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Zusammenfassung

Diese Arbeit konzentriert sich auf die Doppelkopie-Relation zwischen Eichtheorien und Gra-
vitation sowie ihrer Anwendung in der klassischen Streuung massiver kompakter Objekte.
Die Doppelkopie-Relation besagt, dass Observable in einer Gravitationstheorie durch “Qua-
drieren” entsprechender Größen in einer Eichtheorie abgeleitet werden können. Es ermöglicht
die Verwendung moderner Techniken der Eichtheorien, um Probleme wie die Streuung von
Schwarzen Löchern in der Gravitation anzugehen.

Wir betrachten zunächst die massive skalare Quantenchromodynamik (SQCD) und führen
die Doppelkopie für deren Streuamplituden durch. Aus den resultierenden Amplituden
rekonstruieren wir die effektive Lagrange-Funktion. Diese besteht aus einer Graviationstheorie
gekoppelt an massive Skalare, ein Axion und ein Dilaton. Zusätzlich erzeugt es auch skalare
Selbstwechselwirkungsterme. Der entstehende Lagrangian wird explizit bis zur sechsten
Ordnung von Skalarfeldern konstruiert, und es wird eine Form aller Ordnungen postuliert.

Es folgt die Erforschung der Doppelkopie massiver Punktteilchen, die als klassische Versi-
on der SQCD-Doppelkopie angesehen werden kann. Die Quellen werden durch Weltlinien-
Quantenfeldtheorien formuliert, die mit Yang-Mills, biadjungiertem Skalar und Zwei-Form-
Dilaton-Gravitation gekoppelt sind. Wir schlagen eine Doppelkopievorschrift für die eikonalen
Phase vor, die verwendet werden kann, um Observablen wie die Impulsablenkung im Streu-
prozeß abzuleiten und explizit bis zur nächstführenden Ordnung (NLO) zu überprüfen. Wir
demonstrieren ferner ihre Beziehung zum klassischen Limes der Streuamplituden und erklären
ihre Erweiterung auf die Bremsstrahlung.

Wir untersuchen ferner die nicht-perturbative Doppelkopie klassischer Lösungen. Insbe-
sondere erweitern wir die Kerr-Schild-Abbildung, die es ermöglicht, Lösungen der Einstein-
Gleichung aus der Eichtheorie zu erhalten, auf den Fall eines Probeteilchens, das sich im
Kerr-Schild-Hintergrund bewegt. Die Umlaufbahnen einer Testladung im nicht-Abelschen
Coulomb-Hintergrund und auf der Äquatorialebene des rotierenden Kerr-ähnlichen Hinter-
grunds werden analysiert und kategorisiert. Wir finden darüberhinaus eine neue Doppelkopie
zwischen den erhaltenen Ladungen auf der Eichtheorie und den Gravitationsseiten, die
natürlich sowohl für gebundene als auch für ungebundene Zustände funktioniert.

Schließich untersuchen wir die Post-Minkowski’sche (PM) und Post-Newton’sche (PN)
Entwicklungen des gravitativen effektiven Drei-Körper-Potentials. Wir liefern auf 2PM Ebene
ein formelles nicht-lokales Ergebnis und entwickeln es in der Geschwindigkeit. Wir stellen
die Wechselwirkungsterme bis zur Ordnung G2v2 wieder her und präsentieren die neuartigen
G2v4-Beiträg auf 3PN Ebene. Um 2PM-Beiträge zu höherer Ordnung in PN zu erhalten,
berechnen wir eine Familie von 3-Punkt-Integralen aus einem Yangian-Bootstrap-Ansatz.
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Abstract

This thesis focuses on the double copy relation between gauge theories and gravity and its
application in the classical scattering of massive compact objects. The double copy relation
states that observables in a gravitational theory can be derived from “squaring” corresponding
quantities in a gauge theory. It allows using modern techniques of gauge theories to tackle
problems such as black hole scattering in gravity.

We first consider massive scalar quantum chromodynamics (SQCD) and perform the
double copy procedure for the scattering amplitudes. We reconstruct the effective Lagrangian
from the resulting amplitudes. It yields a gravitational theory of massive scalars coupled to
gravity, axion, and dilaton. Additionally, it also produces scalar self-interaction terms. The
emerging Lagrangian is constructed explicitly up to the sixth order of scalar fields, and an
all-order form is conjectured.

It is followed by exploring the double copy of massive point particles, which can be seen as
the classical version of the SQCD double copy. The source objects are formulated by worldline
quantum field theories coupled to Yang-Mills, bi-adjoint scalar, and two-form-dilaton-gravity.
We propose a double copy prescription for the eikonal phases, which can be used to derive
observables such as momentum deflection and check it explicitly up to next-to-leading order
(NLO). We demonstrate its relation to the classical limit of scattering amplitudes and explain
its extension to classical radiation.

We also investigate the non-perturbative double copy of classical solutions. Specifically,
we extend the Kerr-Schild mapping, which allows obtaining solutions of the Einstein equation
from that of gauge theory, to the case of a probe particle moving in the Kerr-Schild background.
The orbits of a test charge in non-Abelian Coulomb background and on the equatorial plane
of the spinning Kerr-like background are analyzed and categorized. We also find a new double
copy between the conserved charges on the gauge theory and the gravity sides, which works
naturally for both bound and unbound states.

Additionally, we study the Post-Minkowskian (PM) and Post-Newtonian (PN) expansions
of the gravitational three-body effective potential. We provide a formal non-local result at
2PM and expand it in the slow-motion limit. We recover the interaction terms up to G2v2

and present the novel G2v4-contributions at 3PN. To obtain 2PM contributions to higher
order in PN, we compute a family of 3-point integrals from a Yangian bootstrap approach.
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Quintavalle, Marco Saragnese, and Anne Spiering.

I would also like to take the opportunity to thank my friends in China for making me feel
close to them despite the physical distance. Special thanks to Fan Sun for being the best
listener, offering emotional support, and sharing many things in his life with me. I cannot
make it to the end of my Ph.D. without him. I am also thankful to Jiaen Zhan for keeping
me company even from thousands of kilometers away.

Last but not least, I am in debt to my parents, my grandmother, and my sisters, who
support me in every way possible. They are the most important to me, so this thesis is
dedicated to them.

xi





Contents

Zusammenfassung v

Abstract vii

Publications ix

Acknowledgments xi

1 Introduction 1

1.1 The Double Copy Relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Four-point Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Post-Minkowskian Expansion of Gravity . . . . . . . . . . . . . . . . . . . . . 9

1.4 Post-Newtonian Expansion of Gravity . . . . . . . . . . . . . . . . . . . . . . 10

1.5 Classical Double Copy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.6 Worldline formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Double Copy of Massive Scalar QCD 17

2.1 Amplitudes of Massive Scalar QCD . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.1 Basics of SQCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.2 SQCD Amplitudes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 The Double Copy of Massive Scalar QCD Amplitudes . . . . . . . . . . . . . 20

2.3 Two-Form-Dilaton-Gravity with Massive Scalars . . . . . . . . . . . . . . . . 22

2.3.1 Action and Feynman Rules . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.2 Matching to Double Copy Amplitude . . . . . . . . . . . . . . . . . . 24

2.4 Further details on the Double Copy Action . . . . . . . . . . . . . . . . . . . 26

3 Classical Double Copy of Worldline QFT 29

3.1 Basics of Worldline Quantum Field Theory . . . . . . . . . . . . . . . . . . . 30

3.1.1 WQFT of Bi-adjoint scalar, Yang-Mills and Dilaton Gravity . . . . . . 32

3.1.2 WQFT Feynman Rules . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Eikonal Phase and the Double Copy . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.1 Eikonal at Leading Order (LO) . . . . . . . . . . . . . . . . . . . . . . 40

3.2.2 Eikonal at Next-to-Leading Order (NLO) . . . . . . . . . . . . . . . . 40

3.3 Radiation and the Double Copy . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4 From Amplitude to Eikonal . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4.1 From SQCD amplitude and WQFT Eikonal . . . . . . . . . . . . . . . 44

3.5 A Comment on the WQFT double copy . . . . . . . . . . . . . . . . . . . . . 47

xiii



4 Geodesics from Classical Double Copy 49
4.1 Conserved Charges and the Double Copy . . . . . . . . . . . . . . . . . . . . 50
4.2 Test Charge in Coulomb-like Background . . . . . . . . . . . . . . . . . . . . 51

4.2.1 Massive Probe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2.2 Massless Probe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2.3 To Schwarzschild Geodesics . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3 Test Charge in Spinning Background . . . . . . . . . . . . . . . . . . . . . . . 57
4.3.1 Massive Probe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.3.2 Massless Probe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.3.3 To Kerr Geodesics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4 Comments on geodesics double copy . . . . . . . . . . . . . . . . . . . . . . . 63

