6 + 8g2

3 − 4Y1Ȳ1 + 8Y2Ȳ2

)
+ c

(6)
5

(
2γH

coll + 2γQ
coll

)
+ c

(6)
2

(
−g

2
2
6 + Y1Ȳ1 + Y2Ȳ2

)
+ c

(6)
3

(
g2

2
6 − Y1Ȳ1 − Y2Ȳ2

)
+ c

(6)
4 (12Y2Ȳ2 − 12Y1Ȳ1) + . . . ,

ċ
(6)
6 = c

(6)
6

(
10g2

1Y
2

H + 3g2
2

2 + 12λ
)

+ 6c(6)
12 g1g2YH + c

(6)
6

(
2γH

coll + 2γB
coll

)
+ . . . ,

ċ
(6)
7 = c

(6)
7

(
10g2

1Y
2

H + 3g2
2

2 + 12λ
)

+ 6c(6)
13 g1g2YH + c

(6)
7

(
2γH

coll + 2γB
coll

)
+ . . . ,

ċ
(6)
8 = c

(6)
8

(
2g2

1Y
2

H + 7g2
2

2 + 12λ
)

+ 2c(6)
12 g1g2YH + c

(6)
8

(
2γH

coll + 2γW
coll

)
+ . . . ,

ċ
(6)
9 = c

(6)
9

(
2g2

1Y
2

H + 7g2
2

2 + 12λ
)

+ 2c(6)
13 g1g2YH + c

(6)
9

(
2γH

coll + 2γW
coll

)
+ . . . ,

ċ
(6)
10 = c

(6)
10

(
2g2

1Y
2

H + 3g2
2

2 + 12λ
)

+ c
(6)
10

(
2γH

coll + 2γG
coll

)
+ . . . ,

ċ
(6)
11 = c

(6)
11

(
2g2

1Y
2

H + 3g2
2

2 + 12λ
)

+ c
(6)
11

(
2γH

coll + 2γG
coll

)
+ . . . ,

ċ
(6)
12 = c

(6)
12

(
6g2

1Y
2

H + g2
2
2 + 4λ

)
+ 4c(6)

6 g1g2YH + 4c(6)
8 g1g2YH

+ c
(6)
12

(
2γH

coll + γW
coll + γB

coll

)
+ . . . ,

ċ
(6)
13 = c

(6)
13

(
6g2

1Y
2

H + g2
2
2 + 4λ

)
+ 4c(6)

7 g1g2YH + 4c(6)
9 g1g2YH

+ c
(6)
13

(
2γH

coll + γW
coll + γB

coll

)
+ . . . ,
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Finally, what follows are the dimension-eight coefficients:

ċ
′(8)
1 =

(
6g2

2 + 8g2
1Y

2
H + 192λ

)
c

(8)
1 ,

ċ
′(8)
2 =

(
3g2

2 + 20g2
1Y

2
H + 48λ

)
c

(8)
2 + 8g1g2YHc

(8)
4 ,

ċ
′(8)
3 =

(
3g2

2 + 20g2
1Y

2
H + 48λ

)
c

(8)
3 + 8g1g2YHc

(8)
5 ,

ċ
′(8)
4 = 8g1g2YHc

(8)
2 +

(
13g2

2 + 12g2
1Y

2
H + 40λ

)
c

(8)
4 + 8g1g2YHc

(8)
6 + 2g1g2YHc

(8)
7 ,

ċ
′(8)
5 = 8g1g2YHc

(8)
3 +

(
13g2

2 + 12g2
1Y

2
H + 40λ

)
c

(8)
5 + 8g1g2YHc

(8)
8 + 2g1g2YHc

(8)
9 ,

ċ
′(8)
6 = 4g1g2YHc

(8)
4 +

(
7g2

2 + 4g2
1Y

2
H + 48λ

)
c

(8)
6 +

(
4g2

2 − 4λ
)
c

(8)
7 ,

ċ
′(8)
7 =

(
31g2

2 + 4g2
1Y

2
H + 24λ

)
c

(8)
7 + 8g1g2YHc

(8)
4 ,

ċ
′(8)
8 = 4g1g2YHc

(8)
5 +

(
7g2

2 + 4g2
1Y

2
H + 48λ

)
c

(8)
8 +

(
4g2

2 − 4λ
)
c

(8)
9 ,

ċ
′(8)
9 =

(
31g2

2 + 4g2
1Y

2
H + 24λ

)
c

(8)
9 + 8g1g2YHc

(8)
5 ,

ċ
′(8)
10 =

(
3g2

2 + 4g2
1Y

2
H + 48λ

)
c

(8)
10 ,

ċ
′(8)
11 =

(
3g2

2 + 4g2
1Y

2
H + 48λ

)
c

(8)
11 ,

ċ
′(8)
12 =

(
39g2

2
2 + 6g2

1Y
2

H + 4λ
)
c

(8)
12 + 4g1g2YHc

(8)
14 ,

ċ
′(8)
13 =

(
39g2

2
2 + 6g2

1Y
2

H + 4λ
)
c

(8)
13 + 4g1g2YHc

(8)
15 ,

ċ
′(8)
14 =

(
57g2

2
2 + 2g2

1Y
2

H + 12λ
)
c

(8)
14 + 3g1g2YHc

(8)
12 ,

ċ
′(8)
15 =

(
57g2

2
2 + 2g2

1Y
2

H + 12λ
)
c

(8)
15 + 3g1g2YHc

(8)
13 ,

ċ
′(8)
16 =

(
3g2

2
2 + 36g2

3 + 2g2
1Y

2
H + 12λ

)
c

(8)
16 ,

ċ
′(8)
17 =

(
3g2

2
2 + 36g2

3 + 2g2
1Y

2
H + 12λ

)
c

(8)
17 ,

ċ
′(8)
18 =

(
10g2

2 + 116g2
1Y

2
H

3 + 72λ
)
c

(8)
18 +

(
17g2

2
6 − 26g2

1Y
2

H − 4λ
)
c

(8)
19

+
(
−18g2

2 + 108Y1Ȳ1 + 108Y2Ȳ2
)
c

(8)
47

+
(

18YHYQg
2
1 + 45g2

2
2 − 108Y1Ȳ1 − 162Y2Ȳ2

)
c

(8)
48

+
(
−18YHYQg

2
1 −

9g2
2

2 + 54Y2Ȳ2

)
c

(8)
49 +

(
36YHYQg

2
1 + 54Y1Ȳ1 − 54Y2Ȳ2

)
c

(8)
50 ,
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ċ
′(8)
19 =

(
−34g2

2
3 − 8g2

1Y
2

H

3 + 16λ
)
c

(8)
18 +

(
145g2

2
6 + 2g2

1Y
2

H + 52λ
)
c

(8)
19

+
(
−27g2

2 + 162Y1Ȳ1 + 162Y2Ȳ2
)
c

(8)
47

+
(
−18YHYQg

2
1 + 45g2

2
2 − 162Y1Ȳ1 − 108Y2Ȳ2

)
c

(8)
48

+
(

18YHYQg
2
1 + 9g2

2
2 − 54Y2Ȳ2

)
c

(8)
49 +

(
−36YHYQg

2
1 − 54Y1Ȳ1 + 54Y2Ȳ2

)
c

(8)
50 ,

ċ
′(8)
20 = g2

1c
(8)
44 Y

2
H + 1

3g
2
1c

(8)
45 Y

2
H −

1
3g

2
1c

(8)
46 Y

2
H + 3g1g2c

(8)
38 YH + 3g1g2c

(8)
39 YH

+
(
9g2

2 + 20g2
1Y

2
H

)
c

(8)
20 − 4g2

1Y
2

Qc
(8)
63 − 8g2

1Y
2

Qc
(8)
65 ,

ċ
′(8)
21 = 1

4c
(8)
44 g

2
2 + 1

12c
(8)
45 g

2
2 −

1
12c

(8)
46 g

2
2 − c

(8)
63 g

2
2 − 2c(8)

65 g
2
2 + g1YHc

(8)
38 g2 + g1YHc

(8)
39 g2

+
(

77g2
2

3 + 12g2
1Y

2
H

)
c

(8)
21 ,

ċ
′(8)
22 =

(
25g2

2
3 + 12g2

1Y
2

H

)
c

(8)
22 − ig

2
2c

(8)
63 ,

ċ
′(8)
23 = −2

3c
(8)
63 g

2
3 −

4
3c

(8)
65 g

2
3 +

(
9g2

2 + 22g2
3 + 12g2

1Y
2

H

)
c

(8)
23 ,

ċ
′(8)
24 =

(
25g2

2
2 + 38g2

1Y
2

H

3 + 12λ
)
c

(8)
24 ,

ċ
′(8)
25 =

(
25g2

2
2 + 38g2

1Y
2

H

3 + 12λ
)
c

(8)
25 ,

ċ
′(8)
26 =

(
3g2

2
2 + 10g2

1Y
2

H

3 + 12λ
)
c

(8)
26 + g1g2YHc

(8)
34 −

1
2g1g2YHc

(8)
35 ,

ċ
′(8)
27 =

(
3g2

2
2 + 10g2

1Y
2

H

3 + 12λ
)
c

(8)
27 + g1g2YHc

(8)
36 −

1
2g1g2YHc

(8)
37 ,
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ċ
′(8)
31 = 20ic(8)

30 g
2
2 + 4ig1YHc

(8)
36 g2 − 2ig1YHc

(8)
37 g2 +

(
22g2

2
3 + 8g2

1Y
2

H

)
c

(8)
31 ,

ċ
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)
c

(8)
59 +

(
−4YHYQg

2
1 − g2

2 + 12Y2Ȳ2
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ċ
′(8)
43 =

(
17g2

2
12 + g2

1Y
2

H

3 − 2λ
)
c

(8)
42 +

(
73g2

2
4 + 17g2

1Y
2

H + 10λ
)
c

(8)
43

+
(
−4g2

2 + 24Y1Ȳ1 + 24Y2Ȳ2
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9

)
c

(8)
19

+
(

47g2
2

3 + 8g2
3 + 14g2

1Y
2

H

3 + 6g2
1Y

2
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Q + 24Y1Ȳ1 + 28λ

)
c

(8)
50 ,

ċ
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ċ
′(8)
52 =

(
g2

2
6 − Y1Ȳ1 − Y2Ȳ2
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)
c

(8)
52

+
(

8g2
2

3 + 2g2
1Y

2
H

3 − 2Y1Ȳ1 + 4Y2Ȳ2
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3 + 4Y2Ȳ2
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ċ
′(8)
55 =

(
1
3YHYQg

2
1 −

g2
2

12 + Y1Ȳ1
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3 + 4Y2Ȳ2
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3 − 4Y2Ȳ2
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3 + 4λ
)
c

(8)
59

+
(

3Y 2
Hg

2
1 − 2YHYQg

2
1 −

25g2
2

12 − 2Y1Ȳ1 + 4Y2Ȳ2
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2 − 2Y1Ȳ1 + 2Y2Ȳ2
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3

)
c

(8)
58

+
(
−8YHYQg

2
1 − 2g2

2 −
16Y1Ȳ1
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3

)
c

(8)
59

+
(

8Y 2
Hg

2
1 + 6Y 2

Qg
2
1 + 4YHYQg

2
1 + 119g2

2
6 + 8g2

3 + 8Y1Ȳ1 + 4Y2Ȳ2
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57

+
(

3g2
2

2 + 4g2
1Y

2
Q − 2Y1Ȳ1 + 4Y2Ȳ2
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ċ
′(8)
62 =

(
−1

3YHYQg
2
1 + g2

2
12 − Y1Ȳ1
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3

)
c

(8)
45 +

(
Y1Ȳ1
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Chapter 5

Higher-derivative operators and
gravitational observables

The first observation of gravitational waves by the LIGO collaboration [245] at the end
of 2015 naturally spiked an interest in the gravitational two-body problem across the
board. The amplitudes community in particular saw a major shift in attention towards
this topic, and the wide range of tools developed primarily for the sake of collider
physics found an ideal ground to flourish and contributed groundbreaking results.

When considering the merger of two galactic objects, the process is usually described
in terms of three different phases being an initial inspiral phase, the merger itself and
finally the ringdown of the resulting object. During the inspiral phase, in particular in
the case of two black holes, as long as the two bodies are far enough apart from each
other and since they are separated from us (the observer) by distances on a cosmic
scale they can be effectively approximated as point-like particles and described within
a quantum theory of gravitationally interacting massive particles. The particular pro-
cess of interest is usually a two-to-two scattering: in the case of two Schwarzschild
black holes for example one considers two scalars ϕm1ϕm2 → ϕm1ϕm2 but similarly one
can describe light deflection of a black hole as ϕm1γ → ϕm1γ. The aim is clearly not
to give a quantum mechanical treatment of the black holes, whose internal structure is
in fact completely neglected, rather to extract information about the classical gravita-
tional interaction at high enough precision to give an accurate description of what the
experiments are observing. The increased precision comes from extracting the classical
information hidden in the higher-loop contributions of such a framework: in quantum
field theories featuring massive matter, the mass terms come with an inverse power
of ℏ which leads to additional cancellation of the powers of ℏ in the loop expansion
and so even arbitrary high loop-orders can feature terms surviving in the classical limit
ℏ→ 0 [94–96].
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Also in this context on-shell methods prove extremely powerful. In fact the focus is
on long-range physics which is encoded in the non-analytic pieces of the amplitude
(the analytic part corresponds to local terms in the potential), and since unitarity cuts
capture precisely these pieces, loop-level unitarity and generalised unitarity methods
prove ideal to extract the relevant contributions from the complete amplitude result.
In particular, one wants to consider the external lines of the amplitude as the galactic
objects interacting via graviton exchange, narrowing down on the terms that have
discontinuities in the q⃗ 2 channel, corresponding to the momentum transfer q⃗ of the
process [246,96].

The perturbative expansion with respect to which one computes trees and loops is
performed in powers of Newton’s constant G and is called post-Minkowskian (PM)
expansion, as opposed to the post-Newtonian (PN) expansion where the perturbative
coupling is given by the relative velocity v2 of the two objects or equivalently (thanks to
the virial theorem) by v2 ∼ Gm/r with m the total mass of the binary system and r the
relative position. While the PM expansion is relativistic in its nature and thus provides
a result complete to all orders in the velocity at each given order in G, in the early
inspiral phase the gravitational field is weak and so the system constituents are non-
relativistic and the PN expansion might prove better suited in these circumstances.
The two approaches can be considered complementary and provide effective cross-
checks of one another. In the PN expansion relevant results include the first [247],
second [248,249], third [250–253], fourth [254–266], fifth [267–269] and sixth [270–275]
post-Newtonian order. In the post-Minkowskian framework, which is natural in the
context of amplitudes, the current state of the art is at 4PM order [30,276–278] with the
previous 3PM order being computed in [29,279] and confirmed among others in [280].

Scattering amplitudes are naturally organised as a series of powers of G, and it is then
convenient to define the effective two-body potential

V (p, r) =
∞∑

n=1

(
G

|r|

)n

cn(p2) , (5.1)

where p and r are the relative momentum and distance. This effective potential is
then truncated at a given order in G1, and up to this order it reproduces the same
physics as the full gravitational theory for two bodies interacting via classical long-
range force, and the coefficients of the expansion can be extracted from the amplitudes
by an EFT matching procedure [94–98,246,281–283,29]. Such a procedure focusses on
the computation of the effective potential which is not a gauge invariant quantity, and
thus the matching procedure needs to be performed with some care. On the other hand,
one can follow a different route and directly compute gravitational physical observables
from the on-shell scattering amplitudes. There are different ways of doing so, one

1At the time of writing, the highest known PM contribution is to O(G4), see [30].
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example being pioneered in [26, 28] and further extended in [32, 33], but the one we
decided to adopt is the eikonal approach [100–105], in particular for the computation
of the time delay and deflection angle of a light particle off a heavy object.

In this approach the relevant amplitudes are evaluated in an approximation where the
momentum transfer |q⃗ | is taken to be much smaller than both the mass m of the heavy
scalar and the energy ω of the massless particle, or more precisely taking m ≫ ω ≫
|q⃗ |. Crucial for this is a convenient parameterization of spinor helicity variables for
the massless particles in the eikonal limit. The amplitudes thus obtained are then
transformed to impact parameter space via a two-dimensional Fourier transform. In
this space, the amplitudes are expected to exponentiate into an eikonal phase, from
which one can extract directly the classical (and, if desired, quantum) deflection angle
and time advance/delay. Recent applications of this method to this type of problem
include [284] for the deflection angle of massless scalars up to 2PM (namely O(G2)),
[285] for photons and fermions up to 2PM order, and up to 3PM order in [286–289]. We
also note that [285] showed the equivalence of the eikonal method and the formalism
based on the computation of an intermediate potential/Hamiltonian used for instance
in [285,290–294].

In this chapter we consider effective theories of gravity obtained by adding higher-
derivative interactions to the Einstein-Hilbert (EH) action. Higher-derivative operators
in gravity have attracted increasing attention and are being studied from a variety
of perspectives, including the modifications induced on the potential [293, 294], the
effects on gravitational wave observations [295,106] as well as causality bounds on the
associated coefficients [296]. Here in particular we consider terms of the form R3,
R4 and FFR with R being the Riemann tensor and F the field strength tensor of
the photon, and compute the leading and first subleading contribution in the eikonal
formalism. This requires the computation of up to one-loop amplitudes with these
operator insertions, from which we extract the deflection angle and time delay from the
eikonal phase, considering the deflection of gravitons as well as photons.

Since our computation stops at the first loop order, we make use of an additional sim-
plification stemming from the fact that in the unitarity-based calculation the cuts can
be kept in four dimensions, as discrepancies with D-dimensional results only give rise
to analytic terms, at this loop order. It is also important to stress that the presence of
the higher-derivative couplings allows for helicity-preserving as well as helicity-violating
processes to contribute, thus the eikonal phase is promoted to an eikonal phase matrix
in the space of helicities of the external massless particles. In our conventions (+−)
and (−+) are the diagonal entries associated to no-flip scattering (recall that we always
consider all particles’ momenta as outgoing), while (++) and (−−) are the off-diagonal
entries, with helicity flip. The associated mixing problem has to be resolved in order to
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obtain the physical quantities of interest. Whenever the two eigenvalues of the eikonal
phase matrix are distinct, a possible violation of causality at small impact parameter
arises, as noticed already at tree level in [297]. See also [298–305] for further discussions
and resolutions of this issue in UV-complete theories, [103,297,306,307] for earlier ap-
pearances of the eikonal operator and [308,309] for related discussions involving helicity
flip and no-flip amplitudes.

In this section we first describe the theory we are working with and give a precise
definition of the eikonal limit, providing an explicit parametrisation for all the momenta
and spinor-helicity variables we need. We then briefly review the connection between
amplitudes in the eikonal limit (Fourier-transformed to impact parameter space) and
the eikonal phase matrix, the deflection angle and the time delay. Finally we provide
the relevant amplitudes2, extract the eikonal phase and compute the modifications of
the observables due to the presence of the higher-derivative couplings.

5.1 From amplitudes to the deflection angle and time de-
lay via the eikonal

Gravity with higher-derivative couplings

In this section we study the effects of higher-derivative operators, denoted schematically
as R3, R4 and FFR, on the deflection of the a light particle by a heavy spin-less object.
More precisely, we use the eikonal approximation to compute the corrections to the time
delay and deflection angle induced by the following theory

S =
∫

d4x
√
−g

[ 1
2(Dµϕ)(Dµϕ)− 1

2m
2ϕ2 − 2

κ2R

− 2
κ2L6 + 2

κ2L8 −
1
4F

µνFµν −
αγ

8 FµνF ρσRµνρσ

]
,

(5.2)

where in the first line we have the massive scalar particle action mimicking the heavy
spin-less object, as well as the Einstein-Hilbert term, then in the second line the purely
gravitational interaction terms L6 and L8 and finally the photon interaction terms.
The higher-derivative interactions we consider are

L6 = α1
48 I1 + α2

24 G3 (5.3)

2In this and the next chapter through an abuse of notation we often call “amplitude” what tech-
nically is only the part of the amplitude with the discontinuity in the kinematic channel related to
momentum transfer. In other words, we call amplitude the part of the complete amplitude relevant to
our computation.
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with

I1 := Rαβ
µνR

µν
ρσR

ρσ
αβ , G3 := I1 − 2Rµνα

βR
βγ

νσR
σ

µγα ≡ I1 − 2I2 , (5.4)

and
L8 = β1 C 2 + β2 C C̃ + β3 C̃ 2 , (5.5)

where
C := Rµνρσ R

µνρσ , C̃ := 1
2 Rµναβ ϵ

αβ
γδ R

γδµν . (5.6)

A few comments on the various couplings in (5.2) are in order here.

First, there are two types of R3 terms, denoted as I1 and G3 above. Such terms arise
naturally in the low-energy effective description of bosonic string theory were α1 =
α2 = α′ 2 which is the value of the couplings we will use in this section. Their effects
on gravitational scattering of different matter fields have been discussed in [293, 294];
specifically for the scattering of two massive scalars, both independent structures I1 and
G3 were found to contribute. On the other hand, for the helicity-preserving deflection of
massless particles of spin 0, 1 and 2, it was shown in [293] that the G3 interaction has no
effect. Additional interesting features about the I1 and G3 couplings are that I1 is the
only coupling that contributes to pure graviton scattering up to four points [310, 311]
and is the two-loop counterterm in pure gravity [312], while G3 is a topological term
in six dimensions. In the following we will be concerned with (helicity-preserving and
flipping) scattering of massless gravitons in the background produced by a massive
scalar, in which case only the I1 structure contributes, hence in this section we will
refer to it simply as the R3 term, since no confusion can arise. Note that in the case of
photons there is no R3 contribution to the helicity-flipping process.

The second interaction we study is of the type R4. In principle there are 26 independent
parity-even quartic contractions of the Riemann tensor [313], but only the seven which
do not contain the Ricci scalar or tensor survive on shell in arbitrary dimensions, as
can also be seen using field redefinitions [314,315,2]. In four dimensions these reduce to
two independent parity-even structures [295, 316], plus one parity-odd structure [106],
as shown in (5.5).3 In agreement with [316] we find that these interactions induce the
following four-point graviton amplitudes: those with all-equal helicities, and the ampli-
tude with two positive- and two negative-helicity gravitons (the MHV configuration).
If β2 in (5.5) is non-vanishing, then the all-plus and all-minus graviton amplitudes
are independent. We also note that a particular contraction of four Riemann tensors
appears in type-II superstring theories where it is the first higher-derivative curvature
correction to the EH theory, and can be determined from four-graviton scattering [318].

3A general approach to find a complete, non-redundant operator basis of dimension six and eight
for the effective Standard Model including gravity has been given recently in [317] using the Hilbert
series method.
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The third interaction we consider is an FFR term, where F is the electromagnetic field
strength. It is known to arise in string theory as well as from integrating out massive,
charged electrons in the case of electrodynamics coupled to gravity, as discussed in
[308,309], and considered more recently in [298,299].

We have also introduced in the action a minimally coupled massive scalar to represent
a black hole4. Note that in (5.2) we have excluded terms quadratic in the curvatures
since from an effective field theory/on-shell point of view they have no effect to any
order in four dimensions, as shown recently in [2].

Kinematics of the scattering

Here we describe the kinematics of the scattering processes we consider in this section.
We denote by p1 and p2 the four-momenta of the incoming and outgoing scalars, re-
spectively, with m being their common mass, while the momenta of the incoming and
outgoing massless particles (gravitons or photons) are p4 and p3. We stress here that for
the graviton scattering process in particular, it is not our goal to describe the specific
scattering in order to provide input data for experiment, but rather gain qualitative
insights into the theory including higher derivative operators. These insights include
for example the necessity of introducing an eikonal phase matrix or the consistency
requirements imposed on the couplings by the time delay, as we will see later in this
section.

We will work in the centre of mass frame, with the following parameterization:

p1

p2 ph3
3

ph4
4

pµ
4 = −(E4,−p⃗+ q⃗/2) ,

pµ
1 = −(E1, p⃗− q⃗/2) ,

pµ
2 = (E2, p⃗+ q⃗/2) ,

pµ
3 = (E3,−p⃗− q⃗/2) .

(5.7)

In our conventions we take all momenta to be outgoing, hence the minus signs in the
expressions of p1 and p4 since particles 1 and 4 are incoming. We also have

E1 = E2 =
√
m2 + p⃗ 2 + q⃗ 2/4 ,

E3 = E4 =
√
p⃗ 2 + q⃗ 2/4 := ω ,

(5.8)

where p⃗ · q⃗ = 0 due to momentum conservation. Hence q⃗ lives in a two-dimensional
4In order to describe charged black holes the real scalar in (5.2) should be replaced by an electrically

charged complex scalar.
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space orthogonal to p⃗. In this chapter we define the Mandelstam variables as

s := (p1 + p2)2 = −q⃗ 2, t := (p1 + p4)2 = (E1 + E4)2, u := (p1 + p3)2, (5.9)

with s + t + u = 2m2. In this notation the spacelike momentum transfer squared is
given by s, while t denotes the centre of mass energy squared, and ω is the energy of
the scattered massless particle.

In the above parameterization, the kinematic limit we are interested is

m≫ ω ≫ |q⃗ | , (5.10)

which implies for the Mandelstam variables

t ≃ m2 + 2mω , ut−m4 ≃ −(2mω)2 , (5.11)

and for the energies of the massless particles

E3 = E4 := ω ≃ |p⃗ |
(

1 + q⃗ 2

8 p⃗ 2

)
. (5.12)

For definiteness we choose p⃗ = |p⃗ | ẑ with |p⃗ | ≫ |q⃗ |, as implied by (5.10). In this
approximation we can write the four-momentum p3 of the massless particle in spinor
notation as

p3 =


q⃗ 2

8|p⃗ | −
q̄

2

−q2 2|p⃗ |

 , (5.13)

with q := q1 + iq2 and q̄ := q1− iq2. One can then find an explicit parameterization for
the spinors associated to the null momenta pi = λiλ̃i, i = 3, 4, with the result

λ3 =
√

2|p⃗ |

−
q̄

4|p⃗ |

1

 , λ̃3 =
√

2|p⃗ |
(
− q

4|p⃗ | 1
)
,

λ4 = i
√

2|p⃗ |


q̄

4|p⃗ |

1

 , λ̃4 = i
√

2|p⃗ |
( q

4|p⃗ | 1
)
.

(5.14)

Note the extra factors of i due to the negative energy-component of p4 corresponding
to an incoming particle.
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Eikonal phase, deflection angle and time delay

In this section we briefly review relevant aspects of the eikonal approximation and the
eikonal phase matrix which allows for an efficient extraction of the deflection angle and
time delay/advance from scattering amplitudes. This topic was intensively studied in
the context of gravity and string theory in the nineties [104, 105]; for related recent
work see also [319–321] and references therein.

First, we introduce the amplitude in impact parameter space Ã. This is defined as a
Fourier transform of the amplitude A with respect to the momentum transfer q⃗,

Ã(⃗b ) := 1
4mω

∫
dD−2q

(2π)D−2 e
iq⃗·⃗b A(q⃗ ) , (5.15)

where b⃗ is the impact parameter, and the number of dimensions will eventually be set
to D = 4− 2ϵ.

In the eikonal approximation the gravitational S-matrix can be written in the form
[104,284]

Seik = ei(δ0+δ1+··· ) , (5.16)

where δ0 is the leading eikonal phase, which is O(G), δ1 the first subleading correction,
of O(G2), and the dots represent subsubleading contributions. Alternatively, one can
write the S-matrix in impact parameter space as

Seik = 1 + Ã(0)
ω + Ã(1)

ω2 + Ã(1)
ω + Ã(2)

ω3 + Ã(2)
ω2 + Ã(2)

ω + · · · , (5.17)

where the superscript indicates the loop order L and the subscript the power in the
energy ω of the massless particle. That the maximal power of ω at a given loop order
is L + 1 is a well-established fact in (super)gravity and we will see below that the R3

corrections do not alter this expectation. However, we also find that the R4 corrections
lead to higher powers of ω starting at one loop, which is not surprising since higher-
derivative corrections worsen the high-energy behaviour. In the effective field theory
approach we adopt, we are not really interested in high-energy physics (or high-energy
completions of the theory) – we use the eikonal approximation as an efficient and elegant
tool to extract deflection angles and time delay/advances without passing through the
computation of non gauge-invariant intermediate quantities such as effective potentials
or Hamiltonians. Nevertheless it would interesting to check if in the R4 case unitarity
can be restored as well through exponentiation.
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Equating (5.16) with (5.17) one gets

δ0 = −i Ã(0)
ω , (5.18)

δ1 = −i Ã(1)
ω , (5.19)

as well as the condition

−(δ0)2

2 = Ã(1)
ω2 , (5.20)

which implies the consistency condition

Ã(1)
ω2 = 1

2(Ã(0)
ω )2 . (5.21)

Thus, the contribution to the one-loop amplitude that is leading in ω, Ã(1)
ω2 , does not

provide any new information about the S-matrix. In general, it is only the term in
Ã(L) that is linear in ω, Ã(L)

ω , that provides new information entering δL. We also note
that (5.18)–(5.21) hold as matrix equations.