5 Three-body Effective Potential in General Relativity 65
5.1 Effective Worldline Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.2 Effective Potential to Second Order Post-Minkowskian . . . . . . . . . . . . . 67
5.3 The 3δ Integral in PM expansion . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.4 Post-Newtonian Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.4.1 1PN Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.4.2 Integral bootstrap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.4.3 2PN Expansion and the Two Body Limit . . . . . . . . . . . . . . . . 77
5.4.4 Contribution to 3PN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.5 Comments on the three-body problem . . . . . . . . . . . . . . . . . . . . . . 80

6 Summary and Outlook 83

A Circular orbits for the spinning YM potential 85

B Derivatives of the 3δ Integral in PM expansion 87

C Details on 3PN of the three-body potential 89

xiv



Chapter 1

Introduction

In our modern understanding of the universe, gauge theory and general relativity play central
roles in formulating physical phenomena. The strong, weak, and electromagnetic forces
are well described by Yang-Mills (YM) gauge theories. They are quantum consistent at
the microscopic level and have made high precision predictions of particle scattering in the
Standard Model, which successfully meet measurements of collision experiments. For instance,
the spontaneous symmetry breaking of the electroweak SU(2) ⊗ U(1) theory predicts the
existence of a Higgs boson, which was found in the Large Hadron Collider at CERN [6,7].
Gravity, on the other hand, is distinct in the sense that it dominates the long-distance
interaction of macroscopic objects and is modeled in a geometric way by Einstein’s general
relativity (GR). It explains an extensive range of phenomena, such as the formation of the
solar system, the existence of black holes and gravitational waves, and describes the dynamics
of the cosmos. With modern advanced telescopes, the Event Horizon Telescope Collaboration
can directly take pictures of black holes and their vicinity [8]. However, it is well known that
general relativity is incompatible with quantum mechanics in the high-energy (short distance)
limit. Seeking a formulation of quantum gravity remains an open question. It is one of the
most crucial issues in physics.

Despite the apparent distinctions between gauge and gravity theories, there is a surprising
connection between the two classes of theories, known as the double copy relation, which
allows making predictions in gravity directly from gauge theories. Although in this case, one
usually considers some extensions of gravity, usually with some supersymmetries. The double
copy could lead to a novel conceptual understanding of the unification of gauge theory and
gravity and to new technical methods that drastically simplify computations in gravitational
observables.

The gauge/gravity double copy relation simply states that in some sense, gravity theories
can be seen as the squaring of gauge theories, often sketched as1,

(Gravity) ∼ (gauge theory)⊗ (gauge theory).

This is initially discovered for scattering amplitudes in string theory. The tree-level closed
string amplitudes are found to be expressible as a sum over products of gauge-invariant open
string tree amplitudes and a so-called “kernel”, known as the KLT relation after Kawai,
Lewellen, and Tye [9]. In the low energy limit, the open string is reduced to Yang-Mills

1Note that by gravity, we usually refer to some generalizations of Einstein’s gravity with additional massless
fields such as dilaton, B-field, and sometimes with additional symmetries.
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CHAPTER 1. INTRODUCTION

theories, and the closed string gives Einstein gravity coupled to a dilaton and an anti-
symmetric B-field, usually referred to as the N = 0 supergravity. Hence, the KLT relation
is transferred to the amplitudes of gauge and N = 0 gravity. In 2013, Bern, Carrasco, and
Johansson (BCJ) discovered that the double copy was a result of the duality between color
factors and the kinematic numerators [10, 11], which says that it is possible to rearrange
the gauge-dependent kinematic numerators to satisfy the same algebraic equations with the
color factors in Yang-Mills theory. One can then simply replace the color factors with the
numerators to obtain the amplitudes in gravity. At tree level, the color-kinematics duality
is strictly proven [12–17], and the double copy holds as a consequence. Although it is not
entirely proven for loop amplitudes, many explicit pieces of evidence exist at the level of
integrands [11,18–38]. For recent reviews on the double copy relation, see, for example [39,40]

Scattering amplitudes have always been at the heart of making predictions from quantum
field theories. However, the traditional approach calculation requires drawing all Feynman
diagrams, the number of which proliferates in the number of external legs and loop order.
Despite the complexity, the final results could be much simpler than the intermediate steps.
For example, the tree-level maximal helicity violating (MHV) all-gluon amplitude fits into
one line given by the Parke-Taylor formula [41]. Exploiting the fact that amplitudes are
gauge-independent and on-shell, modern techniques, such as generalized unitarity, on-shell
recursion, and spinor-helicity formalism, allow to land on the final answers quickly. The
gravitational scatterings are even more complicated compared to YM ones due to the higher-
ranked tensor structures. The double copy thus provides a fast way to amplitudes in gravity
theories, which can be further related to the classical observable of compact astronomical
objects.

Since the LIGO/Virgo detectors observed gravitational waves for the first time in 2015 [42],
astronomy and cosmology research has entered a new era of multi-messengers. The next-
generation detectors require having high precision predictions of gravitational waveforms,
especially for future observatories. The past few years have witnessed the success of using
our knowledge of scattering amplitudes for high-energy particle collisions to higher-order
calculations in the perturbative regime of the two-body problem. For recent reviews, see [40,43].
The connection of quantum amplitudes to classical observables is systematically formulated
in an on-shell method developed by Kosower, Maybee, and O’Connell (KMOC) [44]. They
carefully analyze the length scale in scattering events in the classical limit. Take scattering
binaries as an example. The masses are required to be much larger than the Planck mass
m1,m2 ≫MPlanck, and the impact parameter should be much larger than the Schwarzschild
radius, which should be larger than the de Broglie wavelength, |b| ≫ 2Gmi/c

2 ≫ λ. In the
momentum space, the latter is equivalent to requiring the momentum transfer to scale as
the Planck constant |q| ∼ ℏ|q|, thus much smaller than the incoming/outgoing momenta
|p| similar to the Regge limit. The classical observables are taken as this classical limit of
the expectation values of the quantum operator evaluated with coherent states, which are
then associated with corresponding amplitudes. The conservative dynamics of binaries are
related to four-point amplitudes of two pairs of massive external legs, and the radiation can
be computed from five-point amplitudes with an additional massless outgoing line.

Recent progress in calculating the dynamics of inspiral binaries in the post-Minkowskian
(PM) regime using amplitude techniques has taken advantage of on-shell methods, the double
copy, and effective field theories. For example, the tree-level gravitational amplitudes are
computed at the third PM order via the double copy of corresponding YM amplitudes [45].
Then the classical limit is taken to discard quantum contributions, drastically simplifying the
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expressions. The tree amplitudes are glued together by the generalized unitarity method,
giving the classical loop-level contributions. After performing the integration using techniques
such as the separation of regions and integration by parts, the results are then matched to
effective field theory Lagrangian, yielding the off-shell potential, which is expected to be
applied to also bound states.

It is worth mentioning that from a conceptual perspective, the double copy also provides
fascinating insights into the gauge invariant and on-shell theory, as well as implicit connections
between superficially distinct theories. The double copy relation goes beyond Yang-Mills
and N = 0 gravity. The simplest example is the bi-adjoint scalar theory (ϕ3 theory), whose
amplitudes carry two copies of color factors and can be obtained by replacing the kinematic
numerators in the YM amplitudes with the color factors. Hence, it is usually seen as the
zeroth copy of YM theory. Furthermore, since the double copy of bi-adjoint and YM gives YM
theory again, it is often treated as an identity in the double copy construction. Many other
theories can be related by the double copy relations. Suppose one turns on supersymmetries
in the gauge theory side and notices that the two copies of kinematic numerators do not
necessarily come from the same theory. In that case, one can construct many gravity theories
with supersymmetries. For instance, the product of the N = 0 super YM (pure YM) coupled
to ns adjoint scalars and N = 4 super YM (N = 4 SYM) yields the N = 4 supergravity,
and the square of N = 4 SYM gives N = 8 supergravity. The double copy relations are
even applicable to various effective field theories. Some famous cases are: the double copy
of two non-linear sigma models (NLSM) is the special Galileon theory; the product of the
NLSM and the ϕ3 theory coupled to YM gives the Dirac-Born-Infeld coupled to NLSM; the
product of YM and YM+ϕ3 results in YM theory coupled to N = 0 supergravity [46, 47].
The double copy is now understood as a property of many classes of theories. They form
a large web related by sharing common gauge-theory factors [39,40]. Another formulation
of the double copy is given by Cachazo, He, and Yuan (CHY) [48–50]. In this formalism,
tree-level massless amplitudes are computed similarly to string theory - an n-point amplitude
is written as an integral over n punctures on the Riemann sphere, supported by the solutions
to the scattering equations. The double copy is realized simply by taking the product of two
integrands of the single copy theories, making it the integrand of the generated double copy
theory.

Many efforts are also trying to perform the double copy procedure directly at the classical
level. Most notable is the double copy of exact solutions to the equations of motion, first
noticed by Monteiro, O’Connell, and White [51]. The Kerr-Schild type solutions to the
Einstein equation can be related to the single copy solutions of the Maxwell theory. The
simplest example is the correspondence of the Schwarzschild metric and the Coulomb potential.
Less trivially, the Kerr solution is mapped to a particular

√
Kerr potential in Yang-Mills.

The classical double copy is then further generalized to solutions of Petrov type D and
non-twisting type N, where the Weyl spinors of the solutions can be factorized into products
of Maxwell spinors of solutions of gauge theory, and it is strictly proven using twistorial
techniques [52–56]. Many works follow to develop the classical double copy [57–75].

In this thesis, we focus on the double copy relation between YM and gravity theory,
stressing its application to classical gravitation physics, but we are also interested in getting
effective potential directly in the classical regime. It consists of four main chapters. Chapter
2 investigates the extension of the YM double copy to include massive spinless quantum
scalar fields, the quantum version of the massive compact objects interacting via YM/gravity.
We follow the traditional approach by computing all possible amplitudes up to quartic order

3



CHAPTER 1. INTRODUCTION

in the coupling constants (next-to-leading order). We check the color-kinematics duality
explicitly and use double copy to obtain the amplitudes for the gravitational theory. We
match the amplitudes to the proposed Lagrangian up to six-scalar interactions, which couples
two-form-dilaton-gravity to massive scalar fields. We found that the resulting Lagrangian
contains contact terms of the massive scalars, which are short-range interactions and confirms
that they have no contributions to classical physics.

In chapter 3, we take advantage of the recently developed worldline quantum field theory
(WQFT) formalism to examine the double copy at the classical level akin to amplitudes.
WQFT allows for computing classical observables in an efficient diagrammatic way. We
consider the WQFTs of massive (charged) point particles described by a worldline action
coupled to a bi-adjoint scalar, Yang-Mills field, and dilaton-gravity. We establish a classical
double copy relation in these WQFTs for the eikonal phase and the classical observables
(deflection, radiation). The bi-adjoint scalar field theory fixes the locality structure of the
double copy from Yang-Mills to dilaton-gravity. The eikonal scattering phase (or free energy
of the WQFT) is computed to next-to-leading order (NLO) in coupling constants using the
double copy and directly finding complete agreement. We clarify the relation of our approach
to previous studies in the effective field theory formalism. Finally, the equivalence of the
WQFT double copy to the double copy relation of the classical limit of quantum scattering
amplitudes is shown explicitly up to NLO.

In chapter 4, we seek to extend the Kerr-Schild double copy to the case where a test
particle moves in static backgrounds. Establishing a mapping relation between the conserved
quantities in the YM and gravity potentials, we consider two exceptional cases: the non-
spinning Schwarzschild and the equatorial plane of the spinning Kerr background. We
examine the classes of orbits in the YM single copy of these two situations. The trajectories
feature circular, elliptic, plunge, and hyperbolic behaviors, just as the corresponding geodesic
motions at the gravity side. The mapping of the conserved charges allows for recovering the
full geodesic equations from the YM ones. Our double copy mapping naturally works for
both bound and hyperbolic states. By contrast, the scattering double copy works only for
the latter.

Chapter 5 applies worldline effective field theory to the classical three-body problem. We
calculate the integrand of the effective potential up to second order in the post-Minkowskian
expansion. We give formal results by carefully analyzing the separations of the coordinates
of the three bodies and performing integration in each case. In order to better compute the
post-Newtonian (PN) contributions, we perform slow velocity expansion at the integrand
level. The integrals are bootstrapped by exploiting the Yangian symmetry in the dimensional
regularization scheme in 3D. We successfully reproduce the Dirac-Infeld-Hoffmann interaction
term and find agreement with literature at 2PN in the two-body limit. The new G2v4-
contributions at 3PN are explicitly presented, and we outline the generalization to G2v2n.

1.1 The Double Copy Relation

In this section, we briefly introduce the double copy relation, focusing on the Bern-Carrasco-
Johansson (BCJ) double copy of the amplitudes of the gauge and gravity [10,11]. We will
first consider the pure YM theory with the Lagrangian

LYM = −1

4
F a
µνF

µν,a, (1.1)
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1.1. THE DOUBLE COPY RELATION

where the field strength reads

F a
µν = ∂µA

a
ν − ∂νA

a
µ − igfabcAb

µA
c
ν , (1.2)

with g being the coupling constant. The generators of the gauge group are normalized such
that

[T a, T b]ij = fabcT c
ij , Tr(T aT b) =

δab

2
. (1.3)

Note that our structure constant fabc is different from the more common convention by a
factor of −i. An n-point L-loop amplitude in D dimensions can be formally written as

A(L)
n = (ig)2L+n−2

∫ L∏

j=1

dDpj
(2π)D

∑

i∈Trivalent

cini
SiDi

, (1.4)

where ci are the color factors that are products of structure constants and group generators, ni
are the kinematic numerators which are dependent on the external momenta and polarization
vectors, Di =

∏
i di are the denominators which are a product of propagators di ∼ p2i . Si are

the symmetry factors associated with the diagram, which are trivial for tree amplitudes but
essential to removing overcount of diagrams. It is important to note that the sum is over all
the three-point diagrams. We tear apart diagrams with contact interactions by multiplying
and dividing by certain propagators and we attribute them to trivalent diagrams. Note that
there is no unique way of doing this separation.

The decomposition (1.4) is over-completed because the generators and constant structures
satisfy the Jacobi identity,

fabef cde + f bcefade + f caef bde = 0 (1.5)

T a
ikT

b
kj − T b

ikT
a
kj = fabcT c

ij . (1.6)

This leads to the consequence that some of the color factors are related by algebraic equations

ci + cj + ck = 0 (1.7)

Due to the over-completeness of the basis, the definition of the kinematic numerators ni in
(1.4) is not unique. The key point of the color-kinematics is that it is possible to rearrange
the numerators ni such that they satisfy exactly the same equations with the corresponding
color factors ci [10, 11],

ni + nj + nk = 0. (1.8)

This can be achieved by performing the generalized gauge transformations2

ni → ni +∆i, (1.9)

with the variation ∆i leaving the amplitude invariant

∑

i∈Trivalent

ci∆i

SiDi
= 0. (1.10)

2A usual gauge transformation shift the numerators by replacing the polarization vectors with the momenta,
but a generalized gauge transformation shift the numerators in any possible way as long as (1.10) is satisfied.
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CHAPTER 1. INTRODUCTION

Numerators that satisfy these relations are sometimes referred to as BCJ numerators. With
the color-kinematics duality, we can now simply do the replacement

ci → ni (1.11)

to obtain the emerging amplitude that also satisfies generalized gauge transformation. Since
the power of the polarization is doubled, this is a hint that the resulting amplitude is
for a theory with a tensor field of rank-two, which is the same as the spacetime metric.
Remarkably, we can take two sets of BCJ numerators ni and ñi from different gauge theories.
The amplitude of the double copy gravity theory of the two gauge theories is obtained as

M (L)
n =

(−iκ
4

)2L+n−2 ∫ L∏

j=1

dDpj
(2π)D

∑

i∈Trivalent

niñi
SiDi

, (1.12)

where κ2 = 32πG is the gravitational coupling constant. Since the numerators satisfy the same
algebraic relations as the color factors, we can perform the generalized gauge transformation
of one set of the numerators,

ñi → ñ′i = ñi +∆i, with
∑

i∈Trivalent

ni∆i

SiDi
= 0. (1.13)

The new ñ′i generically will not respect BCJ duality, but the amplitudes will be invariant.
This implies that in practice we do not need to arrange both sets of numerators to satisfy
color-kinematics duality, but only one set is enough. The other could be related to a set of
BCJ numerators by a generalized gauge transformation, just like the above ñ′i. By doing so,
we will drastically simplify the construction. However, we should keep in mind that both
gauge amplitudes should, in principle, respect color-kinematics duality.

The color-kinematics duality at tree level for YM is strictly proven. However, less is
known at loop level, so (1.8) remains a conjecture. It is important to note that for the double
copy at loop levels to work, we have to keep the color factor generic, i.e., not explicitly use
properties such as antisymmetry or other identities specific to the gauge group. Otherwise,
some of the color factors will vanish, and we will lose track of the corresponding numerators.
We will run into a similar problem in 3, where we will avoid the problem by introducing extra
flavors of matters.