Note that a priori these statements are known to hold for EH gravity. The results in
this chapter show that (5.21) also holds for the higher-derivative interactions discussed
here at least up to one loop. Of course the work of [104] on the eikonal limit of
string amplitudes gives reason to believe that the exponentiation will work for higher-
derivative interactions to all orders.

Finally, the particle deflection angle can be obtained from the eigenvalues δ(i) of the
eikonal phase matrix δ. Using a saddle-point approximation [104, 285, 322] one finds,
for small θ,

θ(i) = 1
ω

∂

∂b
δ(i) , (5.22)

where i runs over all eigenvalues of δ and b = |⃗b |. For the time delay, we will use
instead [323–325]

t(i) = ∂δ(i)

∂ω
. (5.23)

5.2 The relevant scattering amplitudes

In this section we compute the relevant amplitudes needed to extract the deflection
angle and time delay/advance induced by the various interactions in (5.2). At tree-
level we will present exact expressions; at one-loop we only need to compute the part
of the amplitude with a discontinuity in the s-channel5 and we will write the relevant
expressions after expanding them in the eikonal approximation (5.10) – this will be

5We recall that s = −|q⃗ |2 where q⃗ is the momentum exchange between the classical source and the
graviton.
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denoted in the following by the ≃ symbol. A direct extraction of the classical part
of the deflection angle and time delay can be performed using triple cuts, and in an
even more refined way using the holomorphic classical limit [25]. We chose instead
to compute the one-loop amplitudes through two-particle cuts, which also determine
the quantum part of the amplitude. The latter, despite not being used in the present
thesis, becomes essential when considering the exponentiation in the eikonal limit at
higher orders [320].

We will begin our discussion with the simple case of EH gravity, quoting from [292]
the relevant two-scalar two-graviton amplitude without helicity flip. We also compute
the amplitude with helicity flip, and show that it does not contribute in the eikonal
approximation, as correctly assumed in previous treatments. We will then move on
to compute the relevant tree- and one-loop amplitudes that are necessary in order to
compute the corrections induced by the R3, R4 and FFR terms in (5.2).

The two-particle cut diagrams relevant for the R3 and R4 cases are shown in Figure 5.1.
The corrections induced by the FFR interaction need a separate analysis and we show
the corresponding diagrams in Figures 5.2 and 5.3. For the case of the Rn interaction
both internal and external particles are gravitons, while in the case of FFR we either
have external gravitons and internal photons, or viceversa.

2ϕm

1ϕm

EH

q

lh1
1

lh2
2

3h3

4h4

Rn

l−h1
1

l−h2
2

+

2ϕm

1ϕm

Rn

q

lh1
1

lh2
2

3h3

4h4

EH

l−h1
1

l−h2
2

Figure 5.1: The two-particle cut diagrams for the Rn interaction in the s = −q⃗ 2-channel. In
our conventions external momenta are all outgoing and internal loop momenta flow from left
to right in the diagram.

A comment is in order here. Focusing on the cuts relevant for Rn depicted in Figure 5.1,
the case h3 = h4 corresponds to the massless particle flipping helicity upon interacting
with the scalar, whereas h3 = −h4 corresponds to the helicity-preserving process, since
in our conventions all external particles are outgoing. A simple way to take into account
particle statistics is to sum over all values of the internal helicities h1 and h2 and divide
the result by 2.6

6If the two particles are identical this introduces the correct Bose symmetry factor of 1/2; if they are
different this takes into account that the internal particles are not colour ordered, hence summing over
two possible internal helicity assignments would lead to double counting, compensated by the factor of
1/2.
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5.2.1 Four-point scalar/graviton scattering in EH gravity

The relevant tree-level amplitudes in the EH case are the two-scalar/two-graviton am-
plitudes in the two helicity configurations for the gravitons:7

A(0)
EH(1ϕ, 2ϕ, 3−−, 4++) = −

(
κ

2

)2 ⟨3|1|4]4
s2

[ i

t−m2 + i

u−m2

]
,

A(0)
EH(1ϕ, 2ϕ, 3++, 4++) = −

(
κ

2

)2
m4 [34]2
⟨34⟩2

[ i

t−m2 + i

u−m2

]
,

(5.24)

The computation of the four-point one-loop amplitude without helicity flip in the
eikonal approximation (5.10) was performed in [292], with the result

A(1)
EH(1ϕ, 2ϕ, 3−−, 4++) ≃ Nh

(
κ

2

)4 [
(2mω)4(I4(s, t;m) + I4(s, u;m)

)
− 15(m2ω)2I3(s;m)

+ (4mω)2sI3(s)− 29
2 (mω)2I2(s)

]
,

(5.25)

where

Nh :=
(⟨3|2|4]

2mω

)4
(5.26)

is a pure phase, with Nh → 1 in the eikonal approximation. We have also computed
the new amplitude with helicity flip in the same approximation, with the result

A(1)
EH(1ϕ, 2ϕ, 3++, 4++) ≃

(
κ

2

)4 [3 4]2
⟨3 4⟩2 (m2s)2

[
I4(s, t;m) + I4(s, u;m)

]
. (5.27)

5.2.2 Four-point scalar/graviton scattering in EH + R3

We now consider the amplitudes with addition of the R3 interaction in (5.2): the
helicity-preserving amplitude at tree-level is vanishing

A(0)
R3 (1ϕ, 2ϕ, 3−−, 4++) = 0 , (5.28)

while the helicity-flip amplitude is [293]

A(0)
R3 (1ϕ, 2ϕ, 3++, 4++) = i

(
κ

2

)2 (α′

4

)2
[34]4 (t−m2) (u−m2)

s
. (5.29)

7See for instance [293,181].
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At one loop, the result of [293] for the no-flip amplitude gives:

A(1)
R3 (1ϕ, 2ϕ, 3−−, 4++) ≃

(
κ

2

)4 (α′

4

)2
Nh

[
(ms)4(I4(s, t;m) + I4(s, u;m)

)
+ (m2s ω)2I3(s;m)

+ 3
2(msω)2I2(s)

]
,

(5.30)

where Nh is defined in (5.26). The one-loop amplitude with helicity flip requires a new
computation and the result in the eikonal approximation is

A(1)
R3 (1ϕ, 2ϕ, 3++, 4++) ≃

(
κ

2

)4 (α′

4

)2
[3 4]4

[
(2mω)4(I4(s, t;m) + I4(s, u;m)

)
− 13(m2ω)2I3(s;m) + 16(mω)2s I3(s) + 153

10 (mω)2I2(s)
]
.

(5.31)

5.2.3 Four-point scalar/graviton scattering in EH + R4

In this section we consider the addition of an R4 interaction to the EH action. Such in-
teraction affects the two-scalar two-graviton amplitude at one loop and thus contributes
to graviton deflection and time delay at order G2. In order to build this amplitude using
the unitarity-based method we first need to find the expression for the four-graviton
tree-level amplitudes in the R4 theory. We do it first starting from the Lagrangian
in (5.5) in order to make contact with the notation of [295], then we show how to
get directly to the result through the approach presented in Section 3 relying only on
little-group considerations and dimensional analysis.

Deriving the four-graviton amplitudes from (5.5) is straightforward – we simply have to
replace the four Riemann tensors in each term by their linearised form corresponding
to the four on-shell gravitons. For particle i the well-known expression in momentum
space is

R(i)µνρσ = 1
2 F (i)µν F (i)ρσ (5.32)

where
F (i)µν = piµ εiν − piν εiµ . (5.33)

Since we are interested in helicity amplitudes, we choose the field strengths F (i) to be
selfdual (negative helicity) or anti-selfdual (positive helicity), hence in spinor-helicity
formalism their form is

F (i)SD αα̇ββ̇ = −
√

2λiαλiβϵα̇β̇ and F (i)ASD αα̇ββ̇ = −
√

2 λ̃iα̇λ̃iβ̇ϵαβ . (5.34)
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The building blocks in (5.6) are bilinear in Riemann tensors, and take the form

C ≃
(
F (i)(A)SD · F (j)(A)SD

)2
, (5.35)

and
C̃ ≃

(
F (i)(A)SD · F (j)(A)SD

)(
F (i)(A)SD ·

1
i
∗ F (j)(A)SD

)
, (5.36)

where · denotes Lorentz contractions and ∗ denotes the usual Hodge dual which acts on
the (anti-)selfdual field strengths as ∗FSD = FSD and ∗FASD = −FASD. Furthermore,
given the form (5.34) these expressions are only non-vanishing if both particles i and j
have the same helicity. In summary, if both gravitons have negative helicity (SD field
strength) we have

C = i C̃ = 1
2 ⟨i j⟩

4 , (5.37)

while if both gravitons have positive helicity (ASD field strength) we have

C = −i C̃ = 1
2 [ij]4 . (5.38)

With these results one easily arrives at

A(0)
R4 (1++, 2++, 3++, 4++) = iβ+

(
κ

2

)2 (
[1 2]4[3 4]4 + [1 3]4[2 4]4 + [1 4]4[2 3]4

)
,

A(0)
R4 (1−−, 2−−, 3−−, 4−−) = iβ−

(
κ

2

)2 (
⟨1 2⟩4⟨3 4⟩4 + ⟨1 3⟩4⟨2 4⟩4 + ⟨1 4⟩4⟨2 3⟩4

)
,

A(0)
R4 (1++, 2++, 3−−, 4−−) = iβ̃

(
κ

2

)2
[1 2]4⟨3 4⟩4 ,

(5.39)

with

β+ = 4
(
β1 + i

2 β2 − β3
)
, (5.40)

β− = 4
(
β1 −

i

2 β2 − β3
)
, (5.41)

β̃ = 4
(
β1 + β3

)
. (5.42)

Note that if we do not allow the parity-odd coupling (β2 = 0), then the coefficient of
the all-plus and all-minus amplitudes are the same β+ = β− := β.

Let us now take the on-shell approach to finding the tree-level amplitudes. We begin
by noting that the coupling constant of the four-point amplitude has two powers of
κ ([κ] = −1) and it is proportional to the coupling constant of the R4 interaction β

([β] = −6). Furthermore, the nature of the new interaction implies that the four-
point amplitude is just a contact term. Mass dimension and scaling under little-group
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transformations fix the form of the possible amplitudes completely:

A(0)
R4 (1++, 2++, 3++, 4++) ∼ iβ

(
κ

2

)2
λ̃⊗4

1 λ̃⊗4
2 λ̃⊗4

3 λ̃⊗4
4 , (5.43)

A(0)
R4 (1++, 2++, 3++, 4−−) = 0 , (5.44)

A(0)
R4 (1++, 2++, 3−−, 4−−) ∼ iβ̃

(
κ

2

)2
λ̃ ⊗4

1 λ̃ ⊗4
2 λ ⊗4

3 λ ⊗4
4 . (5.45)

Here the λ̃ ⊗4
i and λ ⊗4

i schematically describe the dependence of the amplitude on
the spinors: each spinor appears four times and upon taking linear combinations of
appropriate pairwise contractions of the spinors gives the desired result. Notice that
here the form of the kinematics is entirely fixed by the mass-dimension of the operator
(which fixes the dimension of the couplings) combined with the constraints coming
from the mass-dimension of the four-point amplitude and the little-group properties
which constrain the minimum number of spinors for each external particles. The only
freedom we have left is how to contract the spinors among each other, which needs to
be done in such a way that Bose-symmetry is satisfied in the final result. For the MHV
amplitude (5.45) there is only one possible structure, and we define the corresponding
amplitude as

A(0)
R4 (1++, 2++, 3−−, 4−−) = iβ̃

(
κ

2

)2
[1 2]4⟨3 4⟩4 . (5.46)

On the other hand, we can now introduce the convenient variables

a := [1 2][3 4] , b := −[1 3][2 4] , c := [1 4][2 3] , (5.47)

in terms of which the all-plus amplitude can be written in such a way that permutation
invariance is manifest. By saturating the spinor indices of (5.43) with the Levi-Civita
tensor in all possible ways one gets four distinct combinations:

A(0)
R4 (1++, 2++, 3++, 4++) = iβ

(
κ

2

)2



a4 + b4 + c4

a2 b2 + a2 c2 + b2 c2

a3 b+ a b3 + a3 c+ a c3 + b3 c+ b c3

a2 b c+ a b2 c+ a b c2 .

(5.48)

However, using the Schouten identity, which in terms of these variables reads

a+ b+ c = 0 , (5.49)

one can show that there is actually only one independent combination, which we will
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take to be the first of (5.48). We will then define the all-plus amplitude to be

A(0)
R4 (1++, 2++, 3++, 4++) = iβ

(
κ

2

)2 (
[1 2]4[3 4]4 + [1 3]4[2 4]4 + [1 4]4[2 3]4

)
. (5.50)

In the presence of a parity-invariant theory, the amplitude corresponding to (5.50) with
all helicities flipped is simply obtained by replacing [ji]→ ⟨ij⟩, otherwise it should be
considered to have an independent normalisation.

Now that we have the tree-level building blocks we can compute the one-loop amplitudes
in the eikonal approximation, as done in previous sections. The relevant results are

A(1)
R4 (1ϕ, 2ϕ, 3−−, 4++) ≃ −Nh β̃

(
κ

2

)4
s2
[35

4 (mω)4 I3(s;m) + 93
8 (mω2)2 I2(s)

]
,

A(1)
R4 (1ϕ, 2ϕ, 3++, 4++) ≃ −β+

(
κ

2

)4
[3 4]4

[3
4 (mω)4 I3(s;m) + 55

24 (mω2)2 I2(s)
]
,

A(1)
R4 (1ϕ, 2ϕ, 3−−, 4−−) ≃ −β−

(
κ

2

)4
⟨34⟩4

[3
4 (mω)4 I3(s;m) + 55

24 (mω2)2 I2(s)
]
,

(5.51)

where Nh was introduced in (5.26).

5.2.4 Scattering with the F F R interaction

The last interaction we wish to consider is the FFR term in (5.2). From an on-shell
point of view this is the simplest non-minimal modification of the coupling of photons
to gravity. As we will show below this leads to new corrections to the bending and time
delay/advance of light and graviton propagation in the background of a very massive
scalar particle, which mimics a charged black hole when viewed from a distance.

This new interaction modifies the three-point two-photon/one-graviton amplitude:

A(0)
FFR(1+, 2+, 3++) = i

(
κ

2

)(
αγ

4

)
[1 3]2[2 3]2 , (5.52)

which we will now use to construct the relevant amplitudes at tree level and one loop
to compute deflection angles and time delay in the presence of this interaction. Note
that this amplitude is determined once again by its helicity structure and dimensional
analysis up to a normalisation which we fixed in order to match the Feynman rule (B.7)
following from our action (5.2).

Relevant amplitudes for graviton deflection

Using factorisation and Feynman diagrams we have computed the four-point ampli-
tudes relevant for graviton deflection from a massive charged source (such as a charged
black hole). The new FFR interaction involves two photons and one graviton, hence
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Figure 5.2: The two-particle cut diagrams in the s = −q⃗ 2-channel of the graviton deflection
angle in the presence of an FFR interaction. The internal lines are photons. The first diagram
is proportional to κ2 e2 and is only non-vanishing for h1 = h2 for the internal photons. The
second diagram is proportional to κ4, it is non-vanishing when h4 = −h3 and h2 = −h1 thus it
contributes solely to the helicity-preserving configuration. Also, it only produces quantum cor-
rections (bubble integrals) with coefficients that vanish in the case of four-dimensional external
kinematics.

one cannot generate a tree-level correction to the amplitude with two scalars and two
gravitons. The first corrections arise at one loop, from the cut diagrams in Figure 5.2.

For the cut diagram on the left-hand side of the figure, we need the tree-level scalar
QED amplitude with two photons and two massive scalars [23]

A(0)
SQED(1ϕ, 2ϕ, 3+, 4+) = Q2m2 [3 4]2

s

(
i

t−m2 + i

u−m2

)
, (5.53)

along with the modification to the two-graviton/two-photon amplitudes arising from
the FFR coupling for both helicity configurations of the graviton

A(0)
FFR(1+, 2+, 3−−, 4++) = −i

(
κ

2

)2 (αγ

4

)
[1 2]2 ⟨3|1|4]4

stu
, (5.54)

and

A(0)
FFR(1+, 2+, 3++, 4++) = i

(
κ

2

)2 (αγ

4

)( [1 3]2[3 4]2[4 2]2
s13

+ [2 3]2[3 4]2[4 1]2
s23

)
.

(5.55)
Both amplitudes can be computed with on-shell techniques. Specifically, (5.54) can be
constructed using BCFW recursion relations [13] by shifting appropriately the graviton
momenta, while it is easy to verify [155] that (5.55) can be derived via an (holomorphic)
all-line shift.

Note that the cut is non-vanishing only in the singlet configuration (internal photons
with the same helicities). This is because the four-point amplitude with two photons
and two gravitons induced by the FFR interaction is non-vanishing only for same-
helicity photons.

We now move to the cut diagram on the right-hand side of Figure 5.2. The two-
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photon/two-graviton EH amplitude only exists in the configuration where the gravitons
and the photons have opposite helicity (see for instance [285]),

A(0)
EH(1+, 2−, 3++, 4−−) = −i

(
κ

2

)2
[1 3]2⟨2 4⟩2 ⟨4|1|3]2

stu
, (5.56)

and thus it contributes only in the helicity-preserving process. Hence, in order to com-
pute the cut we will only need the following two-scalar/two-photon amplitude involving
an FFR interaction:

A(0)
FFR(1ϕ, 2ϕ, 3−, 4+) = −i

(
κ

2

)2 (αγ

4

)
⟨3|1|4]2 . (5.57)

Performing the calculation, it turns out that the right-hand side of Figure 5.2 does not
produce any non-analytic term with an s-channel discontinuity when external kinemat-
ics are considered to be strictly four-dimensional.

Following the above considerations, the one-loop amplitudes in the eikonal limit can be
computed entirely from the LHS of Figure 5.2, and are found to be

A(1)
FFR(1ϕ, 2ϕ, 3−−, 4++) ≃ −NhQ

2
(
κ

2

)2 (αγ

4

)
s

[
(ms)2 (I4(s, t;m) + I4(s, u;m))

+ (mω)2I3(s;m) + 3
4
s3

ω2 I3(s) + 3
2ω

2I2(s)
]
,

A(1)
FFR(1ϕ, 2ϕ, 3++, 4++) = Q2

(
κ

2

)2 (αγ

4

)
m2[3 4]4I3(s;m) ,

(5.58)

where again Nh is the phase defined in (5.26), and Q denotes the charge of the classical
source (the black hole).

Relevant amplitudes for photon deflection

It is interesting to study how this new FFR interaction affects the bending and time de-
lay/advance of light. In order to do so, we now review the known two-scalar/two-photon
amplitudes for minimally coupled photons [285], and present the new corresponding
amplitudes induced by the FFR interaction, both at tree and one-loop level.

In the following we consider processes where the internal legs are gravitons. In the EH
theory, for the two-photon two-scalar process, only the helicity-preserving amplitude is
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non vanishing8, both at tree level

A(0)
EH(1ϕ, 2ϕ, 3−, 4+) = i

(
κ

2

)2 ⟨3|1|4]2
s

, (5.59)

and at one loop [285],

A(1)
EH(1ϕ, 2ϕ, 3−, 4+) ≃ −Nγ

(
κ

2

)4
[
(2mω)4 (I4(s, t;m) + I4(s, u;m))− 15(m2ω)2I3(s;m)

+ 3s(2mω)2 I3(s)− 161
30 (mω)2 I2(s)

]
,

(5.60)

where the phase factor Nγ is

Nγ =
(⟨3|1|4]

2mω

)2
≃ −1 . (5.61)

We now discuss the corrections to the two-scalar two-photon amplitudes arising from
one insertion of the FFR interaction. These come from a single graviton exchange
between a minimally coupled scalar and the FFR three-point vertex. At tree level,
only the helicity-flip amplitude

A(0)
FFR(1ϕ, 2ϕ, 3+, 4+) = −i

(
κ

2

)2 (αγ

4

)
[3 4]2

[(
t−m2) (u−m2)

s
+m2

]
, (5.62)

contributes in the eikonal approximation, while the no-flip amplitude, already quoted
in (5.57), is a contact term that is subleading in the eikonal limit (it does not have a
pole in s = −|q⃗ |2).

Moving to one loop, the relevant two-particle cuts for the (++) configuration are shown
in Figure 5.3. We find that the amplitude with photons in the (++) helicity configu-
ration in the eikonal approximation is

A(1)
FFR(1ϕ, 2ϕ, 3+, 4+) ≃ −

(
κ

2

)4 (αγ

4

)
[3 4]2

[
(2mω)4 (I4(s, t;m) + I4(s, u;m))

− 15(m2ω)2I3(s;m) + 3 s (2mω)2 I3(s)

+ 3
10(mω)2 I2(s)

]
,

(5.63)
8Indeed, one can check that in four dimensions the Feynman rule for two same-helicity (on-shell)

photons and one off-shell graviton h is zero: V µν(1±, 2±, 3h) = 0, where V µν is given in (B.6).
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Figure 5.3: The two-particle cut diagrams in the s = −|q⃗ | 2-channel contributing to photon
deflection to first order in the FFR interaction. We only show the helicity-flip configuration
since the helicity-preserving cuts vanish. The cut diagram on the RHS of the figure only
contributes terms which are subleading in the eikonal limit.

while the amplitude with photons in the (+−) helicity configuration vanishes:

A(1)
FFR(1ϕ, 2ϕ, 3−, 4+) = 0 . (5.64)

5.3 Eikonal phase matrix, deflection angle and time delay

In the previous section we have derived the relevant tree and one-loop amplitudes which
we will now use to extract the deflection angle and time delay up to 2PM order (or
O(G2)) generated by the addition of the various couplings in (5.2). The key quantity
is the eikonal phase matrix δ, to be introduced below, of which we will compute the
leading, δ0, and subleading contributions, δ1. As an important consistency check we
will confirm that the leading-energy contribution of the one-loop amplitudes captures
the required exponentiation of the leading-order eikonal phase matrix δ0.

In the following we focus on the classical contribution to δ. We stress that for the
cases we consider, δ will be a 2× 2 matrix: the diagonal entries correspond to the two
amplitudes A(1ϕ, 2ϕ, 3h1 , 4h2) where the helicity of the massless particle is not flipped
(which in our all-outgoing convention corresponds to h1 = −h2), while the off-diagonal
ones correspond to the two helicity-flip processes (with h1 = h2).

As a final comment, we note that the combined effect of the interactions in (5.2) is
simply the sum of the contributions of each interaction treated independently; hence
we will study them separately, and begin our discussion by reviewing the computation
in EH gravity.
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5.3.1 Graviton deflection angle and time delay in EH gravity

Leading eikonal

The relevant tree-level amplitudes in EH gravity are given in (5.24). In the eikonal
approximation (5.10) they become

A(0)
EH(1ϕ, 2ϕ, 3−−, 4++) ≃ i

(
κ

2

)2 (2mω)2

q⃗ 2 ,

A(0)
EH(1ϕ, 2ϕ, 3++, 4++) ≃ i

(
κ

2

)2 m2

(2ω)2
q4

q⃗ 2 ≃ 0 ,
(5.65)

where the second amplitude is subleading compared to the first.

The amplitudes in impact parameter space are obtained from those in momentum space
using (5.15). To compute them, we will use repeatedly the result

f(p, d) :=
∫

ddq

(2π)d
eiq⃗·⃗b |q⃗ |p =

2pπ−d/2Γ
(

d+p
2

)
Γ
(
−p

2
) 1

b d+p
, (5.66)

where b := |⃗b |. We then have

Ã(0)
EH(1ϕ, 2ϕ, 3−−, 4++)

∣∣∣
ω

= i

(
κ

2

)2 mω

4πD−2
2

Γ
(
D

2 − 2
) 1
bD−4 ,

Ã(0)
EH(1ϕ, 2ϕ, 3++, 4++)

∣∣∣
ω

= 0 ,
(5.67)

therefore the leading eikonal phase matrix is

δ0,EH =
(
κ

2

)2
(mω)f(−2, D − 2)1l2 ≃ −

(
κ

2

)2 mω

2π

[ 1
4−D + log b

]
1l2 + · · · ,

(5.68)

where we omitted terms of O(D − 4) and finite terms which do not depend on b⃗.

Next we consider the one-loop amplitudes (5.25) and (5.27). In order to check expo-
nentiation (5.21) we only keep terms that are leading in energy in the eikonal approxi-
mation, i.e. O(ω3) in momentum space (or O(ω2) in impact parameter space). These
are

A(1)
EH(1ϕ, 2ϕ, 3−−, 4++)

∣∣∣
ω3

=
(
κ

2

)4
(2mω)4

[
I4(s, t;m) + I4(s, u;m)

]
,

A(1)
EH(1ϕ, 2ϕ, 3++, 4++)

∣∣∣
ω3

= 0 ,
(5.69)

where the sum of the box integrals I4(s, t;m)+I4(s, u;m) was evaluated inD dimensions
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in [321] and is given in (B.4). Transforming to impact parameter space, we have

Ã(1)
EH(1ϕ, 2ϕ, 3−−, 4++)

∣∣∣
ω2

= −
(
κ

2

)4
(mω)2 2D−7Γ(D − 4)

π
D
2 (D − 4)Γ(3−D/2)

1
b 2D−8 . (5.70)

As expected from (5.21), we find that

Ã(1)
EH(1ϕ, 2ϕ, 3−−, 4++)

∣∣∣
ω2

= 1
2
[
Ã(0)

EH(1ϕ, 2ϕ, 3−−, 4++)
∣∣∣
ω

]2
+O(D − 4) . (5.71)

Subleading eikonal

In momentum space, the subleading contribution to the eikonal phase matrix is ex-
tracted from the O(ω2) contribution to the amplitude in (5.25):9

A(1)
EH(1ϕ, 2ϕ, 3−−, 4++)

∣∣∣
ω2

=
(
κ

2

)4 (
− 15m4 ω2) I3(s;m) , (5.72)

where I3(s;m) is given in (B.3), and as usual s = −|q⃗ |2. In the following we focus
on the first term on the right-hand side of (B.3), since the log term only contributes
quantum corrections. Using

∫
dD−2q

(2π)D−2 e
iq⃗·⃗b |q⃗ |−1 = 1

2π
1
b

+O(D − 4) , (5.73)

we obtain the subleading part of the amplitude in impact parameter space:

Ã(1)
EH(1ϕ, 2ϕ, 3−−, 4++)

∣∣∣
ω

= i

(
κ

2

)4 15
256π

m2ω

b
, (5.74)

and finally, using (5.19), δ1:

δ1,EH =
(
κ

2

)4 15
256π

m2ω

b
1l2 . (5.75)

The eikonal phase matrix up to one loop in EH is then given by

δEH = δ0,EH + δ1,EH + · · · = −
(
κ

2

)2 mω

2π

[
1

4−D + log b −
(
κ

2

)2 15
256π

m

b

]
1l2 + · · ·

(5.76)

Note that this matrix is proportional to the identity, since the polarisation of the
gravitons scattered by the classical source is unchanged. The deflection angle can now
be extracted using (5.22). While the eigenvalues of δ are divergent in D = 4, the

9Note that such a contribution is absent in (5.27).
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corresponding deflection angle is finite:

θEH = − 1
2π

(
κ

2

)2 m

b

[
1 +

(
κ

2

)2 15
128

m

b

]
= −4Gm

b

(
1 +G

15π
16

m

b

)
. (5.77)

This result agrees with the derivation of [292], and as expected matches the photon
deflection angle [290,285], first computed by Einstein.10

Another quantity of interest which can be extracted from the eigenvalues of the eikonal
matrix is the time delay. Using (5.23) applied to the leading eikonal phase (5.68), we
get

tEH = −
(
κ

2

)2 m

2π

( 1
4−D + log b

)
. (5.78)

As is well known, in order to define the time delay in four dimensions we need to take
the difference of two time delays as measured by an observer at b and one at a much
larger distance b0 ≫ b [297]. Doing so the pole in (5.78) drops out, and neglecting
power-suppressed terms in b0 one gets

tEH =
(
κ

2

)2 m

2π log b0
b

= 4Gm log b0
b
, (5.79)

in agreement with [327]. Including now also the contribution from δ1, we arrive at the
result

tEH =
(
κ

2

)2 m

2π

[
log b0

b
+
(
κ

2

)2 15
128

m

b

]
= 4Gm

[
log b0

b
+G

15π
16

m

b

]
. (5.80)

In the next sections we compute the corrections ∆θX and ∆tX to the deflection angle
(5.77) and time delay (5.79) in EH due to the inclusion of an interaction X in (5.2).
The complete deflection angle and time delay will then be θEH + ∆θX and tEH + ∆tX .