We have already seen that the construction gives amplitudes respecting generalized gauge
transformation. Even more crucial is that the emerging amplitude is invariant under linearized
diffeomorphisms, which is a consequence of the gauge-invariance of the two gauge amplitudes.
In order to see this, let us consider a gauge transformation concerning only one external
gluon,

ϵµ(p) → ϵµ(p) + pµ. (1.14)

It will be helpful to extract the polarization vector from the numerators

ni = ϵµn
µ
i , ñi = ϵµñ

µ
i . (1.15)

Since the amplitude is gauge invariant, we have

∑

i∈Trivalent

ci(pµn
µ
i )

SiDi
= 0. (1.16)
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Suppose in the construction (1.12), both sets of numerators satisfy the same equation as the
color factors ci. Since the above equation depends only on the generic relations of ci, the
following has to be correct,

∑

i∈Trivalent

ni(pµñ
µ
i )

SiDi
=

∑

i∈Trivalent

ñi(pµn
µ
i )

SiDi
= 0. (1.17)

Taking the traceless-transverse gauge, we identify

ϵµν := ϵ((µϵν)) (1.18)

as the polarization tensor of the graviton, where the double brackets denote the symmetric-
traceless part. The linearized diffeomorphism acting on one external leg results in

ϵµν → ϵµν + p(µqν) (1.19)

where qµ is an arbitrary auxiliary null vector that satisfies p · q = 0, and the brackets of
the Lorentz indices denote the symmetric part. Under this transformation, the double copy
amplitude becomes

M (L)
n → M (L)

n +

∫
(dDp)L

(2π)LD

∑

i∈Trivalent

[
(pµn

µ
i )ñi

∣∣
ϵ̃ν→qν

SiDi
+

(pµñ
µ
i )ni

∣∣
ϵν→qν

SiDi

]
. (1.20)

Since the Jacobi identities of the numerators do not depend on properties of the polarization
vectors, they must still be valid under the replacement ϵν → qν ,

(ni + nj + nk)
∣∣
ϵν→qν

= 0, (ñi + ñj + ñk)
∣∣
ϵ̃ν→qν

= 0. (1.21)

Therefore the last two terms in (1.20) are vanishing, confirming that the double copy
amplitudes are indeed invariant under linearized diffeomorphism and the emerging theory is
a gravity theory.

1.2 Four-point Example

Let us now demonstrate the details of the double copy procedure by taking the four-point
amplitude as an example. We will follow the textbook approach to compute the amplitudes:
we draw all Feynman diagrams and sum over them. We supplement the pure YM Lagrangian
(1.1) with the Feynman gauge condition

Lgh = −1

2
(∂µAa

µ)
2. (1.22)

This gauge gives canonically normalized propagators

1 Yang-Mills theory
The Feynman rules for the vertices are

k

a, µ b, ⌫ (1)

k1

k3

k2

a, µ

c, ⇢ b, ⌫

=
igp
2
f̃abc [⌘µ⌫(p� q)⇢ + ⌘⌫⇢(q � k)µ + ⌘⇢µ(k � p)⌫ ] , (2)

c

b

d

a

=
ig2

8

h
f̃eab f̃ecd(⌘µ⇢⌘⌫� � ⌘µ�⌘⌫⇢)

+f̃eacf̃ebd(⌘µ⌫⌘⇢� � ⌘µ�⌘⇢⌫)

+f̃ead f̃ebc(⌘µ⌫⌘�⇢ � ⌘µ⇢⌘�⌫)
i
.

(3)

a, µ

|̄ i

(4)

3a

2i 1j

4b

(5)

3a

2i 1j

4b

(6)

1

=
−i

k2 + iε
ηµνδ

ab. (1.23)

The three- and four-gluon vertices are

1 Yang-Mills theory
The Feynman rules for the vertices are

k1

k3

k2

a, µ

c, ⇢ b, ⌫

=
igp
2
f̃abc [⌘µ⌫(p� q)⇢ + ⌘⌫⇢(q � k)µ + ⌘⇢µ(k � p)⌫ ] , (1)

c

b

d

a

=
ig2

8

h
f̃eab f̃ecd(⌘µ⇢⌘⌫� � ⌘µ�⌘⌫⇢)

+f̃eacf̃ebd(⌘µ⌫⌘⇢� � ⌘µ�⌘⇢⌫)

+f̃ead f̃ebc(⌘µ⌫⌘�⇢ � ⌘µ⇢⌘�⌫)
i
.

(2)

a, µ

|̄ i

(3)

3a

2i 1j

4b

(4)

3a

2i 1j

4b

(5)

3l

2i 1j

4k

(6)

1

= igfabcV µνρ
123 , (1.24)
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Figure 1.1: Feynman diagrams contributing to the four-point amplitudes.

a, µ

c, ⇢

b, µ

d,�

=
ig2

8

h
f̃eab f̃ecd(⌘µ⇢⌘⌫� � ⌘µ�⌘⌫⇢)

+f̃eacf̃ebd(⌘µ⌫⌘⇢� � ⌘µ�⌘⇢⌫)

+f̃ead f̃ebc(⌘µ⌫⌘�⇢ � ⌘µ⇢⌘�⌫)
i
.

(8)

a, µ

|̄ i

(9)

3a

2i 1j

4b

(10)

3a

2i 1j

4b

(11)

3l

2i 1j

4k

(12)

3k

2i 1j

4l

=
igp
2
�µT a

i|̄ (13)

2

= ig2[fabef cde(ηµρηνσ − ηµσηνρ)

+ f bcefade(ηµνηρσ − ηµρηνσ)

+ f caef bde(ηµσηνρ − ηµνηρσ)].

(1.25)

where we have defined a shorthand for the kinematic part as

V µνρ
123 =

[
ηµν(k1−k2)ρ + ηνρ(k2−k3)µ + ηρµ(k3−k1)ν

]
. (1.26)

The four-gluon amplitude consists of four diagrams, see figure 1.1. As stated in (1.4), we
express it as a sum over three channels

A
(0)
4 = −g2

(csns
s

+
ctnt
t

+
cunu
u

)
, (1.27)

where s = (p1 + p2)
2, t = (p1 + p3)

2, u = (p1 + p4)
2 are the Mandelstam variables. The color

factors are derived from the Feynman diagrams,

cs = fabef cde, ct = f bcefade, cu = f caef bde. (1.28)

They are not linearly independent, but satisfy the following Jacobi identity

cs + ct + cu = 0. (1.29)

The numerator in the s-channel reads

ns =− i (ϵ1 ·ϵ2(p1 − p2)
ρ + 2ϵ1 ·k2 ϵρ2 − 2ϵ2 ·k1 ϵρ1) (ϵ3 ·ϵ4(p3 − p4)ρ + 2ϵ3 ·k4 ϵ4,ρ − 2ϵ4 ·k3 ϵ3,ρ)

− is (ϵ1 ·ϵ3 ϵ2 ·ϵ4 − ϵ1 ·ϵ4 ϵ2 ·ϵ3) , (1.30)

where the first line is from the first diagram with YM Feynman rules in figure 1.1. The second
line is due to the fact that we need to attribute the contact interaction, the last diagram in
figure 1.1, to the three channels according to the color factors. To add it to the numerator,
we also need to multiply and divide it by the corresponding Mandelstam variable, which is s
in this case. The other two channels can be simply obtained by relabeling (1, 2, 3),

nt = ns
∣∣
1→2, 2→3, 3→1, s→t

nu = nu
∣∣
1→3, 2→1, 3→2, s→u

. (1.31)

It is straightforward to check that the three numerators satisfy a identity akin to (1.29)

ns + nt + nu = 0. (1.32)
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1.3. POST-MINKOWSKIAN EXPANSION OF GRAVITY

With this color-kinematics duality, we are now ready to obtain the double copy amplitude
according to (1.12),

M
(0)
4 = −κ

2

16

(
n2s
s

+
n2t
t

+
n2u
u

)
. (1.33)

We can now explicitly check the linearized diffeomorphism,

M
(0)
4

∣∣∣
ϵµϵν→p(µqν)

= 0 (1.34)

by using on-shell conditions p2 = 0, ϵ ·p = 0 and p · q = 0. In order to verify that the resulting
amplitude is indeed for four-graviton scattering, we need to treat general relativity as a low
energy effective field theory and consider the expansion around Minkowskian space time.

1.3 Post-Minkowskian Expansion of Gravity

In this thesis, we are mainly interested in the situation where the interactions are weak so
that we can treat the problem perturbatively. In the case of gravity, we thus expand the
spacetime around flat background. This is referred to as the post-Minkowskian (PM) limit. It
is characterized by Newton’s constant G, or equivalently, the gravitational coupling constant
κ =

√
32πG. Special relativistic effects are preserved in the Minkowskian background, so

at fixed order in PM expansion, quantities have exact dependence on the velocity. These
properties are similar to those of scattering amplitudes, which implies that we should treat
gravity as an effective field theory and consider its perturbative expansion.

It is well-known that general relativity is governed by the Einstein-Hilbert action

SEH = − 2

κ2

∫
d4x
√

|g|R, (1.35)

where g = Det(gµν) is the determinant of the metric. As stated before, in perturbation theory,
we expand the metric around flat spacetime,

gµν = ηµν + κhµν , (1.36)

where ηµν is the Minkowskian metric. We use the mostly minus signature throughout this
thesis. In quantum gravity nomenclature, hµν is usually referred to as the graviton, which
we will follow this convention hereafter. We can derive the expansion of the inverse metric
and the determinant,

gµν = ηµν − κhµν + κ2hµλhνλ +O
(
κ3
)
, (1.37)

g = Det(ηµν)− κhµµ +
1

2
κ2 (hµνh

µν − hµµh
ν
ν) +O

(
κ3
)
. (1.38)

The indices will be raised and lowered by ηµν . Since general relativity respects gauge
diffeomorphism invariance, we should fix the gauge freedom by including a Faddeev-Popov
term Sgf to the action. There are various choices of gauge in the literature. In this chapter,
we will adopt the commonly used de Donder gauge

Sgf =

∫
d4x

(
∂νh

µν − 1

2
∂µhνν

)2

. (1.39)
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We note that in the case of dilaton gravity in chapter 3, we will use another gauge to
our convenience. Since we are interested merely in classical physics, we do not need to be
concerned about ghosts.

In de Donder gauge, we can derive the Feynman rule of the graviton propagator

1

2

µ, ⌫ (13)

µ, ⌫ ⇢,� (14)

(15)

(16)

(17)

1

43

2

(18)

3

1 2

4

(19)

3

=
i

k2 + iε

(
ηµ(ρησ)ν− 1

D − 2
ηµνηρσ

)
, (1.40)

where the parenthesis around Lorentz indices denotes symmetrization with unit weight,
e.g. v(µwν) = 1

2(v
µwν + vνwµ) for arbitrary tensors vµ, wµ. The weak-field expansion

produces self-interaction terms with arbitrarily many gravitons, which are very lengthy and
cumbersome. For instance, the cubic vertices of three-graviton is given as

1 Yang-Mills theory
The Feynman rules for the vertices are

k

a, µ b, ⌫ (1)

k1

k2

k3

µ, ⌫

⇢,� ↵,�

=
igp
2
f̃abc [⌘µ⌫(p� q)⇢ + ⌘⌫⇢(q � k)µ + ⌘⇢µ(k � p)⌫ ] , (2)

k1

k3

k2

a, µ

c, ⇢ b, ⌫

=
igp
2
f̃abc [⌘µ⌫(p� q)⇢ + ⌘⌫⇢(q � k)µ + ⌘⇢µ(k � p)⌫ ] , (3)

c

b

d

a

=
ig2

8

h
f̃eab f̃ecd(⌘µ⇢⌘⌫� � ⌘µ�⌘⌫⇢)

+f̃eacf̃ebd(⌘µ⌫⌘⇢� � ⌘µ�⌘⇢⌫)

+f̃ead f̃ebc(⌘µ⌫⌘�⇢ � ⌘µ⇢⌘�⌫)
i
.

(4)

a, µ

|̄ i

(5)

3a

2i 1j

4b

(6)

1

= (1.41)

iκ Sym

[
− 1

4
k1 ·k2ηµνηρσηαβ + k1ρk1βηµνησα − 1

2
k1σk2µηνρηαβ +

1

4
k1 ·k2ηµρηνσηαβ

+
1

2
k1αk2βηµρηνσ + k1 ·k2ηµνηραησβ + k1αk1βηµρηνσ − 1

2
k1ρk1σηµνηαβ

+ 2k1ρk2βησµηνα − k1 ·k2ηνρησαηβµ + k1ρk2µησαηβν + permutations (1, 2, 3)

]
,

where “Sym” denotes the symmetrization of Lorentz indices associated with the same
graviton, and one needs to consider all possible permutations of all the terms. Counting
all the permutations, there are more than 60 terms in the “simplest” graviton vertex. Let
alone to mention the four-graviton vertex which will be needed in the four-point amplitude.
Many modern techniques, such as on-shell BCFW recursion relation [76], can circumvent the
difficulties. For recent reviews on scattering amplitude calculations, please see [40, 77, 78].
However, this topic is beyond the scope of this thesis. Fortunately, with the power of modern
computer hardware and software, it is possible to attack the difficult problem with brute
force. For instance, using Mathematica with the xAct package, we can get the four-graviton
amplitude in seconds by adding all the Feynman diagram given in figure 1.1 with gravitational
Feynman rules. It exactly matches the double copy four-point amplitude (1.33). In this simple
example, we can see the power of the double copy - it simplifies the calculation significantly
compared to traditional approaches.

1.4 Post-Newtonian Expansion of Gravity

In the case of massive objects interacting via gravity, we can consider another limit that
breaks special relativity. In this approximation, we recover Newton’s law of gravitation in
the leading order, hence it is called post-Newtonian expansion. It could be understood as a
refinement of the PM expansion - on top of the weak field limit, we also consider the velocity
of the motion to be small compared to the speed of light. In terms of the relativistic velocity
ui of particle i, it means

uµi =
(
1,

vi

c

)
, (1.42)
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1.5. CLASSICAL DOUBLE COPY

1.5. CLASSICAL DOUBLE COPY

with vi being the three-dimensional velocity. We have reintroduced the inverse of the speed
of light c�1 as the counting parameter of PN expansion. Therefore, nPN corresponds to
order O(c�2(1+n)). This expansion originates from bound binaries, where the third Kepler
law, or the virial theorem, then tells us that

v2
r

c2
⇠ 1

c2
2(m1 +m2)

32⇡r
, (1.43)

where r is the distance between the two objects with mass m1,m2, and vr is the relative
velocity. In (1.43), we can see the interplay of the PM and PN approximation - the weak-field
coupling constant scales as

 ⇠ 

c
. (1.44)

Therefore, PN expansion is in fact a double expansion in both the gravitational constant and
velocity of the particles.

0PN 1PN 2PN 3PN 4PN . . .

1PM 1 v2 v4 v6 v8 . . .
2PM 1 v2 v4 v6 . . .
3PM 1 v2 v4 . . .
4PM 1 v2 . . .

..
.

uµi =
⇣
1,

vi

c

⌘
,  ! 

c
. (1.45)

The rescaling of  shows the interplay of the PM and PN expansion. This originates from
the Virial theorem from bound binaries,

v2
r

c2
⇠ 1

c2
2(m1 +m2)

32⇡r
, (1.46)

which is exactly equality in the case of circular orbit.

1.5 Classical Double Copy

As mentioned at the beginning of this chapter, some exact solutions in YM and general
relativity are related to each other in a double copy construction. The idea was pioneered by
Monteiro, O’Connell, and White [51], who discovered that classical solutions of Kerr-Schild
type in Einstein gravity could be related to some “single copy” solutions of pure gauge theory.
Classical solutions of Kerr-Schild type of Einstein equation in the vacuum admit the following
form

gµ⌫(x) = ḡµ⌫ � 2GM'(x)kµ(x)k⌫(x), (1.47)

where G is Newton’s constant, kµ is null with respect to both the Minkowski metric ḡµ⌫ and
the curved metric gµ⌫ , and '(x) is a scalar function.3 This type of metric has the advantage

3Note that in this chapter, we will use ḡµ⌫ to denote the Minkowski metric in general coordinates.
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2PM 1 v2 v4 v6 . . .
3PM 1 v2 v4 . . .
4PM 1 v2 . . .

..
.

uµi =
⇣
1,

vi

c

⌘
,  ! 

c
. (1.45)

The rescaling of  shows the interplay of the PM and PN expansion. This originates from
the Virial theorem from bound binaries,

v2
r

c2
⇠ 1

c2
2(m1 +m2)

32⇡r
, (1.46)

which is exactly equality in the case of circular orbit.

1.5 Classical Double Copy

As mentioned at the beginning of this chapter, some exact solutions in YM and general
relativity are related to each other in a double copy construction. The idea was pioneered by

11

Figure 1.2: The relation between PM and PN expansion.

with vi being the spacial component of the velocity. We have reintroduced the inverse of the
speed of light c−1 as the counting parameter of PN expansion. Therefore, nPN corresponds
to order O(c−2(1+n)).