5.3.2 Graviton deflection angle and time delay in EH + R3

Leading eikonal

The relevant new amplitudes are obtained by evaluating (5.28) and (5.29) in the eikonal
limit (5.10), with the result

A(0)
R3 (1ϕ, 2ϕ, 3−−, 4++) = 0 ,

A(0)
R3 (1ϕ, 2ϕ, 3++, 4++) ≃ i

(
κ

2

)2 (α′

4

)2
(2mω)2 q

4

q⃗ 2 ,
(5.81)

10Initially up to a factor of two [326].
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where from (5.13) we have [34]4 = q4. In order to transform to impact parameter space
we rewrite

b⃗ · q⃗ = bq̄ + b̄q , (5.82)

with b := (b1 + ib2)/2, and b̄ := (b1 − ib2)/2 (and we recall our previous definitions
q = q1 + iq2, q̄ = q1 − iq2), from which b b̄ = b2/4. Then in b⃗ -space we have

Ã(0)
R3 (1ϕ, 2ϕ, 3++, 4++)

∣∣∣
ω

= i

(
κ

2

)2 (α′

4

)2
(mω)

(
∂

∂ b̄

)4
f(−2, D − 2)

= i

(
κ

2

)2 (α′

4

)2 (mω)
b̄4 ξ f(−2, D − 2) ,

(5.83)

where

ξ :=
(D

2 − 2
)(D

2 − 1
)(D

2
)(D

2 + 1
)
. (5.84)

Hence the leading eikonal phase matrix δ0, including the first contribution from the R3

interaction, has the form
δ0 = δ0,EH + δ0,R3 , (5.85)

where δ0,EH is given in (5.68), and

δ0,R3 =
(
κ

2

)2 (α′

4

)2
(mω)

[
ξf(−2, D − 2)

]( 0 b̄−4

b−4 0

)
, (5.86)

where we have used (5.18).

Moving on to one loop, from (5.30) and (5.31) we obtain

A(1)
R3 (1ϕ, 2ϕ, 3−−, 4++)

∣∣∣
ω3

= 0 ,

A(1)
R3 (1ϕ, 2ϕ, 3++, 4++)

∣∣∣
ω3

=
(κ

2
)4(α′

4
)2

[34]4(2mω)4
[
I4(s, t) + I4(s, u)

]
.

(5.87)

Transforming to impact parameter space, and using (B.4), we arrive at

Ã(1)
R3 (1ϕ, 2ϕ, 3++, 4++)

∣∣∣
ω2

= −
(
κ

2

)4 (α′

4

)2 (mω)2

2π
1

D − 4

(
∂

∂ b̄

)4
f(D − 6, D − 2)

= −
(
κ

2

)4 (α′

4

)2 (mω)2

2π b̄4
ξ′

D − 4 f(D − 6, D − 2) ,

(5.88)

where
ξ′ := (D − 4)(D − 3)(D − 2)(D − 1) . (5.89)

The leading one-loop amplitude matrix in the eikonal approximation is then found to
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be

A(1)
ω2 = −

(
κ

2

)4
(mω)2 f(D − 6, D − 2)

2π(D − 4)


1

(
α′

4

)2 ξ′

b̄4(
α′

4

)2 ξ′

b4 1

 . (5.90)

One can then check the matrix relation

A(1)
ω2 = −1

2(δ0)2 +O(D − 4) , (5.91)

in agreement with (5.21). In writing (5.91) we have used that,

(δ0)2 =
(
κ

2

)4
(mω)2

[
f(−2, D − 2)

]2


1
(
α′

4

)2 2ξ
b̄4(

α′

4

)2 2ξ
b4 1

 , (5.92)

up to and including O
(
(α′/4)2).

Finally we compute the eigenvalues of the matrix δ0 in (5.85). Using

ξ f(−2, D − 2) = 3
2π +O(D − 4) , (5.93)

we can rewrite it as

δ0 =
(
κ

2

)2 mω

2π


− 1

2ϵ − log b
(
α′

4

)2 3
b̄4

(
α′

4

)2 3
b4 − 1

2ϵ − log b

 , (5.94)

whose eigenvalues are

δ
(1,2)
0 =

(
κ

2

)2 mω

2π
[
− 1

2ϵ − log b±
(
α′

4

)2 48
b4

]
. (5.95)

Following identical steps to those leading from (5.76) to (5.80), one obtains for the time
delay at O(G)

tEH+R3 = 4Gm
[

log b0
b
±
(
α′

4

)2 48
b4

]
, (5.96)

where G = κ2/(32π). For sufficiently small b the eigenvalue with the choice of negative
sign may become negative, leading to a time advance. We will come back to the time
delay computation and add O(G2) corrections in Section 5.3.2.

The time advance due to R3 terms was first discovered in [297], from which it was
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argued that the only way to avoid causality violations is to embed the R3 theory
into an appropriate ultraviolet completion – in other words a consistent ultraviolet
completion of gravitational theories with an R3 interaction requires the addition of an
infinite tower of massive particles with higher spins. Here we wish to briefly compare
our results to theirs.

The authors of [297] considered the interaction of a graviton with the background
produced by a coherent state of massless particles, and computed the eikonal phase in
order to obtain the Shapiro time delay. The coherent state simulates a large number
of successive interactions of the graviton with a single weakly-coupled particle, each
instance being considered as independent and contributing with a small amount to
the total phase shift. It is then observed that the presence of the R3 coupling, which
modifies the three-point graviton amplitude, leads to non-degenerate eigenvalues of the
eikonal phase matrix.

Concretely, it is interesting to compare the eigenvalues (5.95) of the leading eikonal
phase matrix (5.85). These eigenvalues turn out to be identical11 to the eigenvalues
(3.22) of [297], upon replacing mω → ω2. This is due to the fact that we consider a
different setup, with massless gravitons moving in the background produced by massive
scalar objects of mass m. In both cases the time advance is induced by the novel three-
graviton coupling generated by the R3 interaction.

Before moving on, it is important to stress that the possible time advance which one
would observe for small enough values of b in (5.96) would lead to so called asymp-
totic superluminality [328–330]. While it seems a priori reasonable that in order to
satisfy causality superluminal behaviour should be forbidden, this intuition needs to be
treated carefully when dealing with curved spacetimes, and indeed it might even lead
to contradictions with causality if applied indiscriminately [304, 331]. These subtleties
had already been noticed for low-energy effective theory for QED in curved space-
time, where group velocity of light is known to be superluminal for certain polarization
states [332]. The resolution of the apparent contradiction is requiring superluminal
behaviour, if present, to be non-resolvable (i.e. non measurable) within the limits of
validity of the EFT, which allows to avoid conflicts with causality [333–335].

Subleading eikonal

We now go back to the one-loop amplitudes (5.30) and (5.31) and extract the trian-
gle contributions which are the relevant terms contributing to the subleading eikonal

11Note that in (3.22) of [297] the 1/ϵ pole was not written explicitly. This pole does not affect either
the time delay (5.96) or the particle bending angle. Our 1/ϵ pole corresponds to the log L term in [297],
where L is an infrared cutoff.
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matrix:

A(1)
R3 (1ϕ, 2ϕ, 3−−, 4++)

∣∣∣
ω2

=
(
κ

2

)4 (α′

4

)2
|q⃗ |4m4ω2 I3(s;m) ,

A(1)
R3 (1ϕ, 2ϕ, 3++, 4++)

∣∣∣
ω2

= −13
(
κ

2

)4 (α′

4

)2
q4m4ω2 I3(s;m) .

(5.97)

We can now transform to impact parameter space, using

∫
dD−2q

(2π)D−2 e
iq⃗·⃗b |q⃗ |3 = 9

2π
1
b5 +O(D − 4) , (5.98)

(
∂

∂ b̄

)4 ∫ dD−2q

(2π)D−2 e
iq⃗·⃗b |q⃗ |−1 = 105

32π
1
b

1
b̄4 +O(D − 4) . (5.99)

The amplitudes in impact parameter space then become

Ã(1)
R3 (1ϕ, 2ϕ, 3−−, 4++)

∣∣∣
ω

= −i
(
κ

2

)4 (α′

4

)2 9
256π

m2ω

b5 ,

Ã(1)
R3 (1ϕ, 2ϕ, 3++, 4++)

∣∣∣
ω

= i

(
κ

2

)4 (α′

4

)2 1365
4096π

m2ω

b

1
b̄4 .

(5.100)

Using (5.18), we can extract the contribution of the R3 interaction to the subleading
eikonal matrix δ1:

δ1,R3 =
(
κ

2

)4 (α′

4

)2 1
256π

m2ω

b


− 9
b4

1365
16

1
b̄4

1365
16

1
b4 − 9

b4

 . (5.101)

Deflection angle and time delay

We can proceed similarly to the EH case. In the previous sections we showed that the
R3 interaction introduced off-diagonal terms, i.e. the helicity of the scattered graviton
can change.

The eigenvalues of the leading and subleading eikonal matrices (5.86) and (5.101) are

δ
(1,2)
0,R3 = ±

(
κ

2

)2 (α′

4

)2 24
π

mω

b4 , (5.102)

δ
(1,2)
1,R3 =

(
κ

2

)4 (α′

4

)2 1
256π

m2ω

b5 (−9± 1365) . (5.103)

Next we present the correction to the graviton deflection angle, both in terms of κ and
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G:

∆θ(1,2)
R3 = − 1

2π

(
κ

2

)2 (α′

4

)2 m

b

[
±192
b4 + 5

128(−9± 1365)
(
κ

2

)2 m

b5

]

= −4Gm
b

(
α′

4

)2 [
±192
b4 + 5π

16 (−9± 1365) Gm
b5

]
.

(5.104)

Finally, for the time delay, proceeding as in Section 5.3.1, and applying (5.23) to (5.102)
and (5.103), we arrive at

∆t(1,2)
R3 =

(
κ

2

)2 (α′

4

)2 m

2π

[
±48 1

b4 +
(
κ

2

)2 1
128

m

b5 (−9± 1365)
]

= 4Gm
(
α′

4

)2 [
±48 1

b4 + π

16 (−9± 1365) Gm
b5

]
.

(5.105)

5.3.3 Graviton deflection angle and time delay in EH + R4

In this section we consider the deflection of gravitons induced by eight-derivative cou-
plings in the Lagrangian, which we collectively denote as R4. We will only consider the
parity-even interactions in (5.5) in order to present more compact formulae, therefore
we set β2 = 0, and hence β+ = β− = β in (5.39) and (5.51). Furthermore, since
these interactions do not produce a three-graviton vertex, it is impossible to build any
tree-level two-scalar two-graviton amplitude involving R4. Thus there is no tree-level
(1PM) bending associated to the new term in the Lagrangian, and one has

δ0,R4 = 0 , (5.106)

and the leading contribution arises at 2PM order. Furthermore, since the R4 term only
produces a contact term four-graviton interaction, the resulting one-loop amplitude
does not contain any box integral. This is consistent with the absence of a tree-level
contribution in (5.106) which, in the eikonal approximation, is expected to exponenti-
ate, and would result at one loop in the appearance of box integrals. The same situation
occurs for the graviton deflection due to FFR couplings discussed in Section 5.3.4.

The relevant one-loop amplitudes are given in (5.51), and from the massive triangle
contributions we extract the following results in the eikonal approximation:

A(1)
R4 (1ϕ, 2ϕ, 3−−, 4++)

∣∣∣
ω4

= i β̃

(
κ

2

)4 35
128 m

3 ω4 |q⃗ |3 ,

A(1)
R4 (1ϕ, 2ϕ, 3++, 4++)

∣∣∣
ω4

= i β

(
κ

2

)4 3
128 m

3 ω4 q
4

|q⃗ |
,

(5.107)
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which then translate in impact parameter space into

Ã(1)
R4 (1ϕ, 2ϕ, 3−−, 4++)

∣∣∣
ω3

= i β̃

(
κ

2

)4 315
512

m2ω3

2πb5 ,

Ã(1)
R4 (1ϕ, 2ϕ, 3++, 4++)

∣∣∣
ω3

= i β

(
κ

2

)4 315
512

m2ω3

32πb
1
b̄4 .

(5.108)

The subleading eikonal phase matrix resulting from the previous amplitudes is given
by

δ1,R4 =
(
κ

2

)4 315
512

m2ω3

2π
1
b


β̃

1
b4

β

16
1
b̄4

β

16
1
b4 β̃

1
b4

 , (5.109)

whose eigenvalues are easily computed to be

δ
(1,2)
1,R4 =

(
β̃ ± β

)(κ
2

)4 315
512

m2ω3

2π
1
b5 . (5.110)

Using (5.22) we can then extract the deflection angle

∆θ(1,2)
R4 = −

(
β̃ ± β

)(κ
2

)4 1575
512

m2ω2

2π
1
b6 = −

(
β̃ ± β

)
(Gm)2 1575π

16
ω2

b6 . (5.111)

Similarly to the EH and the R3 interaction we can extract the time delay arising from
the R4 interaction in (5.2), which in this case arises entirely from the subleading eikonal
phase. Applying (5.23) to (5.110) we find

∆t(1,2)
R4 =

(
β̃ ± β

)(κ
2

)4 945
512

m2ω2

2π
1
b5 =

(
β̃ ± β

)
(Gm)2 945π

16
ω2

b5 . (5.112)

We can express (5.111) and (5.112) in terms of the couplings introduced in (5.5), using
(5.40), (5.41) and (5.42). In the parity-even theory (β2 = 0) we get β + β̃ = 8β1,
and β̃ − β = 8β3. In order to avoid a potential time-advance and associated causality
violation, we need to require

β1 > 0 and β3 > 0 . (5.113)

Interestingly this positivity constraint is the same as derived from causality considera-
tions in [336] and general S-matrix analyticity properties in [337].

5.3.4 Graviton deflection angle and time delay in EH + F F R

Next we focus our attention on graviton deflection in EH theory with the addition
of an FFR coupling. We remind the reader that the contributions computed here
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add to the already presented Einstein-Hilbert part ∆θEH and ∆tEH, see Section 5.3.1.
As discussed in Section 5.2.4, at tree level there is no new two-scalar two-graviton
amplitude generated by this interaction, hence

δ0,FFR = 0 . (5.114)

In order to compute the subleading eikonal phase matrix, we look at the massive triangle
contribution to the one-loop amplitudes in (5.58),

A(1)
FFR(1ϕ, 2ϕ, 3−−, 4++)

∣∣∣
ω2

= −iQ2
(
κ

2

)2 (αγ

4

)
mω2

32 |q⃗ | ,

A(1)
FFR(1ϕ, 2ϕ, 3++, 4++)

∣∣∣
ω2

= 0 .
(5.115)

Using ∫
dD−2q

(2π)D−2 e
iq⃗·⃗b |q⃗ | = − 1

2π
1
b3 +O(D − 4) , (5.116)

we obtain

Ã(1)
FFR(1ϕ, 2ϕ, 3−−, 4++)

∣∣∣
ω

= iQ2
(
κ

2

)2 (αγ

4

)
ω

256π
1
b3 ,

Ã(1)
FFR(1ϕ, 2ϕ, 3++, 4++)

∣∣∣
ω

= 0 ,

(5.117)

In this case the eikonal phase matrix is diagonal and the subleading contribution δ1,FFR

is immediately seen to be

δ1,FFR = Q2
(
κ

2

)2 (αγ

4

)
ω

256π
1
b3 1l2 . (5.118)

The new contribution to the graviton deflection angle due to the FFR interaction is
then obtained using (5.22):

∆θFFR = −Q2
(
κ

2

)2 (αγ

4

) 3
256π

1
b4 = −Q2G

(
αγ

4

) 3
32

1
b4 . (5.119)

Applying (5.23) to (5.118) we find the additional contribution to the time delay asso-
ciated to the bending of a graviton in the FFR theory:

∆tFFR = Q2
(
κ

2

)2 (αγ

4

) 1
256π

1
b3 = Q2G

(
αγ

4

) 1
32

1
b3 . (5.120)

The bending in this case is due to the electric charge Q of the black hole, not to its
mass, which does not appear in either (5.119) or (5.120). We conclude that in order to
avoid possible causality violation due to time advance, in the regime of validity of the
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EFT and thus up to corrections arising at higher energies, the coefficient of the FFR
interaction must obey the positivity constraint

αγ > 0 . (5.121)

5.3.5 Photon deflection angle and time delay in EH + F F R

In this section we consider the photon deflection angle and the time delay/advance
arising from the FFR interaction. Compared to the case of graviton bending considered
in the previous section, there is a non-vanishing tree-level contribution to the deflection,
thus we consider the leading and subleading eikonal cases separately.

Leading eikonal

The first contribution we consider arises from the EH tree-level amplitude (5.59), which
in the eikonal approximation becomes12

A(0)
EH(1ϕ, 2ϕ, 3−, 4+) ≃ i

(
κ

2

)2 (2mω)2

q⃗ 2 , (5.122)

or, upon transforming to impact parameter,

Ã(0)
EH(1ϕ, 2ϕ, 3−, 4+) ≃ i

(
κ

2

)2
mω f(−2, D − 2) . (5.123)

Note that (5.122) has the same form as the two-scalar two-graviton amplitude in the
eikonal approximation, first equation in (5.65), as a consequence of the equivalence
principle.

At tree-level the helicity-preserving FFR amplitude (5.57) is purely a contact term,
while the helicity-flip amplitude is given in (5.62). The leading contribution in the
eikonal limit is then

A(0)
FFR(1ϕ, 2ϕ, 3−, 4+) ≃ 0 ,

A(0)
FFR(1ϕ, 2ϕ, 3+, 4+) ≃ i

(
κ

2

)2 (αγ

4

)
(2mω)2 q2

|q⃗ | 2
,

(5.124)

where we used [3 4]2 = −q2. Transforming the non-vanishing helicity-flip amplitude to
impact parameter space we obtain

Ã(0)
FFR(1ϕ, 2ϕ, 3+, 4+) ≃ i

(
κ

2

)2 (αγ

4

)
mω

b̄2 ξ′′ f(−2, D − 2) , (5.125)

12We recall from Section 5.2.4 that A(0)
EH(1ϕ, 2ϕ, 3+, 4+) = A(0)

EH(1ϕ, 2ϕ, 3−, 4−) = 0.
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where
ξ′′ =

(
D

2 − 2
)(

D

2 − 1
)
. (5.126)

Defining
δγ

0 = δγ
0,EH + δγ

0,FFR , (5.127)

we can combine (5.123) and (5.125) into a single leading eikonal phase matrix13

δγ
0,FFR =

(
κ

2

)2
mω f(−2, D − 2)


1

(
αγ

4

)
ξ′′

b̄2

(
αγ

4

)
ξ′′

b2 1

 , (5.128)

which, upon expanding around D = 4, reduces to

δγ
0,FFR = −

(
κ

2

)2 mω

2π


1

4−D + log b −
(
αγ

4

) 1
2b̄2

−
(
αγ

4

) 1
2b2

1
4−D + log b

 . (5.129)

Next, in order to test the expected exponentiation property of the leading eikonal phase
matrix, we consider the terms of O(ω2) in the one-loop amplitudes. These are given in
impact parameter space by

Ã(1)
EH(1ϕ, 2ϕ, 3−, 4+)

∣∣∣
ω2

= −
(
κ

2

)4
(mω)2 f(D − 6, D − 2)

2π(D − 4) ,

Ã(1)
FFR(1ϕ, 2ϕ, 3+, 4+)

∣∣∣
ω2

= −
(
κ

2

)4 (αγ

4

) (mω)2

b̄2 (D − 3) f(D − 6, D − 2)
2π ,

(5.130)

which are obtained from (5.60) and (5.63). In matrix form,

Ã(1)
ω2 = −

(
κ

2

)2 (mω)2

2π f(D − 6, D − 2)


1

D − 4

(
αγ

4

)
D − 3
b̄2

(
αγ

4

)
D − 3
b2

1
D − 4

 . (5.131)

Expanding around D = 4 we find that Ã(1)
ω2 satisfies the matrix equation

Ã(1)
ω2 = −1

2(δ0)2 +O(D − 4) , (5.132)

as expected.
13There is no need here to separate the EH and the F F R contributions, since we consider only

photon bending coming from this source.

124



CHAPTER 5. HIGHER-DERIVATIVE OPERATORS AND GRAVITATIONAL
OBSERVABLES

Subleading eikonal

Next we consider the subleading eikonal phase. The only non-vanishing EH contribution
comes from the one-loop massive triangles in the helicity-preserving amplitude (5.60),
and reads

Ã(1)
EH(1ϕ, 2ϕ, 3−, 4+)

∣∣∣
ω

= i

(
κ

2

)4 15
256π

m2ω

b
. (5.133)

Just as in the case of the leading eikonal phase, the bending angle of photons in pure
EH is the same as the graviton bending (5.75) thanks to the equivalence principle.

The contributions coming from the FFR interaction are obtained from (5.64) and
(5.63), and in impact parameter space are

Ã(1)
FFR(1ϕ, 2ϕ, 3−, 4+)

∣∣∣
ω

= 0 ,

Ã(1)
FFR(1ϕ, 2ϕ, 3+, 4+)

∣∣∣
ω

= i

(
κ

2

)4 (αγ

4

) 45
1024π

m2ω

b

1
b̄2 .

(5.134)

Combining these results into a subleading eikonal phase matrix we get

δγ
1,FFR =

(
κ

2

)4 15
256π

m2ω

b


1

(
αγ

4

) 3
4 b̄2

(
αγ

4

) 3
4 b2 1

 . (5.135)

Deflection angle and time delay

Having computed the eikonal phase matrix at leading and subleading order, we can
now extract the light bending angle and time advance/delay. First we compute the
eigenvalues of the leading eikonal phase matrix (5.129):

δ
γ (1,2)
0,FFR = −

(
κ

2

)2 mω

2π

[( 1
4−D + log b

)
∓
(
αγ

4

) 2
b2

]
, (5.136)

which match qualitatively the result of photon deflection in a shockwave background
(see [301], and [299] for related work), while at subleading order we have

δ
γ (1,2)
0,FFR =

(
κ

2

)4 15
256π

m2ω

b

[
1±

(
αγ

4

) 3
b2

]
. (5.137)
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Using once again (5.22), we find the light bending angle up to O(G2):

∆θγ (1,2)
FFR = −

(
κ

2

)2 1
2π

m

b

{
1±

(
αγ

4

) 4
b2 +

(
κ

2

)2 15
128

m

b

[
1±

(
αγ

4

) 9
b2

]}

= −4Gm
b

{
1±

(
αγ

4

) 4
b2 + 15π

16
Gm

b

[
1±

(
αγ

4

) 9
b2

]}
.

(5.138)

Finally, applying (5.23) to (5.136) and (5.137) we arrive at our result for the time delay:

∆tγ (1,2)
FFR =

(
κ

2

)2 m

2π

{
log b0

b
±
(
αγ

4

) 2
b2 +

(
κ

2

)2 15
128

m

b

[
1±

(
αγ

4

) 3
b2

]}

= 4Gm
{

log b0
b
±
(
αγ

4

) 2
b2 + 15π

16
Gm

b

[
1±

(
αγ

4

) 3
b2

]}
.

(5.139)

We note that the O(Gαγ) part of our result (5.138) is in precise agreement with [309]
while it disagrees with [308].14 Note that (5.139) generically leads to a potential time
advance and causality violation independent of the sign of the coupling αγ . This paral-
lels the situation for the R3 interaction which requires an appropriate UV completion
to restore causality [297].

14The result of [308] for ∆θγ
FFR was already identified as incorrect in [309] due to an inappropriate

definition of the deflection angle.
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Gravitational radiation from R3

operators

In the previous section we discussed modifications to the bending angle and time delay
experienced by a massless particle when deflected off a heavy spinless object, in a
theory where additional higher-derivative couplings are present beyond the Einstein-
Hilbert action. Here we consider once again these couplings, restricting however to
the three-derivative ones, and analyse their effects on the dissipative aspects of the
gravitational interaction, namely gravitational radiation from a binary system. This
can be done by considering appropriate five-point amplitudes with four massive scalars
and one radiated graviton as external states. An effective field theory framework for
gravity was advocated in [246], and is ideally suited to study systematically higher-
derivative corrections to the EH theory in this context. In [295], this approach was
followed to compute the corrections to the gravitational potential between compact
objects and their effective mass and current quadrupoles due to perturbations quartic
in the Riemann tensor, and the corresponding modifications to the waveforms were
then analysed in [106].

Schematically, the strategy consists of considering the binary system from far away as
a single object with a small extension in space which emits gravitational waves by the
oscillations of its multipoles. The two fundamental ingredients in this framework are
the modifications to the potential, which are needed to compute the time-dependence of
the multipoles, and the modification to the multipole expansion itself which in our case
amounts to the modifications of the quadrupole term. Modifications to the gravitational
potential due to cubic interactions in the Riemann tensor were computed in [293,294],
so we will simply quote these results. The quadrupole modifications instead were
computed in [4] and we will retrace the steps of the computation in this chapter. The
study of radiation is performed in the presence of both cubic modifications to the EH
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action and tidal effects. Interestingly, there is an overlap between these two types
of corrections which are linked by appropriate field redefinitions [304, 338], while still
having possibly very different physical origin – for instance, I1 and G3 appear in the
low-effective action of bosonic strings, or can be induced by integrating out massive
matter [339,340].

In the presence of scalars and restricting our focus to parity-even interactions, we
consider the two independent cubic terms I1 and I2 (defined in (5.4)) or equivalently
the more natural combination G3 := I1 − 2 I2, which, as is well known, is topological in
six dimensions [341] and has vanishing graviton amplitudes. In [297], it was argued from
studying the scattering of polarised gravitons that I1 potentially leads to superluminal
effects/causality violation in the propagation of gravitons for impact parameter b ≲ α

1
4 .

Here α ∼ Λ−4 is the coupling constant of the I1 interaction, and Λ is the cutoff of the
theory. In that paper, α was chosen to be much larger than G2 ∼M−4

Planck. This allows
to treat the gravitational scattering in a semiclassical setup, where predictions can be
trusted up to MPlanck(> Λ). This question was reinvestigated in an EFT framework in
[3], where it was found that the I1 interaction leads to a time advance in the propagation
of gravitons (but not photons and scalars) when b ≲ α

1
4 . Finally, G3 does not lead to

any time advance/delay for massless particles [3], while still correcting the gravitational
potential [293,294]. An identical conclusion for the propagation of massless particles in
the background of a black hole was reached in [331], both for the I1 andG3 interactions1.

In this respect, an important observation was made in [333], namely that such superlu-
minality effects (and those observed earlier on in [309,298,299]) are unresolvable within
the regime of validity of the EFT, and do not lead to violations of causality. In our
setup such violations would indeed occur at b ≲ Λ−1, which is at the boundary of the
regime of validity of our EFT, while the processes we are interested in only probe the
regime where the EFT is valid. Above Λ, the only known way to restore causality is to
introduce an infinite tower of massive particles [297]. In conclusion, these observations
do not rule out cubic interactions for our EFT computation, although they may impose
constraints on the cutoff – it needs to be such that possible effects due to the massive
modes, required to ensure causality, cannot be resolved with current-day experiments.
We also note that, assuming that these interactions can contribute to any classical
gravitational scattering (Λ < MPlanck), then we have α > G2, independently of precise
estimates of the cutoff Λ.

In the following, our results for the quadrupole correction, extracted from the appro-
priate five-point amplitude, are exact to leading order in the perturbations and in the
post-Minkowskian expansion. Once we eventually take the PN expansion, we find ex-
pressions which are complete at 5PN order for the G3 and tidal interaction corrections,

1Note that for G3 the coefficient 2d9 + d10 in Eq. (2.24) of [331] vanishes.
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and at 6PN order for the I1 corrections. We notice that as expected we find that
the corrections due to G3 have the same form as those generated by a particular type
of tidal interaction (although we consider the corresponding coefficients in the EFT
action as independent). For the PN-expanded result of the tidal corrections to the
mass quadrupole we find agreement with [342–344]. The remaining tasks consist in
using the corrected quadrupole moment to compute the modifications compared to EH
gravity to the power emitted by the radiated gravitational waves, and the correspond-
ing corrections to the waveforms in the Stationary Phase Approximation (SPA)2. Here
we follow closely [106], and also present a comparison with their result obtained with
perturbations that are quartic in the Riemann tensor.

6.1 The EFT action and more about cubic interactions

In this section we consider an EFT describing EH gravity with higher-derivative cou-
plings of mass-dimension six interacting with two massive scalars, which as usual model
a spin-less compact object, and we also include the leading tidal interactions which de-
scribe finite size effects of the heavy objects. Specifically, the EFT action we consider
here is

S = Seff + Sϕ1ϕ2 + Stidal , (6.1)

where

Seff =
∫

d4x
√
−g

[
− 2
κ2R−

2
κ2L6 − · · ·

]
(6.2)

is the effective action for gravity, with L6 given in (5.3). The dots in (6.2) stand for
higher-derivative interactions that we will not consider here. The two scalars, with
masses m1 and m2, couple to gravity with an action

Sϕ1ϕ2 =
∫

d4x
√
−g 1

2
∑

i=1,2

(
∂µϕi∂

µϕi −m2
iϕ

2
i

)
, (6.3)

and in addition we include higher-derivative couplings describing tidal effects of ex-
tended heavy objects,

Stidal =
∫

d4x
√
−g 1

4RµανβR
ρασβ

∑
i=1,2

(
λi ϕ

2
i δ

µ
ρ δ

ν
σ + ηi

m4
i

∇µ∇νϕi∇ρ∇σϕi

)
+ · · · . (6.4)

These tidal interactions were studied in [347], and the dots stand for the (Hilbert) series
of higher-dimensional operators classified in [338, 348], which will not play any role in
this work. We now briefly discuss some properties of the interactions we consider.

Recall that considering I1 and G3, in pure gravity only one of them is independent
2See e.g. [345,346] for details of this approximation.
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in four dimensions [349, 350], while in the presence of matter coupled to gravity they
become independent. It is well known that, unlike I1, the G3 interaction has a vanishing
three-graviton amplitude and does not contribute to graviton scattering up to four
particles [341, 311] – and in fact to any number of gravitons. This can be explained
by the fact that G3 is topological in six dimensions [341], and therefore computing
tree-level four-dimensional graviton amplitudes from dimensionally reducing the six-
dimensional ones automatically gives zero. Combining this observation with unitarity
techniques leads to

MEH+G3(h1, . . . , hn)
∣∣
d<6 =MEH(h1, . . . , hn)

∣∣
d<6 , (6.5)

for any n. Hence the G3 interaction does not affect the perturbative dynamics in
theories of pure gravity. However, if we consider a theory of gravity with matter, e.g.
massive scalars mimicking black holes or neutron stars, the presence of a G3 coupling
alters their dynamics. In particular the four-point amplitude with two gravitons and
two scalars becomes [293,294]

M(0)
EH+G3

(ϕ1, ϕ2, h
++
3 , h++

4 ) =M(0)
EH(ϕ1, ϕ2, h

++
3 , h++

4 ) + i
α2
32

(
κ

2

)2
[3 4]4 (2m2 + s) .

(6.6)
The non-trivial contribution to the scattering amplitude of two massive scalars and
two gravitons from the G3 interactions modifies the classical potential in the two-body
system, as shown in [293,294]. As we will show below, both G3 and I1 produce correc-
tions to the quadrupole moment already at tree level. Specifically we find that the G3

quadrupole correction is dominant in the post-Newtonian (PN) expansion, which par-
allels the results found for the corresponding corrections to the gravitational potential
quoted earlier in (6.7).

At this point it is once again interesting to take a different approach to the problem and
look at dimension-six operators in a purely gravitational context from the on-shell point
of view. Classifying all the three-point interactions which involve only gravitons at the
given mass-dimension one only finds a single structure proportional to [1 2]2[2 3]2[3 1]2

and its parity conjugate3, thus one would expect to only find a single operator in the
Lagrangian formalism which contributes to the purely gravitational processes. On the
other hand, it is easy to show that the contact term proportional to [3 4]4 (2m2 + s)
in the amplitude (6.6) is (up to a numerical coefficient) the amplitude arising from a
particular tidal interaction of the form RµνρσRµνρσm

2ϕ2 −∇αRµνρσ∇αRµνρσϕ
2. This

suggests that there should exist a link between the two, and indeed one can construct
a four-dimensional field redefinition mapping the G3 interaction into a tidal effect, as

3In a parity-even theory as the one we are considering this obviously still counts as a single interac-
tion.
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already noticed in [304,338]4. The explicit construction of such a field redefinition can
be found for example in [4]. Despite the fact that the G3 interaction can be thought of
as a tidal effect, we keep it separate from (6.4) and highlight the analogies along the
way.

For the sake of the computation of the power radiated by the gravitational waves
performed in later sections we need the correction induced by the cubic interactions to
the gravitational potential. The full 2PM computation of this quantity was performed
in [293,294], and expanding their result one obtains

V (r⃗, |p⃗ |) = −Gm1m2
r

+ 3
8
α1G

2

r6
(m1 +m2)3

m1m2
p⃗ 2

− 3
4
α2G

2

r6 m1m2(m1 +m2)
(

1 − m2
1 +m2

2
2m2

1m
2
2
p⃗ 2
)

+ · · · ,
(6.7)

where the dots indicate higher PN corrections which we do not consider here. Note that
the terms proportional to α1 and α2 are the result of a one-loop computation. In the
PN expansion, the term proportional to α1 (from the I1 interaction) is suppressed by a
factor of p⃗ 2/m2

1,2 compared to the dominant correction proportional to α2 (from G3).
Similarly, for the tidal interactions in (6.4) we expand the conservative Hamiltonian
computed in [353,354,347] up to O(p⃗ 2), with the result

Vtidal(r⃗, p⃗) = −3
2
G2

r6
m2

2
m1

[
8
(

1− m2
1 +m2

2
2m2

1m
2
2
p⃗ 2
)
λ1 +

(
1 + 2m2

1 + 2m2
2 + 5m1m2

m2
1m

2
2

p⃗ 2
)
η1

]
+ 1↔ 2 + · · · ,

(6.8)

where the dots indicate higher PN terms.

6.2 Quadrupole moments in EFTs of gravity

In the PN framework, the conservative and dissipative dynamics of two objects of mass
m1 and m2, coupled to the gravity effective action (6.2) is described by the following
point-particle effective action [355,295]:

Spp =
∫
dt

[1
2µ

˙⃗r 2 − V (r⃗, p⃗) + 1
2Q

ij(r⃗, p⃗)R0i0j + · · ·
]
, (6.9)

where

µ := m1m2
m1 +m2

(6.10)

4We also observe that black holes in four dimensions have non-vanishing Love numbers when higher-
derivative interactions are considered [351,352].
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is the reduced mass, and r⃗(t) is the relative position of the two objects. V
(
r⃗, p⃗
)

denotes
the potential, whose explicit expression to first order in α1, α2 [293,294], and λ1,2, η1,2

[353, 354, 347] is obtained by summing (6.7) and (6.8), and Qij
(
r⃗, p⃗
)

is the quadrupole
moment, to be computed below. The dots represent higher-order terms that will be
irrelevant in our analysis. This action can be trusted in the inspiral phase before the
objects reach relativistic velocities.

We now present the computation of the five-point amplitude ϕ1ϕ2 → ϕ1ϕ2 + h(k)
with four scalars and one radiated soft graviton h(k). Its momentum kµ is on shell,
while the momentum of the graviton exchanged between the two objects is purely
spacelike (corresponding to an instantaneous interaction), and in our setup is given
by qµ = −pµ

1 − p
µ
2 = (0, q⃗). Furthermore, the energy of the radiated graviton is such

that k0 ≪ |q⃗ |, so that kµ can be ignored for practical purposes, and the radiated
graviton enters the amplitude only through its associated Riemann curvature tensor
Rαβµν . Finally, because we are only interested in classical contributions (i.e. O(ℏ0)),
we keep only the leading terms in q⃗ 2.

In the following we first compute fully relativistic scattering amplitudes and then per-
form the PN expansion to extract the correction to the quadrupole term in the effec-
tive action (6.9). In the centre-of-mass frame, the momenta of the particles can be
parametrised as

pµ
1 = −

(
E1, p⃗−

q⃗

2
)
, pµ

4 = −
(
E4, −p⃗+ q⃗

2
)
,

pµ
2 =

(
E2, p⃗+ q⃗

2
)
, pµ

3 =
(
E3, −p⃗−

q⃗

2
)
,

(6.11)

with p2
1 = p2

2 = m2
1, p2

3 = p2
4 = m2

2. Furthermore, we have

E1 = E2 =
√
m2

1 + p⃗ 2 + q⃗ 2/4 , E3 = E4 =
√
m2

2 + p⃗ 2 + q⃗ 2/4 , (6.12)

where p⃗ · q⃗ = 0 because of momentum conservation. In our all-outgoing convention for
the external lines, the four-momenta p1 and p4 correspond to the incoming particles,
and hence their energies are negative.

6.2.1 The amplitude with cubic interactions

Our next task is to compute the five-point amplitude AO shown in Figure 6.1, with
O = I1, I2 (which we can then combine to obtain AG3). We first obtain its relativistic
expression, factoring out a single Riemann tensor associated with the radiated gravi-
ton, and then split the Lorentz indices into time and spatial components and isolate
the terms contracted into R0i0j . Upon Fourier transforming to position space, these
components will allow to directly read off Qij by matching to the Hamiltonian density
associated to the point particle effective action (6.9). The classical relativistic results
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AO ≡

ϕ1(p1) ϕ1(p2)

µνρσ

ϕ2(p4) ϕ2(p3)

O ×Rµνρσ(k)
∣∣∣
k→0

q

Figure 6.1: The single diagram contributing to the radiation process with an insertion of the
operators O = I1, I2. All momenta are treated as outgoing and the radiated graviton is taken
to be soft.

are, for I1:

AI1 = i (α1 + 2α2)
(
κ

2

)2 qµqρ

q2

[
m2

1 p
ν
3p

σ
3 +m2

2 p
ν
1p

σ
1 − 2(p1 · p3)pν

1p
σ
3

]
Rµνρσ , (6.13)

while for I2:

AI2 = i

2α2

(
κ

2

)2 qµqρ

q2
(
m2

1 p
ν
3p

σ
3 + m2

2 p
ν
1p

σ
1
)
Rµνρσ . (6.14)

Note that the result for the G3 interaction introduced in (5.3) can be obtained as

AG3 := (AI1 +AI2)
∣∣
α1=0 . (6.15)

The terms in the amplitude contributing to the quadrupole radiation are then

AI1(q) = −i(α1 + 2α2)
(
κ

2

)2 (
m2

1E
2
4 +m2

2E
2
1 − 2E2

1E
2
4 − 2p⃗ 2E1E4

) qiqj

q⃗ 2 R0i0j + · · · ,
(6.16)

and
AI2(q) = −iα2

2

(
κ

2

)2 (
m2

1E
2
4 +m2

2E
2
1

) qiqj

q⃗ 2 R0i0j + · · · , (6.17)

where we have used that E3 = E4 in order to write the result as a function of the energies
and momenta of the incoming particles p1 and p4. The dots stand for additional terms
proportional to R0ijk and Rijkl, which can also be extracted from our result.

6.2.2 The amplitude with tidal effects

A calculation similar to the one outlined in the previous section leads to the fully
relativistic result

Atidal(q) = i

(
κ

2

)2 qµqρ

q2

{
8λ1 p

ν
4 p

σ
4 + 8λ2 p

ν
1 p

σ
1

+ 1
2
[
(m2

1 +m2
2 − t)2 − 2m2

1m
2
2

] ( η2
m4

2
pν

4 p
σ
4 + η1

m4
1
pν

1 p
σ
1

)}
Rµνρσ ,

(6.18)

133



CHAPTER 6. GRAVITATIONAL RADIATION FROM R3 OPERATORS

AO
µνρσ ≡

ϕ1(p1) ϕ1(p2)

µνρσ

ϕ2(p4) ϕ2(p3)
O

q +

ϕ1(p1) ϕ1(p2)

µνρσ

ϕ2(p4) ϕ2(p3)

O

q

Figure 6.2: The two diagrams contributing to the gravitational radiation, where O denotes
any of the two tidal interactions in (6.4). An overall Riemann tensor of the radiated graviton
is factored out, so that AO = AO

µνρσR
µνρσ(k → 0).

which, upon expanding in the spatial and time components, reads

Atidal(q) = −i
(
κ

2

)2 {
8λ1E

2
4 + 8λ2E

2
1

+
[
2(E1E4 + p⃗ 2)2 −m2

1m
2
2

](
η2
E2

4
m4

2
+ η1

E2
1

m4
1

)}
qiqj

q⃗ 2 R0i0j + · · · ,
(6.19)

where the ellipses stand once again for terms proportional to R0ijk and Rijkl which we
will not need in the remainder of this section.

6.2.3 The quadrupole corrections

Next we extract the corrections to the mass quadrupole moment Qij from (6.16), (6.17)
and (6.19). To do so we simply match the appropriately normalised and Fourier-
transformed AO, as defined in (6.21) below, to the quadrupole contribution in (6.9)5.
To begin with, we perform the relevant Fourier transforms using

∫
dt

∫
d3q

(2π)3
qiqj

|q⃗ | 2
eiq⃗·r⃗ R

0i0j = − 3
4π

∫
dt

1
r5

(
xixj −

1
3r

2δij

)
R

0i0j
. (6.20)

Taking into account the non-relativistic normalisation factor of −i/4E1E4, we arrive
at the quadrupole-like terms

Ãquad
O (r) : = −i A

quad
O (r)

4E1E4

= 1
2 CO(Ei,mi, p⃗

2)
∫
dt

1
r5

(
xixj −

1
3r

2δij

)
R

0i0j
,

(6.21)

5For further details on the procedure see for example [355,295].
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where CO are coefficients depending on the energies and masses as well as p⃗ 2 of the
heavy particles, with

CI1(Ei,mi, p⃗
2) = 3

8π (α1 + 2α2)
(
κ

2

)2 (
m2

1
E4
E1

+m2
2
E1
E4
− 2E1E4 − 2p⃗ 2

)
,

CI2(Ei,mi, p⃗
2) = 3

16πα2

(
κ

2

)2 (
m2

1
E4
E1

+m2
2
E1
E4

)
,

Ctidal(Ei,mi, p⃗
2) = 3

8π

(
κ

2

)2 {
8λ1

E4
E1

+ 8λ2
E1
E4

+[
2
(
E1E4 + p⃗ 2)2 −m2

1m
2
2

] (
η1

E1
E4m4

1
+ η2

E4
E1m4

2

)}
.

(6.22)

Comparing (6.21) with the Hamiltonian density obtained from the action (6.9), we
conclude that the modifications to the quadrupole moment arising from the cubic and
tidal couplings are given by

Qij
O = CO

µ r5Q
ij
N , (6.23)

where we have introduced the leading-order quadrupole moment in the EH theory for
a binary system with masses m1 and m2,

Qij
N = µ

(
xixj − 1

3r
2δij

)
, (6.24)

with µ being the reduced mass defined in (6.10). Combining the various correction
terms, we arrive at

Qij = Qij
N +Qij

I1
+Qij

I2
+Qij

tidal =
(

1 + CI1

µ r5 + CI2

µ r5 + Ctidal
µ r5

)
Qij

N . (6.25)

It is interesting to write the three coefficients CI1 , CI2 and Ctidal in the PN expansion.
Keeping terms up to first order in p⃗ 2 one has

CPN
I1 = −3G

(
α1 + 2α2

)
M
p⃗ 2

µ
,

CPN
I2 = 3Gα2m1m2 ,

CPN
tidal = 3G

[
8λ1 + η1 + 1

2M
(
8(m1 −m2)λ1 + (3m1 + 5m2)η1

) p⃗ 2

µ2

]
m2
m1

+ 1↔ 2 ,

(6.26)

where

M := m1 +m2 , (6.27)
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and, as usual, κ2 := 32πG. For convenience we also quote the contribution due to the
G3 interaction alone – this is given by

Qij
G3

=
(
Qij

I1
+Qij

I2

)∣∣∣∣
α1=0

= 3Gα2
M

r5

(
1− 2p⃗ 2

µ2

)
Qij

N . (6.28)

6.3 Power radiated by the gravitational waves

We can now compute the power radiated by the gravitational waves in the approxima-
tion of circular orbits. In the EH theory, the radius of the circular orbit is given by the
well-known formula

rN =
(
GM

Ω2

) 1
3
. (6.29)

In the presence of the cubic and tidal interactions, this quantity gets modified as

r◦ = rN + δr ,

δr = Ω3
[
−α1

2 v +
(
α2
2 + 8λ12

)(3
v

+ v(2ν − 1)
)

+ η12

(3
v

+ v(ν + 2)
)]

+ O(g2
i ) ,

(6.30)

where gi stands for any of the coupling constants of the cubic and tidal perturbations.
We also introduced the symmetric mass ratio ν defined as

ν := m1m2
M2 , (6.31)

and the parameter

v := rN Ω = (GMΩ)
1
3 , (6.32)

as well as the following combinations of the couplings

λ12 := µ

(
λ1
m3

1
+ λ2
m3

2

)
, η12 := µ

(
η1
m3

1
+ η2
m3

2

)
. (6.33)

Finally, Ω denotes the angular velocity on the circular orbit, and the value δr has been
computed using (6.30) and (B.30), where the potentials entering (B.30) are given in
(6.7) and (6.8). The total energy per unit mass M of the system, to first order in the
couplings, is then given by

E(v) = −1
2ν v

2 + 9
4

v12

(GM)4 ν (α2 + 16λ12 + 2η12) + 11
8

v14

(GM)4

[
− να1

+ ν(2ν − 1) (α2 + 16λ12) + 4ν(ν + 2)η12
]
.

(6.34)
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The above formula is complete at leading order in all of the perturbations (that is
O(v12) and at O(v14) for the α1 correction only. The remaining O(v14) terms have
been obtained from a small-velocity expansion of our 2PM result, and in order to get a
complete result at that PN order one would need to include also the 3PM corrections
to the potential generated by cubic and tidal interactions6. We have also compared the
contribution to the energy from the η1,2 corrections to [344], finding agreement (after
mapping their coefficients µ(2)

A to ours)7.

Next, we compute the leading-order gravitational-wave flux using the quadrupole for-
mula

F(v) = G

5 ⟨
...
Q

ij ...
Q

ij⟩ , (6.35)

using the result of our computation for Qij in (6.25). To first order in the couplings α1

and α2 the flux becomes

F(v) = G

5 ⟨
...
Q

ij
N

...
Q

ij
N ⟩
[
1 + 2

µr5

(
CPN

I1 + CPN
I2 + CPN

tidal

)]
+ O(α2

i ) , (6.36)

where the PN-expanded coefficients CPN
O are explicitly given in (6.26).

Two comments are in order here. First, we note that the prefactor ⟨
...
Q

ij
N

...
Q

ij
N ⟩ is eval-

uated on the radius r◦ of the circular orbit in the presence of the cubic and tidal
interactions, as given in (6.30). Furthermore, the quantity p⃗ 2 := p2

r + p2
ϕ/r

2 can be
obtained using the fact that pr = 0 on the circular orbit while pϕ := l is a constant,
which can be determined from Hamilton’s equations, with the result

l := µr2
◦Ω

1 + 2µU(r◦) , (6.37)

where r◦ is given in (6.30) and U(r) is the part of the potential proportional to p⃗ 2,
following the conventions of Appendix B.4. Using these relations, p⃗ 2 is re-expressed as
a function of Ω, the masses, and the couplings.

Factoring out the standard power radiated by the gravitational wave in EH,

FN (v) := G

5 ⟨
...
Q

ij
N

...
Q

ij
N ⟩
∣∣∣
r=rN

= 32
5 Gµ

2r4
N Ω6 = 32

5
ν2v10

G
, (6.38)

6Similar considerations apply to our results for the flux in (6.39).
7For further details on mapping field-theory to point-particle actions see e.g. [27, 356]
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we can rewrite the expression for the flux as

F(v) = 32
5
ν2v10

G

[
1 + v10

(GM)4
(
12α2 + 144λ12 + 48λ′

12 + 18η12 + 6η′
12
)

+ v12

(GM)4

[
− 8α1 + 2(2ν − 7)α2 + 8(8ν − 7)λ12 + 24λ′

12 + (8ν + 31) η12 + 9 η′
12

]]
,

(6.39)

with λ12 and η12 defined in (6.33) and

λ′
12 := 1

M

(
λ1
m1

+ λ2
m2

)
, η′

12 := 1
M

(
η1
m1

+ η2
m2

)
. (6.40)

Similarly to (6.34), the first line and the α1 term in the second line of (6.39) are
complete. We also note that the η1,2 part of the tidal flux is in agreement with [344].

6.4 Waveforms in EFT of gravity

Following [106] we can also compute the correction induced by the cubic and tidal
interactions to the gravitational phase in the saddle point approximation. In this
approach, the waveform in the frequency domain is written as8

h̃SPA(f) ∼ exp
[
i
(
ψf (tf )− π

4
)]

, (6.41)

where

ψ(t) := 2πft− ϕ(t) . (6.42)

Here ϕ(t) is the orbital phase, while ϕ̇(t) = πF (t) defines the instantaneous frequency
F (t) of the gravitational wave. tf is defined as the time where

ψ̇(t)
∣∣∣
t=tf

= 0 , (6.43)

implying that F (tf ) = 2f . In the adiabatic approximation, the work of [346, 345]
provides explicit formulae for ψSPA(tf ) and tf :

ψSPA(tf ) = 2πftref − 2ϕref + 2
G

∫ vref

vf

dv (v3
f − v3)E

′(v)
F(v) , (6.44)

tf = tref +M

∫ vref

vf

dv
E′(v)
F(v) , (6.45)

8See for example Section III F of [346] for a detailed derivation.
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where vref = v(tref) and tref are integration constants, vf := (πGMf) 1
3 , and E(v) and

F(v) were computed to lowest order in the cubic and tidal perturbations in (6.34) and
(6.36), respectively.

We can now compute the correction to ψSPA(tf ) due to the presence of the pertur-
bations, expanding the ratio E′(v)/F(v) at consistent PN order and performing the
integration in (6.44). Doing so we arrive at

ψSPA(tf ) = ψEH
SPA(tf ) + ψI1+I2

SPA (tf ) + ψtidal
SPA (tf ) . (6.46)

Here

ψEH
SPA(tf ) = 2πft′ref − 2ϕ′

ref + 3
128 ν v5

f
(6.47)

is the EH contribution, where we have also included the reference time and phase t′ref
and ϕ′

ref , which have been redefined in order to absorb terms that depend on vref; and

ψI1+I2
SPA (tf ) = − 3

128 ν v5
f

[
156 α2

(GM)4 v
10
f −

545α1 + (665− 850 ν) α2
14(GM)4 v12

f

]
,

ψtidal
SPA (tf ) = − 3

128 ν v5
f

{
24

v10
f

(GM)4
(
8(12λ12 + λ′

12) + 12η12 + η′
12
)

−10
7

v12
f

(GM)4

[
4((91− 170ν)λ12 − 6λ′

12)− 5(17ν + 37)η12 − 9η′
12

]}
,

(6.48)

are the new contributions due to cubic and tidal perturbations. Similarly to our com-
ment after (6.34), we note that all the terms at leading order in velocity in (6.48) are
complete, while the remaining ones would also receive further modifications from a
3PM computation of the potential and a 2PM computation of the quadrupole.

Finally, it is interesting to compare our results with those of [106]. The perturbations
considered in that paper have the form

L8 = β1 C 2 + β2 C C̃ + β3 C̃ 2 , (6.49)

where
C := Rµνρσ R

µνρσ , C̃ := 1
2 Rµναβ ϵ

αβ
γδ R

γδµν . (6.50)

The modifications to ψSPA(tf ) due to quartic interactions as found in [106] are (rein-
stating powers of G in the result of that paper, and converting their dΛ into our β1 as
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defined in (6.49)),

ψquartic
SPA (tf ) = ψEH

SPA(tf ) + 3
128 ν v5

f

[(234240
11 − 522240

11 ν

)
β1

(GM)6 v
16
f

]
. (6.51)

Note the different dependence on vf in the correction terms in (6.48) and (6.51), which
are of O(v10

f ) and O(v16
f ) in the leading cubic and tidal, and quartic cases, respectively.

Comparing also the powers in GM , one is naively tempted to say that the contribu-
tions coming from cubic operators as computed in this chapter should be dominant
when compared to those in (6.51) stemming from quartic interaction, just as the power
counting in the EFT would suggest. In directly comparing these terms however, one
implicitly assumes that the cut-off scales and thus the degree of suppression within the
EFT, behave in a straight forward manner, with higher powers in Riemann being more
and more suppressed. On the other hand, considering the observations of [297], the cu-
bic interactions might actually be suppressed by a higher energy scale than the quartic
terms, as pointed out in [295]. It would thus be interesting to perform a comparison of
our result in (6.46) to experimental data, as performed in [106] for the case of quartic
perturbations in the Riemann tensor, allowing to possibly confirm or reject this sus-
pected stronger suppression, further adding to our understanding of higher derivative
intercations in a gravitational context.
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Chapter 7

Rational terms from
six-dimensional unitarity

The continuous search for new physics at the Large Hadron Collider (LHC) at CERN,
and possibly other future collider experiments around the world, fuels a continuous de-
mand for higher precision in the theoretical predictions. Scattering amplitudes repre-
sent the basic building blocks for such predictions, and the increasing required precision
translates into the need of accessing higher orders (and possibly higher multiplicities)
in the perturbative expansion. This endeavour can be roughly divided into two parts:
the determination of the analytic expression of the un-integrated amplitude, and the
computation of the associated integrals leading to an integrated result entering the
cross-sections.

Over the last decades, on-shell methods have established themselves as the go-to tech-
nique when addressing the first question while allowing to mitigate the second issue:
the systematic determination of multi-loop amplitudes usually leads to an expression in
terms of a finite (possibly minimal) set of integrals which constitute an integral basis,
knowledge of the basis integrals then entails complete knowledge of the integrated am-
plitude. However unitarity techniques are blind to a very specific type of contribution
which may be present in a loop amplitude. These are the rational terms, as opposed to
the remainder of the amplitude which we call cut-constructible. Rational terms have
no discontinuity in any kinematic channel and thus cannot be probed through a cut in
any of the kinematic invariants. An example of such a structure is given in (3.40).

The computation of rational terms has been addressed in several different ways, for
example one can make use of factorisation to establish a recursion relation that allows
to reconstruct rational terms [178,224] (see [357,358] for an elegant applications to two-
loop amplitudes in pure Yang-Mills). Another approach is to shift the dimensionality
of internal states in the loop away from four dimensions [109,110] where rational terms
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acquire a singularity which can then be detected using unitarity cuts. Multiple cuts
have also been used efficiently in this context [179,359,226]. This method requires that
the internal lines, corresponding to virtual particles, are kept in d = 4− 2ϵ dimensions,
while momenta and polarisation vectors of external particles live in four dimensions.
Keeping the dimensionality of the internal loop-momentum space arbitrary allows to
access directly the dependence of the amplitude on d and thus on the regulator ϵ when
dimensional regularisation is used, but there are compelling reasons to perform the
calculation in fixed integer dimensions instead.

The first reason is that integer dimensions allow for the use of a spinor-helicity formal-
ism, which typically allows to express the tree-level seeds of the multi-loop calculation
in a simpler way thus leading to simpler integrands. Furthermore, analytic results are
usually preceded by numerical ones, since the latter are where modern-day computers
really excel: however it is clear that no numeric computation can be done in an arbi-
trary non-integer dimension. Nowadays numeric results have acquired an even more
important role, since in many instances it is possible to make use of exact numeric
results on finite fields to reconstruct full analytic expressions, see [182, 183] for some
pioneering work in this regard. The combination of unitarity methods with numerical
techniques has led to many notable results [130–134,136,360–364].

The key idea we will build upon here to obtain complete loop-level results is that of
dimensional reconstruction [111–115]. In this approach, one investigates the depen-
dence of the loop amplitudes on the dimensionality of spacetime, which turns out to be
polynomial in pure Yang-Mills theory. Then one computes the amplitudes with virtual
particles kept in integer dimension d > 4 to fix the coefficients in the polynomial by
interpolation, which leads by analytic continuation to an expression valid for any non-
integer dimension d. The dimensional reconstruction approach can also be effectively
combined with the spinor-helicity formalism in six dimensions of [152], which allows for
compact expressions of the on-shell building blocks. At higher loops, these techniques
were used in [365] to derive the five-point all-plus gluon amplitude integrand in pure
Yang-Mills, a generalisation to incorporate fermions was carried out in [366] and then
applied in some of the already mentioned results obtained through numerical methods,
see for example [132].

In this chapter we study the application of dimensional reconstruction to form factors
of operators of the form TrFn, for n = 2, 3, 4, both for minimal and non-minimal
form factors up to four external gluons. Modern amplitude techniques were applied to
form factors of TrF 2, which compute the leading contribution to Higgs + multi-gluon
amplitudes in the effective Lagrangian approach, including MHV diagrams [154, 367]
at tree level [368, 369] and one loop [370], and a combination of one-loop MHV dia-
grams and recursion relations [371]. Recent work [372–376] addressed the computation
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of the four-dimensional cut-constructible part of Higgs+multi-gluon scattering from
operators of mass dimension seven using generalised unitarity [17, 12] applied to form
factors [41, 43, 47–49, 374–383]. The key point of this chapter is that we show how
to extend dimensional reconstruction to any form factor of operators involving vector
fields, which requires the subtraction of form factors of an appropriate class of scalar
operators that we identify. Furthermore, we discuss how to generalise the procedure
both for amplitudes and form factors beyond two-loop order while still carrying out the
computation in a single fixed integer dimension.

7.1 Six-dimensional spinor-helicity formalism

Here we briefly review the six-dimensional spinor-helicity formalism. The construction
and applications of the formalism are rather similar to its four-dimensional equivalent,
the main difference being that due to the SO(4) little-group structure even the bracket
shorthand notation requires the use of additional explicit indices. Since we will be using
this formalism essentially as a computational tool, we will not go into too much detail
here but focus rather on highlighting key identities and fixing the conventions. For a
more complete discussion of the topic we refer the interested reader to [152].

7.1.1 Helicity Spinors in Six Dimensions

In six-dimensional Minkowski spacetime, the Lorentz group is SO(1,5), whose universal
covering group is SL(2,H), and we will denote it as SU∗(4). Indeed, its representations
are in one-to-one correspondence to those of SU(4), which is the universal covering of
SO(6). The six-dimensional little group is S̃O(4) ≃ SU(2)× SU(2).