This expansion originates from bound binaries, where the third Kepler law, or the virial
theorem, then tells us that

v2
r

c2
∼ 1

c2
κ2(m1 +m2)

32πr
, (1.43)

where r is the distance between the two objects with mass m1,m2, and vr is the relative
velocity. In (1.43), we can see the interplay of the PM and PN approximation - the weak-field
coupling constant scales as

κ ∼ κ

c
. (1.44)

Therefore, PN expansion is in fact a double expansion in both the gravitational constant and
velocity of the particles, as illustrated in figure 1.2. The PN approximation also results in a
non-relativistic expansion of the massless scalar propagator in the so-called potential region
ω := k0 ≪ |k|, reads

1

k2
=

1

ω2 − k2 = −
∞∑

α=1

ω2α−2

(k2)α
. (1.45)

Note that we have dropped the iε since it does not matter in the conservative sector, which
will be of our main interest in the PN limit. In coordinate space, the propagator reads

D(xij) :=

∫
d4k

(2π)4
1

k2
eik·xij = −

∫
dDk

(2π)D
eik·rij

∞∑

α=0

(−1)α∂2αti δ(tji)

c2α(k2)α+1
, (1.46)

where xµij := xµi − xµj is the difference between two spacetime events, and tij := ti − tj , rij :=
xi − xj represents the time and spatial components, respectively. We have performed the
energy (ω) integral in last equal sign. Hence, with the expression for the D-dimensional
Fourier transform of the momentum space propagator

∫
dDk

(2π)D
eik·r

(k2)α
=

1

4απD/2

ΓD/2−α

Γα
r2α−D, (1.47)

and doing integration by parts, in coordinate space, we have

D(xij) = − 1

4π

(
δ(ti − tj)

rij
− rij

2c2
∂ti∂tjδ(ti − tj) +

r3ij
24c4

∂2ti∂
2
tjδ(ti − tj)

)
+O(c−4), (1.48)

with rij = |rij |.
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CHAPTER 1. INTRODUCTION

1.5 Classical Double Copy

As mentioned at the beginning of this chapter, some exact solutions in YM and general
relativity are related to each other in a double copy construction. The idea was pioneered by
Monteiro, O’Connell, and White [51], who discovered that classical solutions of Kerr-Schild
type in Einstein gravity could be related to some “single copy” solutions of pure gauge theory.
Classical solutions of Kerr-Schild type of Einstein equation in the vacuum admit the following
form

gµν(x) = ḡµν − 2GMφ(x)kµ(x)kν(x), (1.49)

where G is Newton’s constant, kµ is null with respect to both the Minkowski metric ḡµν and
the curved metric gµν , and φ(x) is a scalar function.3 This type of metric has the advantage
that it linearizes the Ricci tensor. With this decomposition, it can be proven that a gauge
field of the form

Aa
µ(x) =

g

4π
c̃aφ(x)kµ(x) (1.50)

is a solution to the equations of motion of YM theory in the vacuum. In (1.50) we use c̃a to
denote a static charge that acts as a source of the field. However, in this case, if we replace it
with an electric charge, we get a solution to Maxwell’s theory.

The simplest example is the Schwarzschild metric in the Eddington-Finkelstein coordinates
xµ(τ) = (t, r, θ, ϕ),

ds2 =
(
dt2 − dr2 − r2dΩ2

)
− 2GM

r
(dt+ dr)2 (1.51)

with dΩ2 being the 2-dimensional sphere metric. Comparing it to (1.50), we can identify

φ(x) =
1

r
, kµ = (1, 1, 0, 0). (1.52)

It is straightforward to obtain the single copy Yang-Mills field

Aa
t = Aa

r =
g

4π

c̃a

r
, Aa

ϕ = Aa
θ = 0, (1.53)

which in electromagnetism is nothing but the Coulomb potential. We will refer to this
gauge background as

√
Schw in the following since, as we will see, it corresponds to the

Schwarzschild metric in the classical double copy relation.
Another notable solution in general relativity is the Kerr metric with a spinning compact

object as a source. In Kerr-Schild coordinates, we have

φ(x) =
r3

r4 + a2z2
, kµ =

(
1,
rx+ ay

r2 + a2
,
ry − ax

r2 + a2
,
z

r

)
. (1.54)

where r is defined implicitly through the following constraints

x2 + y2

r2 + a2
+
z2

r2
= 1 ∀(x, y, z) ∈ R3\{x2 + y2 ≤ a2, z = 0} (1.55)

r = 0 ∀(x, y, z) ∈ {x2 + y2 ≤ a2, z = 0}, (1.56)

3Note that in this chapter, we will use ḡµν to denote the Minkowski metric in general coordinates.
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1.5. CLASSICAL DOUBLE COPY

and the magnitude of a is the spin length of the black hole, (x, y, z) is a set of Cartesian
coordinate. The field is singular on a ring of radius a in the x− y plane. We can directly
write down the single copy

√
Kerr field

Aa
µ =

g

4π

r3c̃a

r4 + a2z2

(
1,
rx+ ay

r2 + a2
,
ry − ax

r2 + a2
,
z

r

)
. (1.57)

Due to the complexity, we do not write down the explicit expression of the Kerr metric, but
one can simply construct it following (1.49).

The Kerr-Schild double copy is a particular case of the Weyl double copy, which applies
to all vacuum type D solutions and non-twisting type N solutions [52, 53].4 The Weyl double
copy is formulated in spinorial space. Any rank-k tensor can be translated into a rank-2k
spinorial object by employing the symbols σµAA′

vµ → vAA′ = vµσ
µ
AA′ , (1.58)

with A,A′ = 1, 2 the spinor indices. In the Weyl representation, σµAA′ can be written as

σa =
1√
2

(
12×2, σ

i
2×2

)
, (1.59)

where σi for i = 1, 2, 3 are the Pauli matrices. The spinor indices may be raised or lowered
by the 2-dimensional Levi-Civita symbol,

vA = ϵABv
B, vB = vAϵ

AB

with ϵACϵ
BC = δBA , and ϵ01 = 1. (1.60)

The bispinor corresponding to the 1-form vµ is explicitly

vAA′ =
1√
2

(
v0 + v3 v1 − iv2
v1 + iv2 v0 − v3

)
. (1.61)

For higher-rank tensors, the conversion is similar but introduces more σµ symbols to contract
with all Lorentz indices.

Let us now consider the field strength tensor Fµν in Maxwell’s theory, which is the Abelian
version of Yang-Mills field. In the spinorial representation, it corresponds to

Fµν → FAA′BB′ = ϕABϵA′B′ + ϕ̄A′B′ϵAB. (1.62)

The decomposition on the right-hand side is due to the anti-symmetry of Fµν . The symmetric
quantities ϕAB and ϕ̄A′B′ are the anti-self-dual and self-dual parts, respectively. Maxwell’s
equations are translated to

∇AA′
ϕAB = 0,

∇AA′
ϕ̄A′B′ = 0,

(1.63)

4The Petrov classification specifies the Weyl tensor at a given event based on the degeneracy of its
eigenbivectors (or equivalently, principal null directions). There are precisely six types in total. A type D
Weyl tensor has two double principal null directions, and A type N tensor has one quadruple principal null
direction.
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CHAPTER 1. INTRODUCTION

where ∇AA′
= ∇µσAA′

u is the incarnation of the spacetime covariant derivative in the spinor
representation.

It turns out that the quantity corresponding to the field strength tensor Fµν on the gravity
side is the Weyl tensor Cµνρσ. Its relation to the Riemann tensor Rµνρσ is

Cµν
ρσ = Rµν

ρσ − 4S
[ρ
[µδ

σ]
ν] , (1.64)

where Sρ
µ is the Schouten tensor given by

Sµν =
1

2

(
Rµν −

1

6
Rgµν

)
, (1.65)

with R the Ricci scalar. Translated to spinorial space, the quantity corresponds to the Weyl
tensor is

Cµνρσ → ΨABCD ϵA′B′ ϵC′D′ + Ψ̄A′B′C′D′ ϵAB ϵCD (1.66)

Similar to the field strength, the ΨABCD and Ψ̄A′B′C′D′ are the anti-self-dual and self-dual
parts of the Weyl tensor respectively. ΨABCD is usually referred to as the Weyl spinor. The
Bianchi identity of the Riemann tensor gives constraints on the Weyl spinor

∇AA′
ΨABCD = 0,

∇AA′
Ψ̄A′B′C′D′ = 0.

(1.67)

Comparing (1.63) and (1.67), the similarity between the equations of motion at the electro-
magnetism and the gravity side is apparent.

The Weyl double copy states that from a Maxwell field strength ϕAB , we can construct a
Weyl spinor

ΨABCD =
1

S
ϕ(ABϕCD),

Ψ̄A′B′C′D′ =
1

S
ϕ̄(A′B′ ϕ̄C′D′),

(1.68)

where S is a scalar function playing the same role with the φ(x) in the Kerr-Schild double
copy. The Weyl tensors constructed this way are naturally of Petrov type D. One may also
try to combine different Maxwell spinors ϕAB and ϕ̃CD to obtain Weyl spinors of other types,
but its general validity remains unclear.

1.6 Worldline formalism

The worldline formalism is commonly employed as an effective theory to describe the classical
dynamics of some quantum field theory. The most famous case is the worldline description of
massive astronomical objects interacting via gravity, which could be seen as a low-energy
effective theory for the (unknown) UV-complete quantum gravity. It can also describe charged
particles coupled to an electromagnetic field or a non-Abelian gauge field. Here we introduce
the worldline formalism by using particles moving in a gravitational field as an example.

The action can be generally expressed as

S = SEH + Sgf +
∑

i

S(i)
pm. (1.69)
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1.6. WORLDLINE FORMALISM

SEH is the usual Einstein-Hilbert action (1.35) and Sgf is a Faddeev-Popov gauge-fixing term.
Note that in (1.69) we have included multiple worldlines to allow for interactions. In general,
a point-mass coupled to gravity can be written as a 1-dimensional worldline embedded in
spacetime,

Spm = −m
∫

dσ + cR

∫
dσR(x) + cV

∫
Rµν(x)ẋ

µẋν +O(R, ẋµ) (1.70)

with dσ =
√
gµνdxµdxν being the proper time along the worldline, and ẋµ(σ) denotes the

velocity defined in terms of the proper time. We omit terms in higher orders of the curvature
and derivatives of x, which account for the interactions that involve extended objects or
spinning effects.