Let us denote with □A and □A the objects transforming respectively in the fundamental
and anti-fundamental representations of the Lorentz group SU∗(4) and (a, ȧ) the indices
of the bi-fundamental representations of the two components of the little group. The
Clifford algebra is defined by

{γµ, γ̃ν}A B := γµ
AC γ̃

νCB + γν
AC γ̃

µCB = 2ηµνδB
A , (7.1)

where µ = 0, . . . , 6, γµ
AB ≡ γ

µ
[AB] and γ̃µAB ≡ γ̃µ[AB]. These gamma matrices transform

in the pseudo-real representation 6 = 4 ∧ 4 of SU∗(4) and are related by

γ̃µAB = (γµ
AB)∗ = 1

2ϵ
ABCDγµ

AB . (7.2)

Six-dimensional momenta can be written as

pAB := pµγ
µ
AB , (7.3)
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and also transform in the 6 representation. The massless condition on the momenta
reads

p2 ∼ ϵABCDpABpCD = 0 , (7.4)

which can be solved by expressing the momentum as the bi-spinor

pAB = ϵȧḃλ̃ȧAλ̃ḃB = λ̃ȧAλ̃
ȧ
B , (7.5)

where λ̃ȧA is a pseudo-real spinor. Analogously, we can write

pAB = λaAλB
a = −ϵabλA

a λ
B
b , (7.6)

which satisfies
pAB = (pAB)∗ = −1

2ϵ
ABCDpCD . (7.7)

Notice that, given the above definitions, the spinors λaA and λ̃ȧA automatically satisfy
the Dirac equation:

pABλ
B
a = −1

2ϵABCDλ
B
a λ

bCλD
b = −ϵABCDλ

B
a λ

C
1 λ

D
2 = 0 , (7.8)

and similarly for λ̃ȧA. The Dirac equation can be also written equivalently as a relation
between λ and λ̃:

0 = λaAλB
a λ̃Bȧ = −λA

1 λ
B
2 λ̃Bȧ + λA

2 λ
B
1 λ̃Bȧ , (7.9)

which implies
λA

a λ̃Aȧ = 0 . (7.10)

Next we need to define polarisation vectors in terms of the spinors, just as in four
dimensions one has to introduce a reference spinor to do so, which we call q. Then a
good definition is given by

εAB
aȧ (p, q) =

√
2

spq
|pa⟩[A[pȧ|/qB] ,

εaȧAB(p, q) = −
√

2
spq
|pȧ][A⟨pa|/qB] ,

(7.11)

where despite the bracket notation we explicitly display the Lorentz indices A and B

which are antisymmetrized.

Before moving to the relation between four- and six-dimensional quantities, we present
some useful identities for six-dimensional spinors. We focus on the SU∗(4) structure of
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the spinors and keep the little group indices implicit for the sake of clarity, since the
latter can be restored at any time being unambiguously related to each spinor.

Consider a certain number of spinors λA
i (and λ̃iA), with labels i = 1, . . . , n. The

Lorentz-invariant objects which can be built out of these spinors are of three types:

• Bi-spinor invariant objects:
λA

i λ̃jA := ⟨ij] (7.12)

• Two distinct four-spinors invariant objects:

ϵABCDλ
A
i λ

B
j λ

C
k λ

D
l := ⟨ijkl⟩ , ϵABCDλ̃iAλ̃jBλ̃kC λ̃lD := [ijkl] . (7.13)

The spinors transform in the fundamental representation of SU∗(4), thus A = 1, . . . , 4.
Two identities (and their two complex conjugate) follow immediately from this:

λ
[A
1 λ

B
2 λ

C
3 λ

D
4 λ

E]
5 = 0 , (7.14)

and
λ

[A
1 λ

B
2 λ

C
3 λ

D]
4 = 1

4!ϵ
ABCD⟨1234⟩ , (7.15)

and analogous relations hold for λ̃iA. Equations (7.14) and (7.15) can be combined to
give the six-dimensional Schouten identity:

∑
cyclic
⟨1234⟩λA

5 = 0 . (7.16)

7.1.2 From Six-Dimensional to Four-Dimensional Quantities

For our purposes, we find it convenient to write six-dimensional spinors in terms of four-
dimensional ones, allowing amplitudes to be expressed in terms of the more familiar
four-dimensional spinors. We can view six-dimensional null vectors as four-dimensional
massive ones, by defining the two complex mass parameters

m := p4 + ip5 , m̃ := p4 − ip5 , (7.17)

where p4 and p5 are the fifth and the sixth components of the 6D momentum pµ. The
six-dimensional massless condition becomes then

p2 = (p(4))2 −mm̃ = 0 . (7.18)

where (p(4))2 = p2
0−p2

1−p2
2−p2

3 is the four-dimensional massive momentum associated
to pµ. We found it more efficient for our calculation to describe these momenta as a
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combination of two massless momenta, as in (2.36). We can decompose six-dimensional
helicity spinors in terms of four-dimensional spinors as

λA
a =

− m
⟨λµ⟩µα λα

λ̃α̇ m̃
[µλ] µ̃

α̇

 , λ̃Aȧ =

 m̃
⟨λµ⟩µ

α λα

−λ̃α̇
m

[µλ] µ̃α̇

 , (7.19)

where the little group indices label the columns and the SU∗(4) indices label the rows.
The SU∗(4) index structure can be broken down into two SL(2,C) complex conjugated
indices:

□A =
(
□α

□α̇

)
, □A =

(
□α

□α̇

)
. (7.20)

This embedding is specific of our choice of gamma matrices: indeed, we choose them
such that the γ-matrices restricted to µ = 0, . . . , 3 reduce to the familiar chiral repre-
sentation in four dimensions1.

pAB and pAB are invariant under the little group SU(2)× SU(2) transformations

λ′A
a = Ua

bλA
b , λ̃′

Aȧ = Uȧ
ḃλ̃Aḃ, (Ua

b, Uȧ
ḃ) ∈ SU(2)× SU(2) . (7.21)

The 6D momentum in 4D components reads:

pAB =
(

−mϵαβ λαλ̃
β̇ + ρµαµ̃

β̇

−λ̃α̇λβ − ρµ̃α̇µβ m̃ϵα̇β̇

)
, (7.22)

where ρ = mm̃
⟨λµ⟩[µλ] . We notice that m and m̃ completely fix the diagonal components,

thus they are little group invariant objects. In our choice of gamma matrices, the
off-diagonal components precisely coincide with the 4D massive momentum:

p
(4)
αα̇ = λαλ̃α̇ + ρµαµ̃α̇ , (p(4))2 = mm̃ . (7.23)

It is easy to see that the two copies of SU(2) of the 6D little group act in an identical
way on the 4D momenta and we recover the usual massive little group: indeed, they
depend only on the combination mm̃ and we can obtain dotted transformations from
the undotted by simply replacing

m −→ −m̃ , m̃ −→ −m . (7.24)

The Lorentz-invariant quantities ⟨iajȧ], ⟨iajbkcld⟩, [iȧjḃkċlḋ] can be written in terms of
four-dimensional angle and square brackets, once the helicity indices are fixed (a, b, c, d =
1, 2 and ȧ, ḃ, ċ, ḋ = 1̇, 2̇), by using the decomposition given in (7.20) and decompos-

1For the explicit basis of gamma matrices see Appendix A of [152].
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ing ϵABCD ∼
∑
ϵαβϵα̇β̇ and δA

B = diag(δβ
α, δ

α̇
β̇

). For a concrete example of how four-
dimensional amplitudes are encoded in six-dimensional ones we refer to Appendix C.1,
where in particular we discuss how the choice of the little group indices relates to
four-dimensional helicity structures.

7.2 The Dimensional Reconstruction Technique

In the first part of the section, we look at the one-loop case from a different perspective
which lends itself to a systematic generalisation to form factors. The viewpoint we adopt
presents the much desirable advantage that it disentangles the number of dimensions
in which amplitudes need to be computed from the loop order. This feature allows for
a natural generalisation to any loop order, for both amplitudes and form factors, which
will be discussed in the second part of the section.

7.2.1 One-Loop Dimensional Reconstruction

The first step in our study is to identify the dependence of the loop amplitude on the
dimensionality of the spacetime. In the literature, a common procedure is to distinguish
the two sources of this dependence:

• the first is the number of spin-eigenstates, which is a function of the dimension
of the spacetime ds (for example, gluons have ds − 2 spin degrees of freedom);

• the second is the integration over the loop momentum, which lives in a d-dimensional
space.

Specifically, in the following we consider pure Yang-Mills theory

Lds = −1
4
(
F a

µνF
aµν)(x) , (7.25)

where Aaµ is a vector in a spacetime of dimension ds and x is defined on a spacetime
of dimension d > 4.

As we mentioned earlier, we are interested in calculating amplitudes (and form factors)
involving four-dimensional external gluons. At one loop it is possible to write a general
amplitude as

A(1)
(ds,d) ({pi, hi}) =

∫ ddl

(2π)d

N ds({pi, hi})∏
iDi

, (7.26)

where N ds({pi, hi}) depends on ds through the number of spin eigenstates and on d

through the loop momentum. However, since all external momenta are four-dimensional,
the additional components of the loop momentum enter the amplitude only through
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its square, which can always be written as

l2 = l20 − l21 − l22 − l23 −
d−1∑
i=4

l2i := (l(4))2 − µ2 . (7.27)

The dependence of the amplitude on µ2 manifests itself in a number of additional
integrals with non-trivial numerators, which have to be added to the usual master
integral basis. These integrals have the form:

∫ ddl

(2π)d

µ2p

D1 · · ·Dn
:= Id

n[µ2p] , (7.28)

which can be evaluated as ordinary integrals, but in higher dimensions [110]. The
presence of these integrals cannot be probed using four-dimensional unitarity cuts.

Consider now the explicit dependence of the amplitude on ds. One-loop amplitudes
involving only bosons are linear in ds, because it appears only in a closed loop of
contracted metric tensors coming from vertices and propagators. Consequently, in
order to determine the dependence of the amplitude on ds, only two constants need to
be fixed and these can be obtained by interpolation. Thus it is sufficient to compute
the amplitude in two integer dimensions, for example d0 and d1 = d0 + 1, and then
write the analytic continuation to four dimensions in the Four Dimensional Helicity
(FDH) scheme [227,384]. The result of the interpolation is given by [111]:

A(1)
(4,d) = (d1 − 4)A(1)

(d0,d) − (d0 − 4)A(1)
(d1,d) . (7.29)

By definition d are the dynamical dimensions of the theory and we can always choose
d0 ≥ d. By doing so we can consider the extra dimension in the d1-dimensional space
as non-dynamical. Then a d1-dimensional gluon behaves as a d0-dimensional one plus
a real scalar Aaµ =

(
Aaµ̂, ϕa

)
, and the Lagrangian of the system reads2

Ldi
= −1

4F
a
µνF

aµν = −1
4F

a
µ̂ν̂F

aµ̂ν̂ + 1
2Dµ̂ϕ

aDµ̂ϕa , (7.30)

where the hatted quantities refer to d0-dimensional Lorentz indices. From the La-
grangian (7.30) we arrive at the conclusion that the one-loop di-dimensional amplitude
A(di,d) can be expressed as the sum of two contributions: the first contribution is given
by the equivalent one-loop gluon amplitude with internal particles living in d0 dimen-
sions A(d0,d); the second one, denoted in the following as AS

(d), takes into account also
scalar interactions coming from the second term on the right-hand side of (7.30). It is
also important to stress that AS

(d) is a gauge-invariant quantity in its own right. As a
2The fields are non-dynamical in the d1-dimensional direction of the space-time, thus we can set

∂d0 Aaµ = 0 and ∂d0 ϕa = 0 (∂d0 = ∂d1−1).
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result of these observations, (7.29) can be written as:

A(1)
(4,d) = A(1)

(d0,d) − (d0 − 4)AS
(d) . (7.31)

Since we are considering only the one-loop order, it is easy to see that AS
(d) can be

obtained by trading the gluon loop for a scalar loop.

Up to some additional considerations, the above discussion holds true for form factors
as well, and so does (7.31). In particular, the scalar quantity that we have to subtract
from the form factor with d0-dimensional internal gluons is obtained by trading the
gluon loop with a scalar one. However, in contradistinction with the amplitude case,
there are two sources for scalars when we are dealing with form factors. Inside the loop,
one can have scalars coupled to gluon lines coming from terms of the form 1

2Dµϕ
aDµϕa

in the dimensionally-reduced Lagrangian (as in the case of amplitudes), but also scalars
coming from the operator inserted in the form factor. This procedure will be clear in
the calculation of the non-minimal TrF 2 form factor, described in Section 7.4.2, where
we will emphasise the role of these two distinct contributions (see also [113]).

Finally, what we need is to identify the scalar operator. The procedure we follow is
reminiscent of dimensional reduction, which for the operator TrF 2 was performed in
(7.30). From this new point of view, the generalization of the Dimensional Reconstruc-
tion technique to other operators is straightforward. In particular, for the only two
operators with mass-dimension six involving solely gluons, namely Tr(DF )2 and TrF 3,
the scalar contribution comes from

DµF
a
νρD

µF aνρ 7→ DµDνϕ
aDµDνϕa , (7.32)

and
fabcF a µ

νF
b ν

ρF
c ρ

µ 7→ fabcDµϕ
aDνϕ

bF c µν , (7.33)

where scalar operators associated to each operator come from the dimensional reduction
from d1 to d0. On the other hand for the TrF 4 operator, which we will consider later
in this chapter, at one-loop we get

TrFµ
νF

ν
ρF

ρ
σF

σ
µ 7→ TrDµϕDνϕF

ν
ρ F

ρµ , (7.34)

where in the last equation the trace is in colour space3. The proportionality coefficients
are still to be fixed and we will give the right prescription for them within the full
tree-level calculation in Section 7.3.

3We emphasise that (7.34) is exactly the scalar operator up to an overall factor, which has still to
be fixed. In particular, the two scalars in the previous operator have to be adjacent, because the gluon
operator involves only contractions between adjacent field strength.
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7.2.2 An L-loop Generalisation

The arguments leading to (7.29) can be extended to arbitrary loop order. Considering
pure Yang-Mills theory, any L-loop amplitude can be written as a degree L polynomial
in the dimension ds

4,

A(L)
(ds,d) =

L∑
i=0

(ds − 4)iKi , (7.35)

where Ki are quantities to be determined. In particular, note that the four-dimensional
amplitude in the FDH scheme [227,384] coincides with the zero-degree coefficient: K0 =
A(L)

(4,d). In order to find the coefficients Ki, we can interpolate the polynomial in L+ 1
distinct integer dimensions di > 4. Writing the problem in matrix form, one has

A(L)
(d0,d)

A(L)
(d1,d)

...

A(L)
(dL,d)


=



1 (d0 − 4) (d0 − 4)2 · · · (d0 − 4)L

1 (d1 − 4) (d1 − 4)2 · · · (d1 − 4)L

...
...

1 (dL − 4) (dL − 4)2 · · · (dL − 4)L





K0

K1

...

KL


, (7.36)

where we recognise the Vandermonde matrix. Inverting this matrix, it is possible to
express the Ki as functions of the higher-dimensional amplitudes A(L)

(di,d) for i = 0, . . . , L.
In particular K0, which is the four-dimensional amplitude we are interested in, can be
written as

A(L)
(4,d) = K0 =

L∏
j=0

(dj − 4)
L∑

i=0

1
(di − 4)

L∏
k=0
k ̸=i

1
(dk − di)

A(L)
(di,d) . (7.37)

We can always choose d0 > 4 to be the smallest dimension among the di’s, and we also
know that at most d dimensions are dynamical, with 4 < d ≤ d0. Then, we can write
the Lagrangian of pure Yang-Mills theory in di > d0 dimensions as:

Ldi
= −1

4F
a
µνF

aµν + 1
2

di−d0∑
i=1

Dµϕ
a
iD

µϕa
i −

λ

2 f
abcfade

di−d0∑
i,j=1
j>i

ϕb
iϕ

c
jϕ

d
i ϕ

e
j , (7.38)

where µ, ν are d0-dimensional Lorentz indices, a, b, c are colour indices and fabc are the
structure constants of the gauge group. The vector field in di dimensions is decomposed
in a (d0-dimensional) vector Aa

µ and di−d0 scalars ϕa
i . The coupling of the ϕ4 interaction

is given by
λ = g2 , (7.39)

4As already mentioned, the ds dependence comes from traces of η tensors, and there can be at most
L closed loops leading to such a trace.
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AS (6)
(d0,d,2,0) AS (6)

(d0,d,2,1)

Figure 7.1: Two of the many possible diagrams contributing to the scalar amplitudes at six
loops. On the left-hand side an example contribution to AS (6)

(d0,d,2,0) is shown. On the right-
hand side the same diagram but with one of the gluon loops involving a four-point interaction
replaced by a scalar. The latter diagram contributes to AS (6)

(d0,d,2,1).

and we call it λ for reasons that will be clear in a moment.

From (7.38), we can compute the amplitude with only external gluons5

A(L)
(di,d) = A(L)

(d0,d) +
L−1∑
m=0

(di − d0 − 1)m
L−m∑
n=1

(di − d0)nAS (L)
(d0,d,n,m) , (7.40)

where A(L)
(d0,d) is the complete L-loop amplitude where all the internal legs are vectors

and AS (L)
(d0,d,n,m) are specific combinations of diagrams with at least one scalar loop.

Specifically, the diagrams contributing to AS (L)
(d0,d,n,m) are of order λm, i.e. they contain

m four-scalar interactions, and in addition have n distinct purely scalar subdiagrams.

The coefficients for the scalar contributions in (7.40) can be understood as follows.

1. The number of distinct flavours of scalars is di − d0 and they all give the same
contribution.

2. Given a set of contiguous scalar propagators inside a diagram, when we draw
the first scalar propagator, we need to multiply the diagram by a di − d0 factor,
corresponding to the distinct possible flavours.

3. Inside the same set of contiguous scalar propagators, each vertex with two scalars
and one vector must preserve the scalar flavour, while the four-scalar vertex
changes it. Thus each power of λ brings a di − d0 − 1 factor.

4. Every distinct set of scalar propagators leads to an additional di − d0 factor.
5In this section, for the sake of clarity, we reserve the word vector only for the d0-dimensional vector,

whereas we refer to the four-dimensional equivalents as gluons.
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di − d0

di − d0

di − d0 − 1

di − d0

Figure 7.2: Two two-loop diagrams for comparison. In the first case there are two disconnected
scalar loops, and every loop admits di−d0 different flavours leading to an overall factor (di−d0)2.
The second diagram represents two scalar loops connected by a flavour-changing four-scalar
vertex (highlighted in green). In this case there are di − d0 allowed flavours in one loop but
only di − d0 − 1 in the second loop, which leads to an overall factor (di − d0)(di − d0 − 1).

5. Since there are no external scalars, the number of distinct sets of scalar propaga-
tors plus the number of scalar quartic interactions coincides with the number of
scalar loops:

n+m = # scalar loops (7.41)

6. Clearly the number of scalar loops can be at most L.

We can substitute (7.40) in (7.37) and, for simplicity, we choose

di = d0 + i (7.42)

with i = 0, . . . , L. The final result should not depend on this choice, because the
coefficient of a polynomial cannot depend on which point we choose for the fitting.
After some manipulations, we find a closed expression which relates complete L-loop
four-dimensional amplitudes to the same amplitudes in a higher integer dimension d0

up to subtractions of scalar contribution:

A(L)
(4,d) = A(L)

(d0,d) +
L−1∑
m=0

L−m∑
n=1

(4− d0)n(3− d0)mAS (L)
(d0,d,n,m) , (7.43)

where, in order to prove this formula, we have used the identity

L∑
i=0

1
(di − 4)

L∏
k=0
k ̸=i

1
(dk − di)

=
L∏

j=0

1
(dj − 4) . (7.44)

The whole reasoning can be applied to a more generic scheme where ds = 4 (FHV
scheme) is replaced by a generic ds (e.g. the HV scheme [385] with ds = 4 − 2ϵ). As
long as we keep di > ds and di ≥ d, all the previous steps are still applicable, and we
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arrive at

A(L)
(ds,d) = A(L)

(d0,d) +
L−1∑
m=0

L−m∑
n=1

(ds − d0)n(ds − d0 − 1)mAS (L)
(d0,d,n,m) , (7.45)

which at first sight is identical to (7.40). The non-trivial difference between the two
expressions is that ds < d0, while we need di > d0 (i = 1, . . . , L) in order to write
(7.40). Moreover, as we stressed before, the quantity (di − d0) has a precise physical
meaning: it is the number of distinct flavours of scalars in the dimensional reduced
theory (7.38). On the other hand, (ds − d0) takes into account the number of extra
spin degrees of freedom in dimensional regularisation6.

A posteriori, the fact that the two expressions are exactly the same is a consequence
of our previous considerations. Indeed, one could have recognised the polynomial de-
pendence of the amplitude on the dimensionality ds already from (7.40), and further
identified (7.45) as its analytic continuation for ds − d0 < 0. Thus, starting from
the dimensionally reduced Lagrangian (7.38), the dependence on the dimensionality ds

emerges naturally, and the preceding considerations relating the di to ds through the
Vandermonde matrix may appear redundant. However, starting from the analysis of
the dimensional dependence of the amplitudes provides a clear physical picture of the
relation between ds, d and di.

Our expression reproduces the known results at one loop [111]

A(1)
(ds,d) = A(1)

(d0,d) + (ds − d0)AS (1)
(d0,d,0,1) , (7.46)

and two loops [365]

A(2)
(ds,d) = A(2)

(d0,d) + (ds − d0)∆S
(d0,d) + (ds − d0)2∆2S

(d0,d) , (7.47)

where

∆S
(d0,d) = AS (2)

(d0,d,0,1) −A
S (2)
(d0,d,1,1) , ∆2S

(d0,d) = AS (2)
(d0,d,0,2) +AS (2)

(d0,d,1,1) . (7.48)

Considering the two-loop expression in more detail, one sees that in [365] the four-scalar
vertex is interpreted in terms of three fictitious flavour contributions:

−→ + +

The two continuous lines in the grey blob represent the colour flow inside the vertex.
6There is no dynamics in the dimensions di − d0, while this could be not true for the dimensions

d0 − ds.
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Considering Figure 7.2 we see that, in our interpretation, the only diagram which
at two loops involves this vertex contributes with a factor (ds − d0)(ds − d0 − 1).
However, splitting the vertex according to colour flow as above, the contribution of
the same diagram can be attributed to terms containing a factor (ds − d0)2 as well as
(ds − d0). Taking into account this different interpretation of the four-scalar vertex,
the two methods perfectly match.

We emphasise that individually each AS (L)
(d0,d,n,m) is a gauge-invariant quantity: indeed,

we know that A(L)
(d0,d) is gauge invariant and the same is true for A(L)

(4,d), regardless of the
choice of d0. Since the coefficients of the scalar contributions depend on d0, the single
AS (L)

(d0,d,n,m) must be gauge invariant by themselves.

As in the case of the one-loop procedure, (7.43) can be applied also to form factors, as far
as we bear in mind that more scalar operators are involved in higher-loop calculations,
in addition to those entering already at one loop. These additional terms emerge clearly
from (7.38). Indeed, for the operator TrF 2, beyond one-loop calculations we also need
to subtract the scalar contribution from the ϕ4 operator:

F a
µνF

aµν 7→ g2fabdfacdϕbϕ̃cϕdϕ̃e , (7.49)

where ϕ and ϕ̃ have to be scalars with different flavour. Its contribution has to be
carefully taken into account in the subtraction with the right ds-dependence. In partic-
ular, in the form factor equivalent of (7.40), its insertion brings a (di− d0)(di− d0− 1)
coefficient, because of the flavour changing.

An equivalent reasoning is also valid for higher-dimensional operators. For example,
from the dimensional reduction procedure of the TrF 3 operator, we find that the
additional scalar operators entering higher-loop calculations are

fabcF a µ
νF

b ν
ρF

c ρ
µ 7→

 gfabcfadeDµϕ
bDµϕ̃cϕdϕ̃e

g3fabcfadef bfgf chiϕdϕ̃eϕf ϕ̂gϕ̃hϕ̂i
, (7.50)

where the former enters the calculation at two-loop level, while the latter from three
loops. We stress that ϕ, ϕ̃ and ϕ̂ represent three different scalar flavours. Then, in
the generalisation of (7.40) to form factors, the insertion of the scalar operators bring
a factor of (di − d0)(di − d0 − 1) and (di − d0)(di − d0 − 1)(di − d0 − 2) respectively.
Following the same procedure one can recover the scalar operators for TrF 4, which we
do not write explicitly.

In the following we are going to apply this technique to one-loop calculations for form
factors. We will always choose d0 = 6, due to the existence of a powerful Spinor Helicity
Formalism in six dimensions [152,115].
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A technical comment is in order here. In performing loop calculations, initially we
treat the loop momenta as living in d0 =6 dimensions, instead of d. This procedure is
well defined at the integrand level. Indeed, we know the functional dependence of the
integrand on the d − 4 components of the loop momenta, which appear only through
rational combinations of l(−2ϵ)

i ·l(−2ϵ)
j and µ2

i . Then, once we identify these combinations,
we can treat the loop momenta as being d-dimensional and integrate over them7.

7.3 Tree-Level Form Factors

In this section we will provide all the analytic expressions of the tree-level colour-ordered
form factors required for loop calculations.

The tensorial structure of the field strength in four dimensions is given by the antisym-
metric product of two vector representations(1

2 ,
1
2

)
∧
(1

2 ,
1
2

)
= (1, 0)⊕ (0, 1) , (7.51)

where we can choose each component to correspond to the helicity configurations ±1.
We then define the self-dual component of the free field strength as8

FSD,αα̇ββ̇ := λαλβϵα̇β̇ , (7.52)

which has helicity −1 and transforms in the (1, 0) representation of the Lorentz group9.
Then, the anti-self-dual component, transforming in the (0, 1) representation is

FASD,αα̇ββ̇ = ϵαβλ̃α̇λ̃β̇ . (7.53)

In terms of SU∗(4) representations, the six-dimensional free field strength transforms
in the 6 ∧ 6 = 15, which is the traceless part of 4⊗ 4̄. Thus it can be written as [386]

FAB
aȧ CD = α δ

[A
[CFaȧ

B]
D] , (7.54)

where α is a numerical coefficient to be fixed and Faȧ
A

B is such that Faȧ
A

A = 010.
7It is worth mentioning that in terms of the six-dimensional spinor components the quantity men-

tioned above reads as follows: l
(−2ϵ)
i · l

(−2ϵ)
j = 1

2 (mim̃j + mjm̃i) and µ2
i = mim̃i.

8To clarify the abuse of nomenclature, this quantity is the field strength in momentum space corre-
sponding to a polarisation vector of given helicity.

9We could have used as definition the following: FSD,αα̇ββ̇ := pαα̇ε−
ββ̇

− pββ̇ε−
αα̇ = −

√
2λαλβϵα̇β̇ . As

we can see the only difference is an overall −
√

2 factor.
10A, B, . . . = 1, . . . , 4 are indices in the (anti)fundamental representation of SU∗(4) and a, ȧ are

indices of the six-dimensional little group (for a detailed discussion see Appendix 7.1).
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In spinor helicity variables this quantity is [386]

Faȧ
A

B = λA
a λ̃ȧB , (7.55)

which is indeed traceless thanks to the six-dimensional Dirac equation (7.10). Upon
dimensionally reducing (7.55) down to four dimensions we match it with (7.52) and
(7.53), which fixes the proportionality coefficient to be α = 2.

7.3.1 Tr F 2 Form Factors

In this section we consider the operator

O2 := F a
µνF

aµν . (7.56)

In four dimensions O2 splits naturally into the sum of the traces of the self-dual and
the anti-self-dual components of the field strength:

TrF 2 = TrF 2
SD + TrF 2

ASD . (7.57)

It is trivial to identify these two four-dimensional components of the colour-ordered
form factor:

F
(0)
O2

(1+, 2+; q) = 2[1 2][2 1] ,

F
(0)
O2

(1−, 2−; q) = 2⟨1 2⟩⟨2 1⟩ .
(7.58)

On the other hand, the six-dimensional form factor is

F
(0)
O2

(1aȧ, 2bḃ; q) = 2⟨1a 2ḃ]⟨2b 1ȧ] , (7.59)

where the definitions of the spinor brackets can be found in 7.1. Using the partic-
ular embedding of the four-dimensional into the six-dimensional space introduced in
Appendix 7.1.2 we find that11

F
(0)
O2

(111̇, 211̇; q)
∣∣∣
4D

= F
(0)
O2

(1+, 2+; q) , F
(0)
O2

(122̇, 222̇; q)
∣∣∣
4D

= F
(0)
O2

(1−, 2−; q) .
(7.60)

An analogous statement is true also for amplitudes, where all the four-dimensional
helicity configurations can be recovered from the six-dimensional amplitude.12

11Four-dimensional limit here means choosing appropriate little-group indices corresponding to the
desired helicity configuration in four dimensions, and then taking mi, m̃i → 0 for any particle i.

12Further details on the relation between four and six-dimensional tree-level quantities can be found
in Appendix C.1.
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The scalar form factor is obtained from (7.30), and we find

F
(0)
O2,s

(1, 2; q) = −⟨1a, 2ḃ]⟨1
a, 2ḃ] = 2s12 , (7.61)

where
O2,s ∝ (Dϕ)2 := Dµϕ

aDµϕa . (7.62)

The normalisation of (7.61) has been fixed by matching the four-dimensional limit
of this operator with that of the scalar components of (7.59), which must yield the
same result. Of course, if one starts from the Lagrangian (7.30) and computes the
minimal form factors of the two operators on the right-hand side, the resulting relative
normalisation would be the same. The four-dimensional matching prescription is much
faster for more complex operators. Let us stress that it would not be possible to
implement the scalar subtraction just by excluding the little group components that in
four dimensions behave like scalars. Indeed, this would bring us to a result which is
not invariant under a little group transformation of the internal six-dimensional legs.
In particular, for the subtraction we need a quantity that behaves as a scalar in six
dimensions and matches the scalar components of the dimensional-reduced gluon in
four dimensions, as shown in Appendix C.1.

Using BCFW recursion relation [12, 13] in six dimensions [152] we have derived the
six-dimensional non-minimal form factors with three external legs at tree level, both
for the gluon and the scalar operators. The results for O2 with three gluons reads

F
(0)
O2

(1aȧ, 2bḃ, 3cċ; q) = 2
s23s31

⟨1a 2ḃ]⟨2b 1ȧ]⟨3c|/p1/p2|3ċ] + cyclic

+ 2
( 1
s12

+ 1
s23

+ 1
s31

) (
⟨1a 2ḃ]⟨2b 3ċ]⟨3c 1ȧ]− [1ȧ 2b⟩[2ḃ 3c⟩[3ċ 1a⟩

)
,

(7.63)

which agrees with the analogous result computed from Feynman diagrams in [113],
upon some algebraic manipulation. As a further consistency check we verified that in
the four-dimensional limit the different helicity components match the results of [368].

Furthermore, in the scalar subtraction we need to take into account an additional
contribution, namely the form factor of the operator O2 with two external scalars and
one gluon, which is different from zero. Indeed, this is given by:

F
(0)
O2

(1, 2, 3cċ; q) = − 2
s12
⟨3c|/p1/p2|3ċ] . (7.64)
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Finally, the non-minimal scalar form factor of O2,s can be shown to be

F
(0)
O2,s

(1, 2, 3cċ; q) = − 2q2

s23s31
⟨3c|/p1/p2|3ċ] . (7.65)

For a detailed derivation of (7.63)-(7.65) see Appendix C.2. The sum of (7.64) and
(7.65) agrees with the result of [113].

7.3.2 Tr F 3 Form Factors

Consider now the operator
O3 := TrFµ

νF
ν

ρF
ρ

µ . (7.66)

Similarly to the case of TrF 2, this operator splits, in four dimensions, into a self-dual
and anti-self dual part

O3 := TrF 3 = TrF 3
SD + TrF 3

ASD . (7.67)

Consequently, the only possible helicity configurations of the minimal tree-level form
factors are all-plus and all-minus:

F
(0)
O3

(1+, 2+, 3+; q) = −2[1 2][2 3][3 1] ,

F
(0)
O3

(1−, 2−, 3−; q) = 2⟨1 2⟩⟨2 3⟩⟨3 1⟩ .
(7.68)

In six dimensions the minimal form factor is given by

F
(0)
O3

(1aȧ, 2bḃ, 3cċ) = FAB
1 aȧ CDF

CD
2 bḃ EFF

EF
3 cċ AB

= −⟨1a2ḃ]⟨2b3ċ]⟨3c1ȧ] + [1ȧ2b⟩[2ḃ3c⟩[3ċ1a⟩ ,
(7.69)

where FAB
aȧ CD is defined in (7.54). We can obtain the corresponding scalar operator

from (7.33), which states that

O3,s ∝ Tr(Dϕ)2F := TrDµϕDνϕF
µν . (7.70)

Thus
F

(0)
O3,s

(1, 2, 3cċ) := 1
2p

AB
1 p2CDF

CD
3 cċ AB = ⟨3c|/p1/p2|3ċ] , (7.71)

where, once again, the normalisation is fixed by matching the four-dimensional limits
of this quantity with the scalar configuration of (7.69).

As a final remark, we point out that O3 is not the only mass-dimension six operator
which appears in the Yang-Mills theories (also with matter). One also has a contribution
from

Õ3 := DαF aµνDαF
a
µν . (7.72)
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However, it is easy to see that the minimal form factor for Õ3 can be related to the one
of O2 as

F
(0)
Õ3

(1aȧ, 2bḃ; q) = s12F
(0)
O2

(1aȧ, 2bḃ; q) . (7.73)

Further Lorentz contractions of two covariant derivatives and two field strengths, such
as DµF aν

µ DρF a
ρν , are ruled out or expressed in terms of the operators previously men-

tioned thanks to the equations of motion. In particular, in the case of pure Yang-Mills
theory Õ3 can be expressed as a linear combination of O2 and O3 through the equations
of motion. For a detailed discussion, see [387].

Finally, we provide the tree-level expressions needed for the one-loop computation of
the non-minimal form factor of O3 which are:

• the non-minimal tree-level form factor of O3 with four gluons

F
(0)
O3

(1aȧ, 2bḃ, 3cċ, 4dḋ; q) = Baȧbḃcċdḋ + Caȧbḃcċdḋ +Daȧbḃcċdḋ , (7.74)

with

Baȧbḃcċdḋ =
(
−⟨1a 2ḃ]⟨2b 3ċ]⟨3c 1ȧ] + [1ȧ 2b⟩[2ḃ 3c⟩[3ċ 1a⟩

) ⟨4d|/p1/p3|4ḋ]
s34s41

+ cyclic ,

Caȧbḃcċdḋ = ⟨1a 2ḃ]⟨2b 4ḋ]⟨4d 3ċ]⟨3c 1ȧ] + [1ȧ 2b⟩[2ḃ 4d⟩[4ḋ 3c⟩[3ċ 1a⟩
s34

+ cyclic ,

Daȧbḃcċdḋ = −
( 4∑

i=1

1
si i+1

)(
⟨1a 2ḃ]⟨2b 3ċ]⟨3c 4ḋ]⟨4d 1ȧ] + [1ȧ 2b⟩[2ḃ 3c⟩[3ċ 4d⟩[4ḋ 1a⟩

)
(7.75)

• the non-minimal tree-level form factor of O3 with two external scalars

F
(0)
O3

(1, 2, 3cċ, 4dḋ; q) = 1
s12

(
⟨3c 4ḋ]⟨4d|/p1/p2|3ċ]− ⟨4d 3ċ]⟨3c|/p1/p2|4ḋ]

)
(7.76)

• the non-minimal tree-level form factor of O3,s with two external scalars

F
(0)
O3,s

(1, 2, 3cċ, 4dḋ; q) =
⟨3c|/p4/p2|3ċ]⟨4d|/p1/p2|4ḋ]

s23s34
+
⟨4d|/p1/p3|4ḋ]⟨3c|/p1/p2|3ċ]

s34s41

+ ⟨3c|/p2/p1|4ḋ]⟨4d 3ċ]
( 1
s34

+ 1
s23

+ 1
s41

)

− ⟨4d|/p2/p1|3ċ]⟨3c 4ḋ] 1
s34

+ ⟨3c|/p2|4d⟩[3ċ|/p1|4ḋ]
( 1
s23

+ 1
s41

)
.

(7.77)

These formulas have been obtained by requiring the six-dimensional form factor to
match, upon taking the four-dimensional limit, the known four-dimensional expressions
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in different helicity configurations [372, 388, 389, 311]. The resulting ansatz was then
numerically compared with the results from Feynman diagrams and a complete match
was found.

7.3.3 Tr F 4 and Higher Dimensional Form Factors

The fourth power in the field strength can be considered as a turning point in the
general behaviour of the operators, for reasons which will become clear in a moment.
The first study of renormalisation properties of gluonic operators of dimension up to
eight was carried out in [390] and with more recent techniques in [391]. It turns out
that we can have four possible independent operators involving different contractions
of four field strengths:

TrFµ
νF

ν
ρF

ρ
σF

σ
µ , TrFµνFµνF

ρσFρσ ,

TrFµ
νF

ρ
σF

ν
ρF

σ
µ , TrFµνF ρσFµνFρσ .

(7.78)

In pure gauge theories, which we are considering in this work, all these operators can
appear with independent coefficients, while they are no more independent in the low
energy effective action from the superstring theory [392–394]. In this section we will
focus only on the first operator, which we will refer to as TrF 4:

O4 := TrF 4 := TrFµ
νF

ν
ρF

ρ
σF

σ
µ . (7.79)

This encloses all the main features of the operators with higher powers in the field
strength, and at the end of this section we will be able to generalise some results to a
peculiar operator involving a consecutive chain of n field strengths.

In four dimensions the main difference between TrF 4 and the lower-power cases is
that the structure of this operator allows the mixing of the self- and anti-self-dual
components, i.e. schematically

TrF 4 ≃ TrF 4
SD + Tr

(
F 2

SDF
2
ASD

)
+ TrF 4

ASD . (7.80)

Thus the usual all-plus (all-minus) minimal form factors appear along with MHV-like
quantities:

F
(0)
O4

(1+, 2+, 3+, 4+; q) = 2[1 2][2 3][3 4][4 1] ,

F
(0)
O4

(1+, 2+, 3−, 4−; q) = [1 2]2⟨3 4⟩2 ,

F
(0)
O4

(1+, 2−, 3+, 4−; q) = [1 3]2⟨2 4⟩2 ,

(7.81)

and all the other configurations can be obtained by symmetry and parity arguments.
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In six dimensions the minimal form factor is

F
(0)
O4

(1aȧ, 2bḃ, 3cċ, 4dḋ; q) =FAB
1 aȧ CDF

CD
2 bḃ EFF

EF
3 cċ GHF

GH
4 dḋ AB

(7.14)= ⟨1a2ḃ]⟨2b3ċ]⟨3c4ḋ]⟨4d1ȧ] + [1ȧ2b⟩[2ḃ3c⟩[3ċ4d⟩[4ḋ1a⟩

+ ⟨1a2b3c4d⟩[1ȧ2ḃ3ċ4ḋ] ,

(7.82)

where we notice that at this power of the field strength the new structure ⟨· · · ·⟩[· · · ·]
involving four-spinor invariants appears, which is very reminiscent of the four-point
amplitude. This new structure gives us the MHV-like components in (7.81) when we
consider the appropriate little-group configurations in the four-dimensional limit (see
Appendix C.1).

We have already identified the scalar operator associated to TrF 4 in (7.34) and we
define

O4,s ∝ TrDµϕDνϕF
ν

ρF
ρµ (7.83)

such that its minimal form factor is

FO4,s(1, 2, 3cċ, 4dḋ; q) = 1
2p

AB
1 p2CDF

CD
3 cċ EFF

EF
4 dḋ AB

= −⟨3c|/p2/p1|4ḋ]⟨4d 3ċ] + 1
4⟨2

a2a3c4d⟩[1ȧ1ȧ3ċ4ḋ] .
(7.84)

The expression of TrF 4 gives us some insight about the operators involving the nth

power of the field strength, where the Lorentz indices are contracted between adjacent
field strengths, which we will refer to as TrFn:

On := TrFn = TrFµ1
µ2Fµ2

µ3 · · ·Fµn−1
µnFµn

µ1 . (7.85)

It is easy to show that this operator can be decomposed in a sum of double traces (in
the Lorentz indices) on the self-dual and anti-self-dual parts, schematically13:

TrFn ≃
n∑

i=0
Tr
(
Fn−i

SD F i
ASD

)
. (7.86)

Take two disjoint and ordered subsets of labels S+ = {pk}k=1...i and S− = {qk}k=1...n−i,
with S+ ∪ S− = {1, . . . , n}. Then all tree level form factors, for any helicity configura-

13We stress that this general structure was hidden by lower power-operators because the field strength
is traceless: Tr F n−1

SD FASD = Tr FSDF n−1
ASD = 0.
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tion, can be written in a very compact way:

F
(0)
On

(1h1 , . . . , nhn ; q) = cn,i

i∏
k=1

[pk pk+1]
n∏

k=i+1
⟨qk qk+1⟩ , (7.87)

where the overall coefficient is

cn,i =


2 i = 0

(−1)n−i i ̸= 0, n .

(−)n2 i = n

(7.88)

An explicit example of this general formula is given by

F
(0)
O5

(1−, 2+, 3−, 4−, 5+; q) = −⟨1 3⟩⟨3 4⟩⟨4 1⟩[2 5][5 2] . (7.89)

The structure of TrFn form factors in six dimensions is much more complicated than
the four-dimensional one, the number of terms grows very fast, but nonetheless some
general pattern can be observed. In particular if we restrict to a kinematic configuration
for which only some of the legs are truly six dimensional and the others are defined on
the embedded four-dimensional subspace, the formulae are much easier and compact.
In principle, this is all we need in order to calculate rational terms with the dimensional
reconstruction technique, since we need to consider only the limited number of internal
loop legs as six dimensional. As an example, consider the minimal form factor of TrFn

with two six-dimensional legs and n − 2 four-dimensional legs in the all-plus helicity
configuration. The general expression is given by

TrFn(1aȧ, 2bḃ, 3
+, . . . , n+) =

(
⟨1a2ḃ]⟨2b31̇][3 4]⟨n11ȧ] + [1ȧ2b⟩[2ḃ31⟩[3 4][n1̇1a⟩+

+ ⟨1a2bn131⟩[1ȧ2ḃ31̇41̇]
) n−1∏

i=4
[i i+ 1] .

(7.90)

This result can be found by observing that the combination λA
i aλ̃i Bȧ appears only

once for each six-dimensional leg, which allows to write an ansatz comprising every
possible combination with arbitrary coefficients to be fixed. The coefficients can then
be determined by taking the four-dimensional limit of the six-dimensional gluons and
requiring the form factor to match (7.87). For the sake of comparison, if we take n = 6
the three terms of (7.90) come from a fully six-dimensional expression of 39 terms which
has already been reduced from initial 52 terms using Schouten identity.
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7.4 One-Loop Form Factors

In this section we will consider a number of one-loop applications of the dimensional
reconstruction procedure discussed so far. The results obtained for the minimal form
factors of TrF 2 and TrF 3 were already known in the literature. We prove that the
latter has no rational terms, as it has also been argued by [388]. These calculations
will be useful to set the stage and give an example of the procedure before dealing with
more involved operators and kinematic configurations. In particular, we reproduce the
known non-minimal form factor of TrF 2 with three positive-helicity external gluons.
Finally, we compute the complete minimal form factor of TrFn with n = 4 at one loop
and generalise some of the results to arbitrary n.

7.4.1 The Minimal Tr F 2 Form Factors

As a first proof of concept of the method we will confirm the well known statement
that the minimal form factor of the operator TrF 2 in pure Yang-Mills does not have
any rational terms. In particular, we will consider the all-plus helicity configuration.

q

1+

2+

q

− 2× q

1+

2+

q

Figure 7.3: Two-particle cut of the one-loop form factor TrF 2 in six dimensions.

The quantity we want to compute can be written as

F
(1)
O2

(1+, 2+; q) := F
(0)
O2

(1+, 2+; q) · f (2) (s12)

= 2[1 2][2 1] · f (2) (s12) ,

(7.91)

where we factored out all the helicity dependence in the tree-level prefactor, and
f (2)(s12) is a function only of the Mandelstam variable s12. As explained in Section 7.2
this quantity can be computed using (7.31):

f (2) (s12) = f
(2)
6D (s12)− 2f (2)

ϕ (s12) , (7.92)

where f2
6D (s12) and f2

ϕ (s12) are the form factors with six-dimensional internal gluons
or scalars respectively, normalised by the corresponding tree-level quantity.

At one loop, the two-particle cut represented in Figure 7.3 is14

14The explicit expression of Ag can be found in Appendix C.1.
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f
(2)
6D (s12)

∣∣∣
2−cut

= 1
2[1 2][2 1]

∫
dLIPS F

(0)
O2

(−laȧ
1 ,−lbḃ

2 ) A(0)
g (l2 bḃ, l1 aȧ, 111̇, 222̇) , (7.93)

where dLIPS is a short-hand notation for the one-loop Lorentz phase space integra-
tion, more explicitly one could set dLIPS = dDl/(2π)D with l ≡ l1 and l2 = q − l1,
or equivalently swapping l1 and l2. In order to simplify this expression we decom-
pose the six-dimensional quantities in terms of four-dimensional ones, as explained
in detail in Section 7.1.2. These calculations are rather lengthy and have been dealt
with through the use of a Mathematica package devised during the preparation of [1]
and described therein. In general, we write six-dimensional expressions in terms of
{λiα, λ̃iα̇, µiα, µ̃iα̇,mi, m̃i} with i = 1, 2, l1, l2, as explained in Appendix 7.1.2. Impos-
ing that the external legs are defined in four dimensions is equivalent to setting mj = 0
and m̃j = 0 for j = 1, 2, which automatically removes any dependence of f (2) on µjα

and µ̃jα̇. From (7.22), momentum conservation implies

∑
i

mi = 0 ,
∑

i

m̃i = 0 . (7.94)

Only the two internal legs l1 and l2 have to be kept in six dimensions, in other words
p5

i , p
6
i ̸= 0 for i = l1, l2, which implies

ml2 = −ml1 := −m , m̃l2 = −m̃l1 := −m̃ , (7.95)

where
µ2 = mm̃ , (7.96)

with µ2 defined in (7.27). The result for the complete integrand in (7.93) is, schemati-
cally,

I = i⟨l1 l2⟩2[l2 l1]2
s12s2l2

+µ2 (4 terms) +µ4 (17 terms) +µ6 (5 terms) +µ8 (1 term), (7.97)

where the Mandelstam invariants are defined in terms of six-dimensional momenta. It
is important to note that the dependence on µi and µ̃i is spurious and we can choose
these “reference momenta” in order to cancel as many terms as possible from our result.
After doing so one has to be careful in identifying the loop momenta and Mandelstam
invariants consistently with this choice. A particularly convenient choice is

µl1 → λl2 , µl2 → λl1 , µ̃l2 → µ̃l1 . (7.98)
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Doing so, we immediately arrive at

f
(2)
6D (s12)

∣∣∣
2−cut

=
∫

dLIPS
(
−i s12
s2l2

+ 2i µ
2

s2l2

)
. (7.99)

Next we repeat a similar computation for the two-particle cut with internal gluons
replaced by scalars:

f
(2)
ϕ (s12)

∣∣∣
2−cut

= 1
2[1 2][2 1]

∫
dLIPSF (0)

O2,s
(−l1,−l2) A(0)(l2, l1, 1aȧ, 2bḃ)

=
∫

dLIPS i µ
2

s2l2

.

(7.100)

Taking the difference between (7.99) and twice (7.100) leads to the desired four-dimensional
result

f (2) (s12)
∣∣
2−cut = −is12

∫
dLIPS 1

s2l2

. (7.101)

It is important to stress that in order to perform the scalar subtraction consistently, one
needs first to write both f

(2)
6D and f

(2)
ϕ as functions of the full d-dimensional momenta

and Mandelstam invariants, in order to eliminate any dependence on the choice of
the arbitrary helicity spinors µi and µ̃i. We can directly read off the one-loop result
from (7.101):

f (2) (s12) = −is12 ·

p1

p2

q

l

(7.102)

where the triangle integral with outgoing momenta (p1, p2, q) is defined in Appendix
C.3.

As anticipated, our result (7.102) does not contain any µ2 term i.e. any rational term,
and is thus in agreement with the very well known result. An equivalent result holds
for the all-minus helicity configuration.

7.4.2 The Non-Minimal Tr F 2 Form Factor

In this section we address the computation of the one-loop non-minimal form factor of
the operator TrF 2. As usual we begin by defining the normalised quantity f (2;3) as

F
(1)
O2

(1+, 2+, 3+; q) := 2[1 2][2 3][3 1] · f (2;3) (s12, s23, s13) , (7.103)

with

f (2;3) (s12, s23, s13) = f
(2;3)
6D (s12, s23, s13)− 2f (2;3)

ϕ (s12, s23, s13) , (7.104)
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Notice that we decided not to normalise by the corresponding tree-level form-factor,
which carries additional non-trivial dependence on the Mandelstam variables, but sim-
ply by a factor [1 2][2 3][3 1] which only captures the complete helicity dependence of
the operator. Computing the discontinuity in the s12-channel we have

f
(3)
6D ({sij})

∣∣∣
s12−cut

= 1
2[1 2][2 3][3 1]

∫
dLIPS F

(0)
O2

(laȧ
1 , lbḃ

2 , 311̇) A(0)(−l2 aȧ,−l1 bḃ, 111̇, 222̇),

(7.105)
which, upon making use of momentum conservation in the form of (7.95), is a 356-term
expression. We make use of the redundant degrees of freedom to simply the expression
by choosing

µl1 7→ λl2 , µ̃l1 7→ λ̃3 , µl2 7→ λl1 , µ̃l2 7→ λ̃3 , (7.106)

which leads to
f

(3)
6D ({sij})

∣∣∣
s12−cut

∝
∫

dLIPS [3 l1] ⟨l1 l2⟩[l2 3] . (7.107)

Note that, after using (7.106), the last expression apparently is no longer invariant with
respect to little-group transformations of l1 and l2, since these transformations mix the
λ and µ. In other words, looking at the numerator of (7.107), l1 and l2 appear as
four-dimensional massless momenta, whereas they should really be massive. Hence in
order to further manipulate the expression in a consistent manner we have to restore the
masses, i.e. restore explicit little-group invariance. This is achieved by the replacement

λα
i λ̃

α̇
i 7→

(
λα

i λ̃
α̇
i + µ2

⟨λi µi⟩[µ̃i λ̃i]
µα

i µ̃
α̇
i

)
︸ ︷︷ ︸

p
(4) αα̇
i

− µ2

⟨λi µi⟩[µ̃i λ̃i]
µα

i µ̃
α̇
i , (7.108)

which in the particular case of (7.107) becomes

|l1⟩[l1| 7→ /l
(4)
1 −

µ2

⟨l1 l2⟩[3 l1] |l2⟩[3| , |l2⟩[l2| 7→ /l
(4)
2 −

µ2

⟨l2 l1⟩[3 l2] |l1⟩[3| , (7.109)

where the replacements (7.106) have already been applied. After this substitution and
some further manipulation, (7.107) becomes

f
(2;3)
6D (s12, s23, s13)

∣∣
s12−cut = i

[1 2]
[2 3][3 1]

∫
dLIPS [3| /l (4)

1 /l
(4)
2 |3] I(2;3)

6D , (7.110)

where
I(2;3)

6D = q4s12 − 2µ2q2s12 − 4µ2s3l1s3l2

s2
12s2,−l2s3l1s3l2

. (7.111)

Performing the appropriate scalar subtraction for the non-minimal configuration of the
operator TrF 2 is more subtle than in the minimal case. The double cut one needs to
compute is represented in Figure 7.4. There are two different tree-level form factors to
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f
(2;3)
ϕ

∣∣
s12−cut = q

3+

O2

+ q

O2,s

3+

1+

2+

q

Figure 7.4: A double cut of the scalar contribution to TrF 2 non-minimal. The red boxes
highlight the two different operator insertions.

be inserted into the cut: the non-minimal form factors with two external scalars and
one gluon of the operators TrF 2 and (Dϕ)2. The tree-level expression for these form
factors are given in (7.64) and (7.65) respectively. Computing the complete result for
the double-cut of the scalar contribution leads to

f
(2;3)
ϕ (s12, s23, s13)

∣∣
s12−cut = i

[1 2]
[2 3][3 1]

∫
dLIPS [3| /l (4)

1 /l
(4)
2 |3] I(2;3)

ϕ , (7.112)

with
I(2;3)

ϕ = −µ2 q
2s12 + s3l1s3l2

s2
12s2,−l2s3l1s3l2

. (7.113)

Upon subtracting twice (7.112) from (7.110), uplifting the cut and performing some
algebraic manipulations on the numerator, one ends up with the final expression:

f (2,3)(s12, s23, s13)
∣∣
s12−disc = − iq4

2s31

p3 p2

p1q

− iq4

2s23

p2 p1

p3q

− iq4(s31+s23)
s12s23s31

·

q

p1

p2

p3

+ q

p3

p1

p2



+ 4i
s2

12
·

q

p3

p1

p2

µ2 + 2i
s12
·

p1

p2

q

p3

µ2

(7.114)
where all integrals can be found in Appendix C.3.
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q

1+

3+

2+

q

− 2× q

1+

3+

2+

q

Figure 7.5: Two-particle cut of the one-loop form factor TrF 2 in the s123 channel in six
dimensions.

Clearly the double cuts in the channels s23 and s13 can be derived from (7.114) by
symmetry arguments, thus the only invariant channel left to compute would be s123,
see Figure 7.5. This double-cut involves the use of the five-point amplitudes in six
dimensions with five gluons as well as with three gluons and two scalars15, combined
with the minimal form factor of O2 and O2,s respectively. The only topology probed
by this cut, which is not probed by any of the previous cuts, is the bubble with the
form factor in one of the two vertices and all the momenta in the other. Performing
the calculation the associated coefficient turns out to be zero. Thus (7.114) and its
permutations give the complete result, which matches the one given in [395,113].

7.4.3 The Minimal Tr F 3 Form Factors

We now consider the TrF 3 form factor in the all-plus helicity configuration. The
procedure we follow is exactly the same as in the TrF 2 case. First we factor out the
helicity dependence as an overall tree-level prefactor:

F
(1)
O3

(1+, 2+, 3+; q) := F
(0)
O3

(1+, 2+, 3+; q) · f (3) (s12, s23, s13)

= −2[1 2][2 3][3 1] · f (3) (s12, s23, s13) ,

(7.115)

then we compute f (3) as the difference f (3)
6D − 2f (3)

ϕ . We start with the two-particle cut
in the s12 channel represented in Figure 7.6, which reads

f
(3)
6D (s12)

∣∣∣
s12−cut

= − 1
2[1 2][2 3][3 1]

∫
dLIPS F

(0)
O3

(−laȧ
1 ,−lbḃ

2 , 311̇) A(0)(l2 aȧ, l1 bḃ, 111̇, 222̇) .

(7.116)
Upon expanding the six-dimensional invariants we get a 168-term expression. This can
be considerably simplified using momentum conservation as in (7.95) and choosing the
µs to be

µl1 7→ λl2 , µ̃l1 7→ λ̃3 , µl2 7→ λl1 , µ̃l2 7→ λ̃3 . (7.117)
15Their analytic expression is given in Appendix C.1.
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Doing so, we arrive at the compact expression

f
(3)
6D (s12, s23, s13)

∣∣
s12−cut = i

∫
dLIPS

 [1 2][3| /l (4)
1 /l

(4)
2 |3]

s2l2 [2 3][3 1] + µ2 [3| /l (4)
1 /l

(4)
2 |3]

[3| /p1 /p2|3]

 ,

(7.118)
where we have already reconstructed the full d-dimensional momenta. Computing the
scalar contribution in a similar fashion16 leads to

f
(3)
ϕ (s12, s23, s13)

∣∣
s12−cut = i

2

∫
dLIPSµ2 [3| /l (4)

1 /l
(4)
2 |3]

[3| /p1 /p2|3] , (7.119)

and finally

f (3)(s12, s23, s13)
∣∣
s12−cut = i

[1 2]
[2 3][3 1]

∫
dLIPS [3| /l (4)

1 /l
(4)
2 |3]

s2l2

. (7.120)

After using (7.117), it is possible to write f (3) in terms of Mandelstam invariants:

f (3)(s12, s23, s13)
∣∣
s12−cut = −i

∫
dLIPS

(
s12
s2l2

+ 2
)

(7.121)

modulo terms which integrate to zero. Uplifting this result leads to:

f (3)(s12, s23, s13)
∣∣
s12−disc = −is12 ·

p1

p2

q

p3 l

− 2i ·
q

p3

p1

p2
l

. (7.122)

Combining the discontinuities in the three channels s12, s23 and s31 we arrive at the
complete one-loop form factor

f (3)({sij}) =
n∑

k=1
f (3)({sij})

∣∣
sk k+1−disc , (7.123)

where every term in the sum can be obtained from (7.122) by relabelling the external
legs.

16For the case of the scalar contribution it turns out that the most convenient choice for the µs is
the same as in the gluon case. Notice that it is for this particular reason that we would have been
allowed to perform the subtraction between the two contributions without writing them in terms of
full d-dimensional quantities first. Indeed, if this were not the case, we would have had to reconstruct
the form of the loop momenta in terms of general µs before doing the subtraction.
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q
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− 2× q
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Figure 7.6: Two-particle cut of the one-loop form factor TrF 3 in the s12 channel in six
dimensions.

7.4.4 The Non-Minimal Tr F 3 Form Factor

In the last sections we showed how the dimensional reconstruction can be applied to
form factors. In this section we derive the complete form factor of the operator TrF 3

with four gluons in the all-plus helicity configuration.