We expect the first term to give rise to the geodesic equation. To see this, let us first
parametrize it with respect to an arbitrary parameter τ ,

−m
∫

dσ = −m
∫

dτ

√
gµν

dxµ

dτ

dxν

dτ
. (1.71)

The Euler-Lagrange equation yields

0 =−m

(
∂

∂xµ
− d

dτ

∂

∂ dxµ

dτ

)√
gρν

dxρ

dτ

dxν

dτ

=−m
∂µgρν

dxρ

dτ
dxν

dτ

2
√
gσδ

dxσ

dτ
dxδ

dτ

+m
d

dτ


 gµν

dxν

dτ√
gσδ

dxσ

dτ
dxδ

dτ


 . (1.72)

To simplify this expression we introduce the following change of variable

dλ

dτ
=

√
gσδ

dxσ

dτ

dxδ

dτ
. (1.73)

The equation of motion then reads

0 = m
dλ

dτ

(
d

dλ

(
gµν

dxν

dλ

)
− ∂µgρν

2

dxρ

dλ

dxν

dλ

)
, (1.74)

Since m dλ/dτ ̸= 0, we can drop this factor and get

0 =gµν
d2xν

dλ2
+

1

2
(2∂ρgµν − ∂µgρν)

dxρ

dλ

dxν

dλ

=gµν
d2xν

dλ2
+

1

2
(∂ρgµν + ∂νgµρ − ∂µgρν)

dxρ

dλ

dxν

dλ
, (1.75)

where in the last equal sign we have used the fact that the second term is symmetric in the
indices ρ, ν. Identifying the Christoffel symbol

Γα
ρν =

1

2
gαµ (∂ρgµν + ∂νgµρ − ∂µgνρ) , (1.76)

and multiplying the inverse metric gαµ, we obtain

d2xα

dλ2
+ Γα

ρν
dxρ

dλ

dxν

dλ
= 0. (1.77)
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CHAPTER 1. INTRODUCTION

In fact, from (1.73) we can see that λ is the proper time, thus we confirm that the above
equation derived from the first term of the worldline action (1.70) gives the geodesic equation.

The following two terms given with the Wilson coefficients cV/R in (1.70) will be simply
set to zero, since they can be removed by a field redefinition of hµν when computing gauge-
invariant observables [79]. We note that these two terms may play a role for gauge-dependent
quantities, such as the Schwarzschild metric. After these simplifications, another thing we
can do is to introduce an einbein e(τ) to the point mass action,

Spm = −1

2

∫
dτ

(
1

e
gµν ẋ

µẋν +m2e

)
, (1.78)

where ẋµ := dxµ/dτ is the relativistic velocity parametrized by τ . This action enjoys the
advantage that calculations are drastically simplified due to the absence of the square root.
It also displays the gauge freedom of reparametrization of the worldline τ → τ̃(τ) with

ẋµ =
dxµ

dτ
→ dxµ

dτ̃

dτ̃

dτ
, e(τ) → ẽ(τ̃)

dτ̃

dτ
. (1.79)

For massive point particles, the equivalence to the first term of (1.70) can be shown by
solving the equation of motion for e(τ),

− 1

e2
gµν ẋ

µẋν +m2 = 0 ⇒ e =
1

m

√
gµν ẋµẋν , (1.80)

and plugging it back to the action. It is instead more convenient for us to exploit the
reparametrization gauge invariance and set e(τ) = 1/m, which implies

gµν ẋ
µẋν = 1, (1.81)

and τ is just the proper time.
Another advantage of introducing the einbein is that now we can describe massless particle

as well. In this case, we do not have proper time any more, but we can choose an affine
parametrization where e(τ) is just a constant. For simplicity we can set e(τ) = 1, but we
note that e(τ) has mass dimension −1.

The worldline formalism will be employed in several chapters in this thesis. Here we just
show the most basic case coupled to Einstein gravity. Chapter 5 will used it to compute
N -body potential in the PM limit. In chapter 3, we will also consider worldlines in more
general backgrounds including dilaton-gravity, bi-adjoint scalar field and Yang-Mills theory.
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Chapter 2

Double Copy of Massive Scalar
QCD

This chapter is based on the published article “Double copy of massive scalar QCD” [1],
in collaboration with Prof. Dr. Jan Plefka and Dr. Tianheng Wang. We will adapt the
conventions for the consistency of this thesis.

To generalize the double copy to include massive particles, we find it natural to start by
investigating amplitudes with massive states. In [80,81], the tree level amplitudes of QCD
with Nf massive spin-1/2 quarks are computed up to next-to-leading order and double copied
to a (QCD)⊗2 gravitational theory. In D = 4, it contains an axion, a dilaton, a graviton
field, various massive scalars, and massive vectors. The relation of the field content can be
expressed as

[Aµ ⊕ (Nf ×Ψ) ]⊗2 = hµν ⊕Bµν ⊕ ϕ⊕ (Nf × [ϕ⊕ V µ]) . (2.1)

The gravitational (QCD)⊗2 Lagrangian is then reconstructed up to the sixth order in scalar
fields by matching a proposed ansatz to the double copy amplitude. The generated Lagrangian
is complicated due to the highly non-trivial interactions between the massless and massive
states. In particular, contact terms among massive fields are founded to be necessary. A
related paper is [82], where they explore the double copy of massive matter with spin s < 2
in general dimensions.

Inspired by the aforementioned work, we choose to study the double copy of massive
scalar QCD (SQCD) to avoid the complexity resulting from taking the square of the spinning
degree of freedom. This can be seen by the simpler matter fields

[Aµ ⊕ (Nf × φ ) ]⊗2 = hµν ⊕Bµν ⊕ ϕ⊕ (Nf × φ) . (2.2)

We will then construct an emerging gravitational Lagrangian up to sixth order in the scalar
contact terms by matching the amplitudes. We will also take a field redefinition of the
massive field and write the interaction in an elegant all-order resummed form.

This chapter is organized as the following. We will set up the stage of massive scalar QCD
and work out the needed amplitudes up to next-to-leading order in the coupling constant
in section 2.1. In section 2.2, we will perform the double copy approach to produce the
gravitational amplitudes. The resulting Lagrangian of the scalar-two-form-dilaton-gravity is
extracted from the amplitudes and generalized to all orders in 2.3.
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CHAPTER 2. DOUBLE COPY OF MASSIVE SCALAR QCD

2.1 Amplitudes of Massive Scalar QCD

2.1.1 Basics of SQCD

We consider scalar fields living in the fundamental representations of a gauge group coupled
to gluons. In principle, what is described in this chapter applies to arbitrary gauge group, but
for simplicity, we will use SU(N), which is the case for electroweak (SU(2)) and quantum
chromodynamics (SU(3)) in the standard model. The full Lagrangian reads

LSQCD =LYM + Lgh + Lscalar, (2.3)

where LYM is the standard Yang-Mills Lagrangian (1.1), and we choose the Feynman gauge
as the previous chapter (1.22). Lscalar is the massive scalar Lagrangian,

Lscalar =
∑

α

(
(Dµφα,i)

†Dµφα,i −m2
αφ

†
α,iφα,i

)
, (2.4)

where α = 1, 2, . . . , Ns labels the flavor of the massive scalar fields and i denotes the color
index. We note that there are no contact interactions of massive scalar fields in this Lagrangian.
The covariant derivative reads

Dµφα,i = ∂µφα,i − igAa
µT

a
ijφα,j . (2.5)

We can now derive the Feynman rules needed for amplitudes up to the sixth order in the
scalar fields. The pure gluon Feynman rules are given in (1.23), (1.24) and (1.25). From the
scalar Lagrangian (2.4), the couplings of massive scalars with gluons are read off

1j

2i

a, µ (8)

1

2

µ, ⌫ (9)

µ, ⌫ ⇢,� (10)

(11)

(12)

(13)

1

43

2

(14)

3

1 2

4

(15)

2

= igT a
ij(p1 − p2)

µ, (2.6)

1 Yang-Mills theory
The Feynman rules for the vertices are

pµ

k⇢

q⌫

a

cb

=
igp
2
f̃abc [⌘µ⌫(p� q)⇢ + ⌘⌫⇢(q � k)µ + ⌘⇢µ(k � p)⌫ ] , (1)

c

b

d

a

=
ig2

8

h
f̃eab f̃ecd(⌘µ⇢⌘⌫� � ⌘µ�⌘⌫⇢)

+f̃eacf̃ebd(⌘µ⌫⌘⇢� � ⌘µ�⌘⇢⌫)

+f̃ead f̃ebc(⌘µ⌫⌘�⇢ � ⌘µ⇢⌘�⌫)
i
.