The procedure we follow has been described in detail earlier, hence we now only sketch
the relevant derivations and provide the main results. Up to cyclic permutations there
are two independent unitarity cuts to be computed, say in the s12-channel and s123-
channel. Starting from the s123-cut, one needs to evaluate the following difference to
obtain the complete result:

q

1+

3+

4+

2+

q

− 2× q

1+

3+

4+

2+

q

where the tree-level form factor in the scalar subtraction term (second term in the figure
above) is the minimal form factor of the operator Tr

(
DµϕDνϕF

µν
)
. The Passarino-

Veltman reductions of the resulting tensor integrals have been performed using the
Mathematica package FeynCalc [396, 397]. From the two-particle cuts in the s123-
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channel we obtain the following functions:

F
(1)
O3

(1+, 2+, 3+, 4+; q)
∣∣
s123−disc = D

[0]
0

p3 p2

p1
q

p4

+ C
[0]
0

p1

p3

q

p4
p2

+ C
[0]
1

p1

p3

q

p4

p2
+B

[0]
0

q

p4

p1

p3

p2 ,

(7.124)
with the coefficients

D
[0]
0 = −iF(1, 2, 3; 4) ,

C
[0]
0 = −is12 + s31

s12s23
F(1, 2, 3; 4) ,

C
[0]
1 = −is23 + s31

s12s23
F(1, 2, 3; 4) ,

(7.125)

where

F(1, 2, 3; 4) := s123
s2

31
(s12[1 3][2 4] + s31[1 2][3 4]) (s23[1 3][2 4] + s31[2 3][1 4]) . (7.126)

Finally the coefficient of the bubble can be written as

B
[0]
0 = 2i[1 2][2 3][3 4][4 1] b[0]

0 , (7.127)

where the helicity-blind function b[0]
0 is defined as

b[0]
0 = s2

123
s12s23

( 1
s12 + s31

+ 1
s23 + s31

)
+[1 3][2 4]

[1 2][3 4]
s2

123
s23s31

· 1
s12 + s31

+[1 3][2 4]
[1 4][2 3]

s2
123

s12s31
· 1
s23 + s31

.

(7.128)
The result also contains a box integral with a µ2 numerator, which after integration is
of O(ϵ). For completeness we quote its coefficient:

D
[2]
0 = −2is123

(
[1 2]2[3 4]2

s12
+ [2 3]2[4 1]2

s23
+ [1 3]2[2 4]2

s31

)
. (7.129)

Next we consider the two-particle cut in the s12-channel and, as discussed in earlier
sections, the discontinuity of the complete form factor is determined from the difference

F
(1)
6D (1+, 2+, 3+, 4+; q)

∣∣
s12−cut − 2F (1)

ϕ (1+, 2+, 3+, 4+; q)
∣∣
s12−cut , (7.130)
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where the second term is the scalar subtraction. As in the case of the non-minimal form
factor of TrF 2, there are two contributions to the scalar quantity F (1)

ϕ (1+, 2+, 3+, 4+; q),
which are represented in Figure 7.7. The first contribution comes from the operator
TrF 3 with two scalars and two gluons, whereas the second one comes from the scalar
operator TrDµϕDνϕF

µν .

F
(1)
ϕ (1+, 2+, 3+, 4+; q)

∣∣
s12−cut = q

4+ 3+

O3

+ q

O3,s

4+ 3+

1+

2+

q

Figure 7.7: A two-particle cut of the scalar contribution to the non-minimal TrF 3 form factor.
The red boxes highlight the two different operator insertions.

After tensor reductions, we find

F
(1)
O3

(1+, 2+, 3+, 4+; q)
∣∣
s12−disc = D

[0]
0

p3 p2

p1
q

p4

+D
[0]
1

p2 p1

p4
q

p3

+ C
[0]
1

p1

p3

q

p4

p2
+ C

[0]
2

p4

p2

q

p3
p1

+ C
[0]
3

p1

p2

q

p3

p4 + C
[2]
3

p1

p2

q

p3

p4 µ2

+ B
[0]
1

q

p3

p1

p2

p4 +B
[2]
1

q

p3

p1

p2

µ2p4 ,

(7.131)
where we checked that the coefficients D[p]

0 , D[p]
1 , C [p]

0 and C [p]
2 match the ones found in
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the previous calculation, up to relabelling. The other coefficients for the triangles are

C
[0]
3 = i[1 2][2 3][3 4][4 1] c[0]

3 ,

C
[2]
3 = 4i

s12
[1 2][3 4][1 3][2 4] ,

(7.132)

where

c[0]
3 = s12 + s31

s23
+ s12
s34

(
1 + s13

s14
+ s24
s23

)
− [1 3][2 4]

[1 4][2 3]

[
s123(s12 + s31)− s2

13
s2

13
− s12
s34

]

− [1 3][2 4]
[1 2][3 3]

s12
s2

13s23

[
s123(s23 + s31)− 2s2

31

]
+ (1, 4)←→ (2, 3) ,

(7.133)

while for the bubbles

B
[0]
1 = 2i[1 3]2[2 4]2

( 1
s31
− 1
s23

+ s12
s23s31

)
+ 2i[1 2]2[3 4]2

( 2
s23
− 2s12
s23(s13 + s23)

)

+ 2i[1 2][3 4][1 3][2 4]
( 1
s12

+ 4
s23
− 2
s34
− 4s24
s23s34

)
+ (1, 4)←→ (2, 3) ,

(7.134)

and
B

[2]
1 = 4i

s2
12

[1 2][3 4] ([1 3][2 4] + [2 3][1 4]) . (7.135)

We have checked that our result satisfies the expected infrared consistency conditions.
In particular, using the results for the coefficients D0, C0 and C1, one immediately finds
that the coefficient of (−s123)−ϵ

ϵ2 vanishes, as required. We have also confirmed that the
coefficient of (−s12)−ϵ

ϵ2 is proportional to the corresponding tree-level non-minimal form
factor derived in [372],

F
(0)
O3

(1+, 2+, 3+, 4+; q) = −2[1 2][2 3][3 4][4 1]
s12

(
1 + [1 3][2 4]

[2 3][4 1] −
s24
s41

)
+ cyclic . (7.136)

7.4.5 The Minimal Tr F 4 Form Factors

In this section we consider the form factors of TrF 4 in all possible helicity configura-
tions. The case where all particles have the same helicity is interesting since it admits
an immediate generalisation to the minimal form factors of operators of the form TrFn

defined in (7.85). In this family, TrF 4 is the first operator whose minimal form factor
contains rational terms. We are going to consider the quantities in the planar limit
of the theory, i.e. at one loop we will probe only the discontinuities in the Mandel-
stam invariants of adjacent momenta in the colour-ordered form factor. At this point
it is important to stress that non-planar contributions behave differently: as one can
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see from (7.34) there is no non-planar scalar contribution, because in the operator the
scalars can only appear next to each other, and then the complete four-dimensional
contribution coincides with the diagrams with purely six-dimensional internal gluons.

All-Plus Helicity Configuration

We begin by defining

F
(1)
O4

(1+, 2+, 3+, 4+; q) := 2[1 2][2 3][3 4][4 1] · f (4) ({sij}) . (7.137)

At one loop, we can make the following observations:

• The cut-constructible part, coming from the form factor involving only gluons,
has the same structure as F (1)

O3
(1+, 2+, 3+; q), with both UV and IR divergences.

• Terms proportional to µ2 and µ4 now appear. As already mentioned, these could
not arise for n < 4 because of the limited kinematic, as we will show below. The
new integrals are two triangles with µ2 and µ4 numerators17 and when expanded
in powers of the dimensional regulator ϵ give a finite contribution in the ϵ → 0
limit. They are exactly the rational terms that cannot be seen by the completely
four-dimensional cut construction, where clearly µ2 = 0.

Following the procedure outlined in the previous sections, we find

f4({sij})
∣∣
s12−disc = −i

(
1 + [1 3][2 4]

[1 4][2 3]

)
·

q

p3

p4

p1

p2
l

− i s12 ·

p1

p2

q

p3

p4

l

+ i [1 2][3 4]
[2 3][4 1] ·

p1

p2

q

p3

µ2p4

l

− i [3 4]
[3| /p2 /p1|4] ·

p1

p2

q

p3

µ4p4

l

(7.138)
Notice that in the final result the integral I4

3 [µ4] appears. In general, in a renormaliz-
able gauge theory one would expect triangle integrals to appear with at most a third
power of the loop momentum in the numerator, which allows for at most a µ2 triangle
contribution. However we are considering an effective field theory with an operator of
mass-dimension eight, hence the possibility of having also an I4

3 [µ4] term. The last step
of the calculation is the sum over all the possible channel discontinuities, as we did in
(7.123) for TrF 3.

The above result can be immediately generalized to TrFn for arbitrary n in the all-plus
helicity configurations, where we define

17For analytic expressions of such integrals see for example Appendix C.3.
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TrFn(1+, . . . , n+; q)
∣∣
1-loop := (−)n 2

n∏
k=1

[k k + 1] · f (n) ({sij}) , (7.139)

and

f (n)({sij})
∣∣
s12−disc = −i

(
1 + [1 3][2 n]

[1 n][2 3]

)
·

q

p3

p1

p2
l

− i s12 ·

p1

p2

q

p3 l

+i [1 2][3 n]
[2 3][n 1] ·

p1

p2

q

p3

µ2

l

− i [3 n]
[3| /p2 /p1|n] ·

p1

p2

q

p3

µ4

l

(7.140)

This simple generalisation is due to the fact that, upon properly normalising with the
corresponding four-dimensional quantities, the six-dimensional minimal tree-level form
factor of TrFn is identical to that of TrF 4 up to the replacement 4 7→ n, as can be
seen from (7.90). As a final remark, notice that we can a posteriori explain the absence
of rational terms for TrF 3: indeed we can recover (7.122) by simply replacing n 7→ 3
in (7.140). Then, rational terms vanish since they are proportional to [3n].

MHV Configuration: the Alternate and Split-Helicity Colour Ordered Form
Factors

We define the MHV colour-ordered form factor with alternate-helicity gluons as follows:

F
(1)
O4

(1+, 2−, 3+, 4−; q) := ⟨2 4⟩2[1 3]2 · f (4)
a ({sij}) . (7.141)

Since this case presents some peculiarities in the calculations, we will give more details
about it. In particular, the cut of the form factor with six-dimensional internal gluons
in the s12-channel is given by

f
(4)
a,6D ({sij})

∣∣
s12−cut =−

∫
dLIPS i

s12s2l2

I 2
6D

⟨2 4⟩2[1 3]2

=−
∫

dLIPS i

s12s2l2

(2k · l2)2 ,

(7.142)

where

I6D = 2µ2⟨2 4⟩[1 3] + ⟨2|/l (4)
1 |3]⟨4|/l (4)

2 |1] + ⟨2|/l (4)
2 |3]⟨4|/l (4)

1 |1] (7.143)

and in the last step we removed terms proportional to ⟨2|/l (4)
2 |1] that vanish upon
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integration. Also kµ is a massive momentum defined by

kαα̇ = [1 2]
[1 3]λ2αλ̃3α̇ −

⟨1 2⟩
⟨2 4⟩λ4αλ̃1α̇ , (7.144)

and it is easy to prove that it satisfies the following relations:

k2 = 2p1 · k = 2p2 · k = s12 . (7.145)

Surprisingly, the scalar contribution is identically zero after integration:

f
(4)
a,ϕ ({sij})

∣∣
s12−cut =

∫
dLIPS i

s12s2l2

⟨4|/l (4)
1 |3]⟨4|/l (4)

2 |3]⟨2|/l (4)
2 |1]2

⟨2 4⟩2[1 3]2 = 0 , (7.146)

because of the presence of the term ⟨2|/l (4)
2 |1]2. Thus the discontinuity in the s12-channel

is completely given by the pure six-dimensional contribution (7.142), which after the
integral reduction can be written as

f (4)
a ({sij})

∣∣
s12−disc = −is12 ·

p1

p2

q

p3 l

. (7.147)

It is worth stressing that all the other planar contributions can be obtained from the
previous one easily by symmetry arguments.

As usual, for the split-helicity configuration we factorise the tree-level form factor:

F
(1)
O4

(1+, 3+, 2−, 4−; q) := [1 3]2⟨2 4⟩2 · f (4)
s ({sij}) . (7.148)

Unlike the previous case, in the planar limit we have two different cuts which can-
not be related by symmetry: in particular, we can perform the cut in channels with
same or opposite helicity gluons. The discontinuity in the s12-channel, after the scalar
subtraction, is given by

f (4)
s ({sij})

∣∣
s13−disc = −is13 ·

p1

p3

q

p2 l

. (7.149)

The cut in the s23-channel is reminiscent of the alternate-helicity case, with vanishing
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scalar contribution up to integration:

f (4)
s ({sij})

∣∣
s23−cut ≃ −

∫
dLIPS i

s13s3l2

(2k · l2)2 , (7.150)

where the momentum kµ is defined by

kαα̇ = [2 3]
[1 3]λ2αλ̃1α̇ + ⟨2 3⟩

⟨2 4⟩λ4αλ̃3α̇ , (7.151)

and it satisfies the following relations:

k2 = 2p2 · k = 2p3 · k = s23 . (7.152)

The cut in the s23 channel is

f (4)
s ({sij})

∣∣
s23−disc = −is23 ·

p2

p3

q

p4 l

(7.153)

Let us emphasise some relevant features of the result:

• The final result is free of rational terms. Thus we would have found the same,
complete, quantity even with four-dimensional unitarity-cuts.

• The only operator that contributes in four dimensions is Tr
(
F 2

SDF
2
ASD

)
, which is

a descendant of Trϕ4 in N = 4 SYM18.

• We note the absence of bubbles in the final result for this (unrenormalized) form
factor. This may be related to the independence of the bare quantity on the
matter content of the theory. One could then regard the computation as if it was
performed in N = 4 SYM, where the operator under consideration belongs to a
protected multiplet.

• An unrelated observation is that the colour-ordered form factors with alternate
and split-helicity configurations are the same:

F
(1)
O4

(1+, 2−, 3+, 4−; q) = F
(1)
O4

(1+, 3+, 2−, 4−; q) . (7.154)

This is an accident due to the simple topology of the integral basis combined
with the fact that bubbles do not appear. At first, the equality (7.154) could
appear as a consequence of the photon decoupling identities which hold in Yang-
Mills theory. However these identities are no longer valid when one considers
interactions with higher powers of the field strength.

18See for example Table 7 in [398].
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Conclusions

In this thesis we discussed some of the many applications of on-shell techniques in the
context of high-energy physics. As we saw in Chapter 2, for what analytic expressions of
tree-level amplitudes are concerned an on-shell recursion like BCFW appears far more
desirable than an off-shell one like Berends-Giele. On-shell expressions are typically
more compact, and taking advantage of the factorization properties of tree-amplitudes
on physical poles also drastically reduces issues related to combinatoric complexity
usually associated to diagrammatic or off-shell methods. On the other hand, we saw
that in order to apply these BCFW-like recursions to a wider range of theories, the use
of unphysical reference spinors may be required. This motivated the search for a general
algorithm combining the best of both on-shell and off-shell worlds: a recursive approach
making use of on-shell seeds, taking advantage of unitarity through factorization but at
the same time incorporating the information on the pole structure provided by locality,
reproducing compact results of simple physical interpretation.

In Chapter 3 we presented a first attempt at such an algorithm, but various improve-
ments are clearly desirable. In particular, it would be interesting to better understand
the way external vector bosons contribute to the singularity structure of the tree-
amplitude. When writing the latter in terms of spinor structures carrying the helicity
weights and Mandelstam invariants in the pole structures, the presence of vector bosons
leads to additional poles which do not come simply from intermediate particle propa-
gation but also from external polarization. These mix in non-trivial ways but always
miraculously produce at most additional simple poles compatible with locality of the
final result. A better understanding of how this recombination happens from an on-
shell point of view would be greatly beneficial to our algorithm, and it would also be
an interesting problem in its own right.

Equipped with the tree-level machinery we saw how to recombine this information in
order to obtain loop-level results. In Chapter 4 we discussed applications to the com-
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putation of the anomalous dimension matrix for operators in the Standard Model EFT.
The parametrization of Beyond Standard Model physics through SMEFT has become
increasingly popular over recent years, due to the fact that no a priori information on
the complete UV theory is required in this setup [51, 52]. In this context it is impor-
tant to compute the anomalous dimension matrix which is usually non-vanishing and
non-diagonal, implying that the Wilson coefficients at the energy scales accessible to
the colliders differ from those at the high-energy matching scale, and furthermore they
mix among each other. Unitarity techniques crucially simplify the computation of the
anomalous dimension matrix [237] and provide insights in the deeper structure of the
zeros appearing in it [34–36]. We addressed the computation of the mixing of all the
mass-dimension eight operators in the complete SMEFT, at linear order in the Wilson
coefficients, extending previous partial results and pushing ahead the study of this class
of operators which start to attract more and more attention due to their contribution to
specific processes of experimental interest [73–77]. Immediate extensions of our results
include the computation of the mixing when more than one fermion family is consid-
ered, or when we allow for subleading contributions of the Wilson coefficients, both of
which could be achieved with some modifications of the computational machinery al-
ready at our disposal. Additionally, it would also be interesting to repeat the two-loop
computation in [37] with dimension-six operators but in the complete Standard Model
instead of the simplified SU(N) theory considered in that paper. The hope would be
that combining such a computation with the knowledge of the SMEFT mixing matrix
at one loop for dimension eight operators, would allow to spot new patters in the zeroes
previously hidden by the sole focus on one-loop dimension six operators [84–86].

Unitarity methods find interesting applications also in EFTs of gravity. Considering
theories with massive matter classical effects can be found also at the loop level [94–96].
In other words, computing higher-order contributions in the perturbative expansion
around the gravitational coupling G leads to terms which are non-vanishing in the
ℏ → 0 limit and thus contribute for example to the classical gravitational potential.
Loop-level on-shell methods are particularly well suited for the task of extracting rele-
vant information without the need of computing the complete amplitude, since taking
unitarity cuts in the appropriate kinematic channel immediately isolates the contribu-
tions corresponding to graviton exchange between two external scalars mimicking the
heavy galactic objects. Furthermore, taking the cuts in four dimensions automatically
discards the terms corresponding to local interactions in the potential, i.e. the rational
terms.

In Chapter 5 we looked at the effect of higher-derivative operators on the bending angle
and the time delay experienced by a light particle when interacting with a heavy ob-
ject. Modifications to the action where incorporated as new tree-amplitudes in the con-
struction, and modifications to the observables directly extracted through the eikonal
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approach [100–105]. Due to the non-minimal interactions we considered, the eikonal
phase was promoted to a matrix, from which we extracted related phases through di-
agonalization. This leads to different values of the deflection angle and time delay
for different helicities and allows to find some consistency conditions of the theory
which replicate conditions already found in the literature [297, 336, 337]. In this con-
text it would be particularly interesting to explore the sub-sub-leading corrections to
the eikonal phase due to the R4 operator: in the eikonal approach, successive con-
tributions in the perturbative expansion are expected to re-sum into an exponential.
We explicitly find exponentiation for R3, however for R4 one-loop provides the leading
contribution to the eikonal phase, thus additional two-loop results would be required
to check exponentiation.

In Chapter 6, we performed the study of R3 operators discussing the interplay with tidal
effects and in particular we compute the quadrupole corrections for these terms. These
corrections are extracted from a five-point amplitude which, beyond the massive scalar
states, also features a soft graviton representing the emitted radiation. Considering the
binary system from afar as a small extended object which emits gravitational radiation
through a multipole expansion, we extract the quadrupole constributions from the
computed amplitude and use it along with the already known potential [293, 294] to
extract the radiated power. In this regard, it would be interesting to perform a study
similar to what was done for the R4 operators in [106] but for R3, based on the results
here presented.

To conclude the thesis, in Chapter 7 we took a look at some technical aspects of the
multi-loop unitarity methods. Since these methods rely on the discontinuities which are
present in the amplitude in order to reconstruct its analytic form, terms which do not
present discontinuities in the kinematic channels cannot be detected. While one way of
solving this issue is to move away from four dimensions and perform the unitarity cuts
in D = 4 − 2ϵ dimensions [109, 110], this presents some drawbacks, including the fact
that one looses the possibility of making use of the powerful spinor-helicity formalism as
well as of numerical evaluations. To bypass this issue in the case of Yang-Mills theory, it
has been found that the dependence on space-time of the amplitude is polynomial and
the complete amplitude can be obtained by evaluating the associated coefficients from
amplitudes in integer dimensions [111–115]. We have seen how to extend this method
from amplitudes to form factors and furthermore how to generalise it beyond two loops
in such a way that still only evaluations in a single higher-dimension are required. A
first task would be to perform a proof-of-concept calculation at a higher loop order,
which in turn would also require possibly additional six-dimensional building blocks
to be fed into the unitarity cuts. Obtaining these tree-level amplitudes/form factors
in six-dimensions can be cumbersome, so another direction worth exploring would be
the generalisation of the algorithm presented in Chapter 3 to six-dimensions, which
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should only present a technical rather than conceptual challenge. In this thesis we only
considered pure Yang-Mills theory, but theories including fermions clearly should be
addressed too. Doing so should lead to an extension for form factors of [366] which
then would allow to address any general theory and obtain complete four-dimensional
results from six-dimensional amplitudes.

The applications discussed in this thesis are only the tip of the iceberg of what unitarity
considerations, or in other words simple conservation of probability, can tell us about
amplitudes and form factors. These insights manifest in terms of the on-shell unitarity
methods which nowadays gain widespread interest and study, and surely will produce
further outstanding results for decades to come.
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SMEFT auxiliary material

A.1 The Standard Model gauge group

In Table A.1 we write explicitly the representations under which each particle in the in-
frared spectrum of the Standard Model transforms, for the gauge group U(1)×SU(2)×
SU(3).

U(1) SU(2) SU(3)
B± 0 1 1
W± 0 3 1
G± 0 1 8
Q̄ −1

6 2̄ 3̄
ū +2

3 1 3
d̄ −1

3 1 3
L̄ +1

2 2̄ 1
ē −1 1 1
Q +1

6 2 3
u −2

3 1 3̄
d +1

3 1 3̄
L −1

2 2 1
e +1 1 1
H̄ −1

2 2̄ 1
H +1

2 2 1

Table A.1: The spectrum of the Standard Model and the transformation properties of all the
fields.

Our convention on the colour factor are completely specified by the decomposition of
the contraction of two generators for both the SU(N) and SU(2) groups respectively:

τA a
c τ

B c
b = 1

2N δAB δa
b + i

2 f
ABC τC a

b + 1
2 d

ABC τC a
b , (A.1)
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where fABC are the structure constants and dABC is the traceless completely symmetry
d-tensor, and

σI i
kσ

J k
j = 1

4 δ
IJ δi

j + i

2 ϵ
IJK σK i

j . (A.2)

For the SU(2) group we also need to specify how indices in the fundamental are raised
and lowered by the ϵ-tensor:

xi = ϵij x
j = ϵij ϵ

jk xk . (A.3)

A.2 Three-point amplitudes in the Standard Model

In this section we present the complete set of non-vanishing three-point amplitudes in
the Standard Model. As already mentioned in Section 3.1.1, consistent factorisation of
the four-point amplitudes imposes constraints which not only fix the colour structures
but also relate the couplings of the various three-point amplitudes among each other.
Once these constraints are taken into account a small set of the numerical coefficients
in front of the amplitudes is still arbitrary and up to convention.

A(W I
−,W

J
−,W

K
+ ) = g2 ϵ

IJK ⟨1 2⟩3
⟨2 3⟩⟨3 1⟩ , A(W I

−,W
J
+,W

K
+ ) = −g2 ϵ

IJK [2 3]3
[1 2][3 1] ,

A(GA
−, G

B
−, G

C
+) = g3 f

ABC ⟨1 2⟩3
⟨2 3⟩⟨3 1⟩ , A(GA

−, G
B
+, G

C
+) = −g3 f

ABC [2 3]3
[1 2][3 1] ,

A(B−, ēm, en) = i g1 δnm
⟨1 2⟩2
⟨2 3⟩ , A(B+, ēm, en) = i g1 δnm

[1 3]2
[2 3] ,

A(B−, L̄
i
m, L

j
n) = −i g1

2 δmn δ
j
i

⟨1 2⟩2
⟨2 3⟩ , A(B+, L̄

i, Lj) = −i g1
2 δmn δ

j
i

[1 3]2
[2 3] ,

A(B−, ū
a
m, u

b
n) = −i 2 g1

3 δnm δa
b

⟨1 2⟩2
⟨2 3⟩ , A(B+, ū

a
m, u

b
n) = −i 2 g1

3 δnm δa
b

[1 3]2
[2 3] ,

A(B−, d̄
a
m, d

b
n) = i

g1
3 δnm δa

b

⟨1 2⟩2
⟨2 3⟩ , A(B+, d̄

a
m, d

b
n) = i

g1
3 δnm δa

b

[1 3]2
[2 3] ,

A(B−, Q̄
a,i
m , Qb,j

n ) = i
g1
6 δmn δ

j
i δ

b
a

⟨1 2⟩2
⟨2 3⟩ , A(B+, Q̄

a,i
m , Qb,j

n ) = i
g1
6 δmn δ

j
i δ

b
a

[1 3]2
[2 3]

A(B−, H̄
i, Hj) = i

g1
2 δj

i

⟨1 2⟩⟨3 1⟩
⟨2 3⟩ , A(B+, H̄

i, Hj) = −i g1
2 δj

i

[1 2][3 1]
[2 3] ,

A(W I
−, L̄

i
m, L

j
n) = i g2 δmn σ

I j
i

⟨1 2⟩2
⟨2 3⟩ , A(W I

+, L̄
i
m, L

j
n) = i g2 δmn σ

I j
i

[1 3]2
[2 3] ,
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A(W I
−, Q̄

a,i
m , Qb,j

n ) = i g2 δmn σ
I j

i δ
b
a

⟨1 2⟩2
⟨2 3⟩ , A(W I

+, Q̄
a,i
m , Qb,j

n ) = i g2 δmn σ
I j

i δ
b
a

[1 3]2
[2 3] ,

A(W I
−, H̄

i, Hj) = i g2 σ
I j

i

⟨1 2⟩⟨3 1⟩
⟨2 3⟩ , A(W I

+, H̄
i, Hj) = −i g2 σ

I j
i

[1 2][3 1]
[2 3] ,

A(GA
−, ū

a
m, u

b
n) = −i g3 δnm τA a

b

⟨1 2⟩2
⟨2 3⟩ , A(GA

+, ū
a
m, u

b
n) = −i g3 δnm τA a

b

[1 3]2
[2 3] ,

A(GA
−, d̄

a
m, d

b
n) = −i g3 δnm τA a

b

⟨1 2⟩2
⟨2 3⟩ , A(GA

+, d̄
a
m, d

b
n) = −i g3 δnm δj

i τ
A a

b

[1 3]2
[2 3] ,

A(GA
−, Q̄

a,i
m , Qb,j

n ) = i g3 δmn τ
A b

a δ
j
i

⟨1 2⟩2
⟨2 3⟩ , A(GA

+, Q̄
a,i
m , Qb,j

n ) = i g3 δmn δ
j
i τ

A b
a

[1 3]2
[2 3] ,

A(Q̄a,i
m , ūb

n, H̄
j) = iY(1)

mn ϵijδ
b
a ⟨1 2⟩ , A(Qa,i

m , ub
n, H

j) = −i Ȳ(1)
nm ϵijδa

b [1 2] ,

A(Qa,i
m , db

n, H̄
j) = iY(2)

nm δi
j δ

a
b [1 2] , A(Q̄a,i

m , d̄b
n, H

j) = i Ȳ(2)
mn δ

j
i δ

b
a ⟨1 2⟩ ,

A(Li
m, en, H̄

j) = iY(3)
nm δi

j [1 2] , A(L̄i
m, ēn, H

j) = i Ȳ(3)
mn δ

j
i ⟨1 2⟩ .

A.3 Infrared collinear anomalous dimensions in the Stan-
dard Model

In this section we are going to show an example of the computation of the collinear
anomalous dimension for the W bosons in the Standard Model and we will give the
result for all the particles in the spectrum of the theory.

We start by giving the stress-tensor form factor [127] following the normalisation pro-
cedure given in [237] for generic complex scalars, fermions and vectors respectively1:

⟨ϕ̄AϕB|Tαα̇ββ̇|0⟩ = 1
3δ

B
A

(
λα

1λ
β
1 λ̃

α̇
1 λ̃

β̇
1 − λ

α
1λ

β
2 λ̃

α̇
1 λ̃

β̇
2 − λ

α
1λ

β
2 λ̃

α̇
2 λ̃

β̇
1 − λ

α
2λ

β
1 λ̃

α̇
1 λ̃

β̇
2

− λα
2λ

β
1 λ̃

α̇
2 λ̃

β̇
1 + λα

2λ
β
2 λ̃

α̇
2 λ̃

β̇
2

)
⟨ψ̄AψB|Tαα̇ββ̇|0⟩ = 1

2δ
B
A

(
λα

1λ
β
1 λ̃

α̇
2 λ̃

β̇
1 + λα

1λ
β
1 λ̃

α̇
1 λ̃

β̇
2 − λ

α
1λ

β
2 λ̃

α̇
2 λ̃

β̇
2 − λ

α
2λ

β
1 λ̃

α̇
2 λ̃

β̇
2

)
⟨vI

−v
J
+|Tαα̇ββ̇|0⟩ = −2 δI J λα

1λ
β
1 λ̃

α̇
2 λ̃

β̇
2 ,

(A.4)

where A, B, I, J are generic colour indices. Once we fix the minimal form factor for the
1The different overall minus sign with respect to [237] comes from our different convention choice

for λα
−k = iλα

k and λ̃α̇
−k = iλ̃α̇

k , while the authors in [237] chose λα
−k = λα

k and λ̃α̇
−k = −λ̃α̇

k .
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stress tensor, we can apply the formula (4.35):

⟨W I
−W

J
+|Tµν |0⟩ ·

2∑
l=1

γ
(l)
coll

16π2 = 1
π

∑
{l1,l2}

∫ dΩ2
32π2

[
A4(phl1

l1
p

hl2
l2
→W I

−W
J
+)

−
3∑

k=1

g2
k Tk,l1 · Tk,l2

cos2 θ sin2 θ

]
· ⟨phl1

l1
p

hl2
l2
|Tµν |0⟩ ,

(A.5)

where the sum over {l1, l2} runs over the pairs{
{W−,W+}, {W+,W−}, {Q̄,Q}, {Q, Q̄}, {L̄, L}, {L, L̄}, {H̄,H}, {H, H̄}

}
. (A.6)

Considering that γW−
coll = γ

W+
coll := γW

coll, we can rewrite (A.5) as

γW
coll = 8π

∑
{l1,l2}

∫ dΩ2
32π2

[
A4(phl1

l1
p

hl2
l2
→W I

−W
J
+)−

3∑
k=1

g2
k Tk,l1 · Tk,l2

cos2 θ sin2 θ

]
·
⟨phl1

l1
p

hl2
l2
|Tµν |0⟩

⟨W I
−W

J
+|Tµν |0⟩

,

(A.7)
We will list now the different contributions from the W bosons (which need the infrared
divergence subtraction), the quarks, the leptons and the Higgs doublet, respectively:

γW
coll = −g2

2

(11
3 × 2− Nf

3 × 3− Nf

3 −
1
6

)
, (A.8)

where the factor of ×2 in the first term is the Casimir of the adjoint representation
of SU(2), while the factor of ×3 in the second term comes from the sum on different
colour of the quarks. This is the usual result for the SU(2) beta function with Nf Weyl
fermions and 1 scalar, both transforming in the fundamental of the gauge group.

Finally, we give the explicit results for the other states in the Standard Model. We
start from the vector bosons

γB
coll = 2

3 g
2
1

[(
Y 2

Q × 2 + Y 2
u + Y 2

d

)
× 3 +

(
Y 2

L × 2 + Y 2
e

)
+ Y 2

H

]
, (A.9)

γG
coll = −g2

3

(11
3 × 3− Nf

3 × 2× 2
)
, (A.10)

where the first ×2 in the second term of γG
coll comes from the sum over SU(2) indices

(or equivalently over d and u) and the second ×2 factor comes from the fact that SU(3)
is not a chiral theory and the quarks behave as a doublet of Dirac fermions. Then we
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have the collinear anomalous dimensions for the fermions(
γQ

coll

)
mn

= −3
(
g2

1 Y
2

Q + 3
4 g

2
2 + 8

6 g
2
3

)
δmn + Y(1)

mp Ȳ(1)
pn + Y(2)

mp Ȳ(2)
pn , (A.11)

(γu
coll)mn = −3

(
g2

1 Y
2

u + 8
6 g

2
3

)
δmn + 2 Ȳ(1)

np Y(1)
pm , (A.12)(

γd
coll

)
mn

= −3
(
g2

1 Y
2

d + 8
6 g

2
3

)
δmn + 2 Ȳ(2)

np Y(2)
pm , (A.13)(

γL
coll

)
mn

= −3
(
g2

1 Y
2

L + 3
4 g

2
2

)
δmn + Y(3)

mp Ȳ(3)
pn , (A.14)

(γe
coll)mn = −3 g2

1 Y
2

e δmn + 2 Ȳ(3)
np Y(3)

pm , (A.15)

and, finally, the Higgs

γH
coll = −4 g2

1 Y
2

H − 4 g2
2 ×

3
4 + 2 Tr Y(1) · Ȳ(1)× 3 + 2 Tr Y(2) · Ȳ(2)× 3 + 2 Tr Y(3) · Ȳ(3) ,

(A.16)
where 3

4 and 8
6 are the Casimir of the fundamental representation of SU(2) and SU(3),

respectively.
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B.1 Some relevant integrals

In this section we give the explicit expression for the integral functions appearing in
some our results, in particular in Section 5. These expressions are expanded in ϵ up to
the relevant orders, and only terms with an s-channel discontinuity are kept.

I2(s) ≃ i

16π2

[1
ϵ
− log(−s)

]
, (B.1)

I3(s) ≃ i

16π2 s

[ 1
ϵ2
− log(−s)

ϵ
+ 1

2 log2(−s)
]
, (B.2)

I3(s;m) ≃ − i

32
[ 1
m
√
−s

+ log
(
−s/m2)
π2m2

]
, (B.3)

I4(s, t;m) + I4(s, u;m) ≃ − 1
8π

1
mω

1
D − 4(−s)

D−6
2

≃ − 1
16π s (mω)

[1
ϵ
− log

(
− s

m2

) ]
.

(B.4)

B.2 Feynman rules

Below we list some of the Feynman rules used to obtain the tree-level amplitudes
needed in Section 5. Note that 1ϕm represents a massive scalar with momentum p1, 1α

represents a photon with momentum p1, and 3µν represents a graviton with momentum
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p3:

2ϕm

1ϕm

3µν
EH

= i

(
κ

2

) [
− ηµν(p1 · p2 +m2) + pµ

1p
ν
2 + pν

2p
µ
1

]
(B.5)

2β

1α

3µν
F2

= i

(
κ

2

) [1
2 η

αβ ηµν s12 − ηα(µ ην)β s12 − 2 ηαβ p
(µ
1 p

ν)
2

+ 2 ηα(µ p
ν)
2 pβ

1 + 2 ηβ(µ p
ν)
1 pα

2 − ηµν pβ
1 p

α
2

] (B.6)

2β

1α

3µν
FFR

= i

(
κ

2

)(
αγ

4

) [
ηα(µ ην)β s13 s23 − 2ηα(µ p

ν)
2 pβ

3 s13

−2ηβ(µ p
ν)
1 pα

3 s23 + 4p(µ
1 p

ν)
2 pα

3 p
β
3

] (B.7)

B.3 The tree-level amplitudes

In this appendix we collect for the reader’s convenience all the tree-level amplitudes we
have used in our derivations. All are consistent with the normalisations of (5.2), also
we assume all momenta to be outgoing.
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A(0)
SQED(1ϕ, 2ϕ, 3+, 4+) = e2m2 [3 4]2

s

(
i

t−m2 + i

u−m2

)
, (B.8)

A(0)
EH(1+, 2−, 3++, 4−−) = −i

(
κ

2

)2
[1 3]2⟨2 4⟩2 ⟨4|1|3]2

stu
, (B.9)

A(0)
EH(1ϕ, 2ϕ, 3−−, 4++) = −

(
κ

2

)2 ⟨3|1|4]4
s2

[ i

t−m2 + i

u−m2

]
, (B.10)

A(0)
EH(1++, 2++, 3−−, 4−−) = i

(
κ

2

)2 s12s13
s14

⟨3 4⟩8
⟨1 2⟩4⟨2 3⟩4⟨3 4⟩4⟨4 1⟩4 , (B.11)

A(0)
EH(1ϕ, 2ϕ, 3++, 4++) = −

(
κ

2

)2
m4 [34]2
⟨34⟩2

[ i

t−m2 + i

u−m2

]
, (B.12)

A(0)
EH(1ϕ, 2ϕ, 3−, 4+) = i

(
κ

2

)2 ⟨3|1|4]2
s

, (B.13)

A(0)
EH(1ϕ, 2ϕ, 3+, 4+) = 0 , (B.14)

AR3(1++, 2++, 3++, 4−−) = −i
(
κ

2

)2 (α′

4
)2

(⟨41⟩[13]⟨34⟩)2 [12][23][31]
⟨12⟩⟨23⟩⟨31⟩ , (B.15)

A(0)
R3 (1ϕ, 2ϕ, 3−−, 4++) = 0 , (B.16)

A(0)
R3 (1ϕ, 2ϕ, 3++, 4++) = i

(
κ

2

)2 (α′

4

)2
[34]4 (t−m2) (u−m2)

s
, (B.17)

A(0)
R4 (1++, 2++, 3++, 4++) = iβ

(
κ

2

)2 (
[1 2]4[3 4]4 + [1 3]4[2 4]4 + [1 4]4[2 3]4

)
, (B.18)

A(0)
R4 (1++, 2++, 3−−, 4−−) = iβ̃

(
κ

2

)2
[1 2]4⟨3 4⟩4 , (B.19)

A(0)
R4 (1ϕ, 2ϕ, 3h3 , 4h4) = 0 with h3, h4 ∈ {+,−,++,−−} , (B.20)

A(0)
FFR(1+, 2+, 3++) = i

(
κ

2

)(
αγ

4

)
[1 3]2[2 3]2 , (B.21)

A(0)
FFR(1+, 2+, 3−−, 4++) = −i

(
κ

2

)2 (αγ

4

)
[1 2]2 ⟨3|1|4]4

stu
, (B.22)

A(0)
FFR(1+, 2+, 3++, 4++) = i

(
κ

2

)2 (αγ

4

)( [1 3]2[3 4]2[4 2]2
s13

+ [2 3]2[3 4]2[4 1]2
s23

)
,

(B.23)

A(0)
FFR(1ϕ, 2ϕ, 3−, 4+) = −i

(
κ

2

)2 (αγ

4

)
⟨3|1|4]2 , (B.24)

A(0)
FFR(1ϕ, 2ϕ, 3+, 4+) = −i

(
κ

2

)2 (αγ

4

)
[3 4]2

[(
t−m2) (u−m2)

s
+m2

]
. (B.25)
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B.4 Hamiltonians with momentum-dependent potentials

The expressions presented here have been used in Section 6.

Consider a momentum-dependent Hamiltonian of the form

H = p⃗ 2

2µ
[
1 + 2µU(r)

]
+ V (r) , (B.26)

where p⃗ 2 = p2
r + p2

ϕ

r2 . From Hamilton’s equations we learn that pϕ := l is constant,
as well as ϕ̇ = l

µr2

[
1 + 2µU(r)

]
. The latter equation can be used to re-express l as a

function of Ω. We also have

ṙ = pr

µ

[
1 + 2µU(r)

]
, (B.27)

and, for circular orbits, we see that pr = 0 and hence ṗr = 0. In this case, the Hamilton
equation ṗr = −∂H

∂r simplifies to

V ′(r◦)− l2

µr3
◦

[
1 + 2µU(r◦)

]
+ l2

r2
◦
U ′(r◦) = 0 , (B.28)

where r◦ is the radius of the circular orbit. We will also set Ω := ϕ̇(r = r◦), or

Ω := l

µr2
◦

[
1 + 2µU(r◦)

]
. (B.29)

Using this to eliminate l in favour of Ω, we finally get

V ′(r◦)− µr◦Ω2

1 + 2µU(r◦)
[
1− µr◦U

′(r◦)
1 + 2µU(r◦)

]
= 0 . (B.30)

This equation determines r◦ as a function of Ω. In the absence of a perturbation, we
have

ΩN = l

µr2
N

, (B.31)

where rN is the radius of the circular orbit in the EH theory, given in (6.29).
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Appendix C

Some six-dimensional results

In this section we present some six-dimensional tree-level results, both for amplitudes
and non-minimal form factors, needed for the unitarity calculations in Section 7.

C.1 Six-Dimensional Scattering Amplitudes

As we already mentioned, in six dimensions the notion of helicity is encoded in a
tensorial structure, which must be reflected by the amplitudes. The advantage of
this tensorial nature of helicity is that a single (tensorial) expression of the amplitude
contains all the possible four-dimensional helicity configurations, when dimensional
reduced. The drawback however is that one looses some of the simplicity which was
peculiar to specific helicity configurations. In particular there is no concept of MHV
amplitudes.

In Section 7.1.2 we have chosen the embedding of the four dimensions into the six-
dimensional space. Thus the four-dimensional helicity structure is embedded in the
six-dimensional amplitudes. In general this represents a good consistency check for
six-dimensional results. In fact for an appropriate limit these results must return their
four-dimensional counterparts. More specifically, accordingly to our embedding, it
turns out that states characterised by little-group indices (1, 1) and (2, 2) correspond
to the positive and the negative helicity states in the four-dimensional limit (m, m̃→ 0),
because of representation we chose for the gamma matrices. On the other hand, in four
dimensions the additional (1, 2) and (2, 1) components coincide with two 4D scalars.
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The four-gluon amplitude, computed in [152], is

Ag(1aȧ, 2bḃ, 3cċ, 4dḋ) =

1aȧ

4dḋ

2bḃ

3cċ

tree = − i

s12s23
⟨1a 2b 3c 4d⟩[1ȧ, 2ḃ, 3ċ, 4ḋ] .

(C.1)

According to our embedding, we expect Ag(122, 222, 311, 411) to reproduce the MHV
amplitude A(1−, 2−, 3+, 4+) in the limit mi, m̃i → 0 for i = 1, . . . , 4, which is indeed
the case:

Ag(122, 222, 311, 411)
∣∣∣∣
4D

= i
⟨1 2⟩4

⟨1 2⟩⟨2 3⟩⟨3 4⟩⟨4 1⟩ .
(C.2)

While Ag(112, 221, 311, 422) reproduces the four-point amplitude with two scalars and
two opposite-helicity gluons A(1ϕ, 2ϕ̄, 3+, 4−):

Ag(112, 221, 311, 422) = i
⟨1 4⟩2⟨2 4⟩2

⟨1 2⟩⟨2 3⟩⟨3 4⟩⟨4 1⟩ . (C.3)

Another amplitude of which we make frequent use is the six-dimensional four-point
amplitude with two gluons and two scalars [113]

As(1aȧ, 2bḃ, 3, 4) =

1aȧ

4

2bḃ

3

tree = − i

4s12s23
⟨1a 2b 3c 3c⟩[1ȧ, 2ḃ, 4

ḋ, 4ḋ]. (C.4)

The massless scalars in six dimensions behave as massive scalars when reduced to
four dimensions. Taking the limits m1,m2, m̃1, m̃2 → 0 and choosing the helicity
components we find the four-point amplitudes for gluons and massive scalars in four
dimensions:

As(122, 211, 3, 4)
∣∣∣∣
4D

= −i
⟨1|/p(4)

3 |2]
s12s23

,

As(111, 211, 3, 4)
∣∣∣∣
4D

= iµ2 [1 2]2
s12s23

,

(C.5)

where µ2 coincides in this case with the mass of the scalar squared.

Finally, the last amplitude one needs is the five-point tree-level amplitude. The ampli-
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tude with five-gluons has first been computed in [152]. In [386,115] this result has been
extended to the five-point superamplitude in the N = (1, 1) theory. This superampli-
tude also contains information about the amplitude with scalar fields which is needed
for the scalar subtraction when doing dimensional reconstruction. The amplitude with
five gluons is

Ag(1aȧ, 2bḃ, 3cċ, 4dḋ, 5eė) = i

s12s23s34s45s51
(−Maȧbḃcċdḋeė +Daȧbḃcċdḋeė) (C.6)

with
Maȧbḃcċdḋeė = ⟨1a|/p2/p3/p4/p5|1ȧ]⟨2b 3c 4d 5e⟩[2ḃ 3ċ 4ḋ 5ė] + cyclic , (C.7)

and

2Daȧbḃcċdḋeė = ⟨1a Σ̃2ḃ]⟨2b 3c 4d 5e⟩[1ȧ 3ċ 4ḋ 5ė] + ⟨3c Σ̃4ḋ]⟨1a 2b 4d 5e⟩[1ȧ 2ḃ 3ċ 5ė]

+ ⟨4d Σ̃5ė]⟨1a 2b 3c 5e⟩[1ȧ 2ḃ 3ċ 4ḋ]− ⟨3c Σ̃5ė]⟨1a 2b 4d 5e⟩[1ȧ 2ḃ 3ċ 4ḋ]

− [1ȧ Σ2b⟩⟨1a 3c 4d 5e⟩[2ḃ 3ċ 4ḋ 5ė]− [3ċ Σ4d⟩⟨1a 2b 3c 5e⟩[1ȧ 2ḃ 4ḋ 5ė]

− [4ḋ Σ5e⟩⟨1a 2b 3c 4d⟩[1ȧ 2ḃ 3ċ 5ė] + [3ċ Σ̃5e⟩⟨1a 2b 3c 4d⟩[1ȧ 2ḃ 4ḋ 5ė] .
(C.8)

The amplitude with two scalars and three gluons is

Ag(1ϕ, 2ϕ̄, 3cċ, 4dḋ, 5eė) = − i

s12s23s34s45s51
(Ms

cċdḋeė
+Ds

cċdḋeė
) , (C.9)

with

Ms
cċdḋeė

= ⟨3c|/p1|4d⟩[3ċ|/p2|4ḋ]⟨5e|/p1/p2/p3/p4|5ė] + ⟨4d|/p1|5e⟩[4ḋ|/p2|5ė]⟨3c|/p4/p5/p1/p2|3ċ]

+ ⟨3c|/p1|5e⟩[3ċ|/p2|5ė]⟨4d|/p5/p1/p2/p3|4ḋ] + 1
2⟨3c 4d 5e 1a⟩[3ċ 4ḋ 5ė 2ḃ]⟨1a Σ̃ḃ

2] ,
(C.10)

and

2Ds
cċdḋeė

= −⟨4d|/p1|5e⟩[3ċ|/p2|5ė]⟨3c Σ̃4ḋ] + ⟨4d|/p1|5e⟩[3ċ|/p2|4ḋ]⟨3c Σ̃5ė]

−⟨3c|/p1|5e⟩[3ċ|/p2|4ḋ]⟨4d Σ̃5ė] + ⟨3c|/p1|5e⟩[4ḋ|/p2|5ė][3ċ Σ4d⟩

−⟨3c|/p1|4d⟩[4ḋ|/p2|5ė][3ċ Σ5e⟩+ ⟨3c|/p1|4d⟩[3ċ|/p2|5ė][4ḋ Σ5e⟩ .

(C.11)

The Σ and Σ̃ that appear in the previous formulae are defined as

|Σia⟩ =
(
/pi/pi+1/pi+2/pi+3 − /pi/pi+3/pi+2/pi+1

)
|ia⟩

|Σ̃ia] =
(
/pi/pi+1/pi+2/pi+3 − /pi/pi+3/pi+2/pi+1

)
|ia]

(C.12)
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where we define /p6 ≡ /p1.

C.2 Non-Minimal Form Factors

In this section we will address the computation of six-dimensional tree-level building
blocks using BCFW recursion relations1. In particular we briefly comment on the main
steps of the calculation of TrF 2 in the non-minimal configuration.

q

1aȧ

2bḃ

3cċ

= q

3̂cċ

1̂aȧ

2bḃ + q

1̂aȧ

2bḃ

3̂cċ

A B

Figure C.1: BCFW construction of the tree-level non-minimal TrF 2 form factor in six di-
mensions.

Diagrammatically the terms we need to compute are represented in Figure C.1. In
this computation one needs to make use of the three-point on-shell amplitudes in six-
dimensions. These are most conveniently defined in terms of a set of auxiliary SU(2)
spinors which we denote by ua, ũȧ, wa and w̃ȧ, following the conventions of [152]. These
objects are not Lorentz-invariants in six dimensions and thus are not allowed to ap-
pear in the final expression, however they enjoy useful properties which simplify the
calculation. The on-shell three-point amplitude cleanly expressed in terms of the above
mentioned spinors:

A3(1aȧ, 2bḃ, 3cċ) = iΓabc(1, 2, 3) Γ̃ȧḃċ(1, 2, 3) , (C.13)

with
Γabc(1, 2, 3) = u1 au2 bw3 c + u1 aw2 bu3 c + w1 au2 bu3 c ,

Γ̃ȧḃċ(1, 2, 3) = ũ1 ȧũ2 ḃw̃3 ċ + ũ1 ȧw̃2 ḃũ3 ċ + w̃1 ȧũ2 ḃũ3 ċ .

(C.14)

Consider now applying six-dimensional BCFW as in Figure C.1. The hatted momenta
are shifted by a quantity proportional to the complex parameter z as

p̂1 = p1 + z Xaȧ ε1 aȧ ,

p̂3 = p3 − z Xaȧ ε1 aȧ ,
(C.15)

1For a more detailed account of six-dimensional BCFW see [152].
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where Xaȧ is an arbitrary tensor needed to saturate the little group indices. This
tensor, which also multiplies C.19, will be removed at the end of the calculation. The
on-shell condition p̂2

1,2 = 0 implies detX = 0, which allows to express X as

Xaȧ = xax̃ȧ . (C.16)

Furthermore we can define the quantities

yb = x̃ȧ⟨3b 1ȧ]−1 , ỹḃ = xa⟨1a 3ḃ]−1 , (C.17)

which allow us to rewrite the momentum shift C.15 in terms of the spinor shifts

|1̂a⟩ = |1a⟩+ z xayb |3b⟩ ,

|3̂b⟩ = |3b⟩+ z ybxa |1a⟩ ,

|1̂ȧ] = |1ȧ]− z x̃ȧỹḃ |3ḃ] ,

|3̂ḃ] = |3ḃ]− z ỹḃx̃ȧ |1ȧ] .

(C.18)

Considering now for example term A in Figure C.1 one has

(A) = XaȧA3(1̂aȧ, 2bḃ, k̂dḋ) −i
s12

F
(0)
O2

(−k̂dḋ, 3̂cċ; q)

= i

s12
Xaȧ Γabd(1̂, 2, k̂) Γ̃ȧḃḋ(1̂, 2, k̂) ⟨k̂d 3̂ċ]⟨3̂c k̂

ḋ] .
(C.19)

Before substituting the definitions (C.18) in (C.19), we make use of the properties of
u, ũ, w, w̃ to simplify this expression. The most useful identities are

ui awi b − ui bwi a = ϵab , ũi ȧw̃i ḃ − ũi ḃw̃i ȧ = ϵȧḃ ,

|ui · i⟩ = |uj · j⟩ , |ũi · i] = |ũj · j] ∀ i, j = 1, 2, k ,

|w1 · 1⟩+ |w2 · 2⟩+ |wk · k⟩ = 0 ,

|w̃1 · 1] + |w̃2 · 2] + |w̃k · k] = 0 ,

(C.20)

where we used the shorthand notation ui a|ia⟩ = |ui · i⟩ and ũi ȧ|iȧ] = |ũi · i]. These
identities allow us to rewrite

Γabd(1̂, 2, k̂) ⟨k̂d| = ⟨1̂a|u2 b + ⟨2b|u1̂ a ,

Γ̃ȧḃḋ(1̂, 2, k̂) |k̂ḋ] = |1̂ȧ] ũ2 ḃ + |2ḃ] ũ1̂ ȧ ,
(C.21)
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which in turn leads to

(A) = i

s12
Xaȧ

(
⟨1̂a 3̂ċ]⟨3̂c 1̂ȧ]u2 bũ2 ḃ + ⟨1̂a 3̂ċ]⟨3̂c 2ḃ]u2 bũ1 ȧ

+ ⟨2b 3̂ċ]⟨3̂c 1̂ȧ]u1̂ aũ2 ḃ + ⟨2b 3̂ċ]⟨3̂c 2ḃ]u1̂ aũ1̂ ȧ

)
.

(C.22)

To further simplify the result, and to eliminate the residual SU(2) spinors, we make
the following observations:

• pairs of ui, ũj with i ̸= j can be immediately rewritten in terms of six-dimensional
invariants as

u1 aũ2 ḃ = ⟨1a 2ḃ] , u2 bũ1 ȧ = −⟨2b 1ȧ] ,

u2 bũk ċ = ⟨2b kċ] , uk cũ2 ḃ = −⟨kc 2ḃ] .
(C.23)

• pairs of ui, ũj with i = j can be rewritten using the identity [386]

ui aũi ȧ = (−1)Pij

siP
⟨ia|pjP |iȧ] , (C.24)

where pj is any other momentum belonging to the same three-point amplitude as
pi, and Pij = +1 for clockwise ordering of the states (i, j). Also P is any given
arbitrary momentum.

Repeating a similar reasoning on term (B) one gets

(B) = i

s23
Xaȧ

(
⟨1̂a 3̂ċ]⟨3̂c 1̂ȧ]u2 bũ2 ḃ + ⟨1̂a 3̂ċ]⟨2b 1̂ȧ]u3 cũ2 ḃ

+ ⟨1̂a 2ḃ]⟨3̂c 1̂ȧ]u2 bũ3̂ ċ + ⟨1̂a 2ḃ]⟨2b 1̂ȧ]u3̂ cũ3̂ ċ

)
.

(C.25)

The on-shell condition for the intermediate propagators in (A) and (B) defines two
different BCFW shift parameters, which we label zA and zB respectively. By computing
zA and zB one can see that they are related by

zB = −s23
s12

zA . (C.26)

Thanks to this relation multiple cancellations happen between terms in (A) and terms
in (B). With some further algebra and removing the Xaȧ tensor, one arrives at (7.63).

The analytic expression of the six-dimensional form factor F (0)
O2

(1aȧ, 2bḃ, 3cċ; q) could
also be computed using Feynman diagrams, see for example [113]. Due to the low
multiplicity of this form factor, there is just a small number of contributing Feynman
diagrams. The diagrammatic approach may thus be considered as equivalently viable as
BCFW in this case, the latter method however leads to a far more compact expression
with all the symmetries manifest.
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O2
q

1

2

3cċ

= q

3̂cċ

1̂

2

Figure C.2: BCFW construction of the tree-level non-minimal TrF 2 form factor with two
scalars.

In a similar way but with much less involved calculation, we can find both the non-
minimal form factors with two scalars and one gluon (7.64) and (7.65). In Figure C.2
and Figure C.3 we show the BCFW factorization channels for these calculations. The
only missing ingredient is the three-point amplitude with two scalars and one gluon in
six dimensions, which turns out to be very simple:

A(1aȧ, 2, 3) = i u1aũ1ȧ . (C.27)

O2,s

q

1

2

3cċ

= q

1̂

2

3̂cċ

Figure C.3: BCFW construction of the tree-level non-minimal Dϕ2 form factor.

C.3 Integral Expressions

The integrals needed in the calculations of Section 7 are:
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p1

p2

=
∫ d4−2ϵl

(2π)4−2ϵ

1
l2 (l + p1 + p2)2 = i

cΓ
(4π)2−ϵ

(−s12)−ϵ

ϵ(1− 2ϵ) ,

p1

p2

=
∫ d4−2ϵl

(2π)4−2ϵ

1
l2 (l + p2)2 (l + p1 + p2)2 = − i cΓ

(4π)2−ϵ

(−s12)−1−ϵ

ϵ2
,

p

q

= − i cΓ
(4π)2−ϵ

1
ϵ2

[
(−q2)−ϵ − (−p2)−ϵ

q2 − p2

]
,

(C.28)
and

p3 p2

p1q

=
∫ d4−2ϵl

(2π)4−2ϵ

1
l2 (l + p1)2 (l + p1 + p2)2 (l + p1 + p2 + p3)2

=− 2 i cΓ
(4π)2−ϵ

1
s12s23

{
− 1
ϵ2

[
(−s12)−ϵ + (−s23)−ϵ − (−q2)−ϵ

]
+

+ Li2
(

1− s12
q2

)
+ Li2

(
1− s23

q2

)
+ 1

2 log2
(
s12
s23

)
+ π2

6

}
+O (ϵ) ,

(C.29)
where

cΓ = Γ[1 + ϵ] Γ[1− ϵ]2
Γ[1− 2ϵ] . (C.30)

This results are exact to all orders in ϵ, and the expression of the corresponding integral
functions in a different number of dimensions can be obtained by simply replacing ϵ

with the appropriate value, for instance ϵ 7→ ϵ − 1 and ϵ 7→ ϵ − 2 for d = 6 − 2ϵ and
d = 8− 2ϵ, respectively. In particular it turns out that all the integrals which give the
rational terms, i.e. those with a non-trivial numerator written in (7.28), can always be
expressed as integrals in higher dimensions [110]. Indeed consider the general integral
function

Id
n[µ2p] =

∫ d4−2ϵl

(2π)4−2ϵ
(µ2)pfn ({pi}, l) =

∫ d4l(4)

(2π)4

∫ d−2ϵµ

(2π)−2ϵ
(µ2)pfn ({pi}, l) , (C.31)
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and the µ-measure can be rewritten as∫
d−2ϵµ (µ2)p = 1

2

∫
dΩ−1−2ϵ

∫ +∞

0
dµ2 (µ2)−1−ϵ+p

=
∫

Ω−1−2ϵ∫
dΩ2p−1−2ϵ

∫
d2p−2ϵµ .

(C.32)

Then (C.31) can be written as

Id
n[µ2p] = (2π)2p

∫
dΩ−1−2ϵ∫

dΩ2p−1−2ϵ

∫ d4+2p−2ϵl

(2π)4+2p−2ϵ
fn ({pi}, l)

= −ϵ(1− ϵ)(2− ϵ) · · · (p− 1− ϵ)(4π)pId+2p
n [1] ,

(C.33)

where ∫
dΩx = 2π x+1

2

Γ[x+1
2 ]

. (C.34)

We can then obtain the following values of the integrals involving the mass term µ:

p1

p2

µ2 = −i
(4π)2 ·

s12
6 +O(ϵ) ,

p1

p2

µ2 = i

(4π)2 ·
1
2 +O(ϵ) ,

p1

p2

µ4 = i

(4π)2 ·
s12
24 +O(ϵ) ,

p3 p2

p1q

µ2 = O(ϵ) ,

p3 p2

p1q

µ4 = −i
(4π)2 ·

1
6 +O(ϵ) ,
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