(2)

a, µ

|̄i

(3)

2 1

(4)

2i 1j

a, µ b, ⌫

(5)

2 1

µ, ⌫ ⇢,�

(6)

2 1

µ, ⌫

(7)

1

= ig2(T a
ikT

b
kj + T b

ikT
a
kj)η

µν . (2.7)

Throughout this chapter, external momenta of scalars are taken as incoming.

2.1.2 SQCD Amplitudes

We are now ready to compute the SQCD amplitudes. Since it is well known that the double
copy of pure Yang-Mills theory gives the two-form-dilaton-gravity (N = 0 supergravity),
we will focus on amplitudes involving at least one pair of external scalars. Therefore, the
simplest amplitude is the 3-point amplitude of two massive scalars and one gluon

A(1α,j , 2α,i, 3
a) = igT a

ij ϵ3 · (p1 − p2), (2.8)

where the massive scalar particle and antiparticle are indicated by the under- and over-lines,
respectively, and pi denotes the external momentum of particle i.
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The four-scalar amplitudes can also be straightforwardly obtained. When the two scalar
pairs are of different flavors/masses, the amplitude reads

A(1α,j , 2α,i, 3β,l, 4β,k) = ig2T a
ijT

a
lk

2 p3 ·(p1 − p2)

s34
. (2.9)

In this chapter, for amplitudes and Feynman diagrams with more than one pair of massive
scalars, we use different colors to denote different flavors. For those with only one scalar-pair,
there is no need to color it. Note that we use si..j := (pi + ...+ pj)

2 throughout this section.
When the two pairs of scalars are of the same flavor/mass, the amplitude is obtained from
(2.9) by adding contributions from exchanging particles 2 and 4.

A(1α,j , 2α,i, 3α,l, 4α,k) = ig2
(
T a
ijT

a
lk

2 p3 ·(p1 − p2)

s34
+ T a

ilT
a
kj

2 p3 ·(p1 − p4)

s14

)
. (2.10)

In these 4-scalar amplitudes, there are not enough color structures to form Jacobi identities.
The amplitude of two gluons and two scalars is slightly more involved but still straightforward,

A(1α,j , 2α,i, 3
a, 4b) = ig2

(
(T aT b)ijnu
s14 −m2

α

+
(T bT a)ijnt
s13 −m2

α

+
fabcT c

ijns

s34

)
. (2.11)

The kinematic numerators are given by

nu = [4(ϵ4 · p1)(ϵ3 · p2) + 2(ϵ3 · ϵ4)(p1 · p4)]
nt = [4(ϵ3 · p1)(ϵ4 · p2) + 2(ϵ3 · ϵ4)(p1 · p3)]

ns = [4(ϵ4 · p1)(ϵ3 · p2)− 4(ϵ3 · p1)(ϵ4 · p2) + 2(ϵ3 · ϵ4) p1 ·(p4 − p3)].

(2.12)

We notice that the color and the kinematic numerators above automatically satisfy the
relations below

(T aT b)ij−(T bT a)ij = fabcT c
ij , (2.13)

nu − nt = ns. (2.14)

Hence, the kinematic numerators are in the BCJ-respecting representation and are ready to
be squared in the double copy construction.

Proceeding to the six-point amplitude, we notice that the simplest case is the one with
three external scalar pairs of distinct flavors/masses. The three topologies of the diagrams
that contribute to this amplitude are given in the upper row of figure 2.1. In this case,
the curly lines should be interpreted as gluons. After all the diagrams are summed up, the
amplitude reads

A(1α,j , 2α,i, 3β,l, 4β,k, 5κ,n, 6κ,m) = ig4
c0n0

s12s34s56
+ ig4

[
c134n134

(s134 −m2
α) s34s56

+
c156n156

(s156 −m2
α) s34s56

+
(
cyclic [(1, 2, α) → (3, 4, β) → (5, 6, κ)]

)]
. (2.15)

where the color factors are abridged to

c0 = T a
ijT

b
klT

c
mnf

abc,

c134 = T b
ihT

c
hjT

b
klT

c
mn, (2.16)
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Figure 2.1: Topologies of Feynman diagrams of the 6-scalar amplitude. Curly lines denotes
possible massless propagators.

c156 = T c
ihT

b
hjT

b
klT

c
mn,

and the kinematic numerators read

n0 = (p1 − p2)µ(p3 − p4)ν(p5 − p6)ρV
µνρ
p1+p2,p3+p4,p5+p6 ,

n134 = 4 p1 ·(p3 − p4) p2 ·(p5 − p6) + (s134 −m2
α) (p3 − p4)·(p5 − p6), (2.17)

n156 = 4 p1 ·(p5 − p6) p2 ·(p3 − p4) + (s156 −m2
α) (p3 − p4)·(p5 − p6).

The other numerators are gained from cyclic rotations as defined in (2.15). We have
manipulated the kinematic numerators to be dual to the color factors,

c0 = c134 − c156 , n0 = n134 − n156 . (2.18)

For the cases where the flavors are not all distinguished, more diagrams and the symmetry
factors associated with the diagrams need to be taken care of. In the end, the additional
contributions are obtained by permutations of (1 → 3 → 5), similarly to the four-point
amplitude. The other numerators are likewise constructed.

2.2 The Double Copy of Massive Scalar QCD Amplitudes

We then follow the standard BCJ procedure described in chapter 1 to perform the double
copy procedure of the amplitudes. We first identify the degrees of freedom of the resulting
theory. Their associated polarization tensors are identified with the tensor products of the
gluon polarization vectors in the following ways,

graviton : (ϵh)ijµν = ϵ((iµ ϵj))ν , (2.19)

B-field : (ϵB)ijµν = ϵ[iµϵ
j]
ν , (2.20)

dilaton : (ϵϕ)µν =
ϵiµϵ

j
νδij√

D − 2
, (2.21)

where the double parenthesis denotes taking the symmetric-traceless part of the tensor
product, and the square bracket refers to anti-symmetrization. Note that the superscripts
i, j = 1, 2, . . . (D − 2) are not related to the color group as in (2.4), but are the little group
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indices.1 The dilaton accounts for the trace of the tensor product hence the i, j indices are
contracted with δij

2. It is written as a rank-2 tensor state in (2.21), although we know that
the dilaton is actually a scalar. To illustrate this, we can further simplify the identification as

(ϵϕ)µν(p, q) =
1√
D − 2

(
−ηµν +

pµqν + pνqµ
p · q

)
, (2.22)

where p is the momentum associated with the external particle, and q is an arbitrary reference
null-vector. We see that there is no dependence on the polarization vectors.

Focusing only on the scattering processes that involve at least one pair of massive scalars,
we now present all the relevant double copy results up to 4-point as well as the 6-scalar
amplitude. The simplest case on the YM side is the 3-point amplitude (2.8) with two scalars
and one gluon. Its double copy gives two different amplitudes,

M(1, 2, 3h) = iκ(ϵh3)µνp
µ
1p

ν
2 , (2.23)

M(1, 2, 3ϕ) =
iκm2

√
D − 2

. (2.24)

Because of our choice of conventions (1.4) and (1.12), the relation between the coupling
constants is ig → −iκ/4 in the double copy procedure. The amplitude vanishes when the
polarization is anti-symmetrized, so the external massless state cannot be a B-field. This
applies to any amplitude that involves an odd number of B-fields. Therefore we will only
write down the non-vanishing ones.

Of the 4-point amplitudes with two massive scalar and two gluons, the double copy gives
richer outcomes. All the distinct resulting amplitudes are

M(1, 2, 3h, 4h) =iκ
2(ϵh3)µν(ϵ

h
4)ρσ

[
1

s34

(
s13p

ρ
1p

µ
2η

νσ + s14p
µ
1p

ρ
2η

νσ− pµ1p
ν
1p

ρ
2p

σ
2 − pρ1p

σ
1p

µ
2p

ν
2

+ 2pµ1p
ρ
1p

ν
2p

σ
2 +

1

4
s13s14η

µρηνσ
)
− pµ1p

ν
1p

ρ
2p

σ
2

s13 −m2
− pρ1p

σ
1p

µ
2p

ν
2

s14 −m2

]
, (2.25)

M(1, 2, 3ϕ, 4h) =
iκ2m2(ϵh4)µν√

D − 2

(
pµ3p

ν
3

s34
+

pµ1p
ν
1

s14 −m2
+

pµ2p
ν
2

s13 −m2

)
, (2.26)

M(1, 2, 3ϕ, 4ϕ) =
iκ2(p1 · p3)(p1 · p4)

s34
− iκ2

D − 2

(
m4

s13 −m2
+

m4

s14 −m2
+m2

)
, (2.27)

M(1, 2, 3B, 4B) =
iκ2

s34
(ϵB3 )µν(ϵ

B
4 )ρσ

(
2pµ1p

ν
2p

ρ
1p

σ
2 − 2(p1 ·p3)pρ1pµ2ηνσ

− 2(p1 ·p4)pµ1pρ2ηνσ − (p1 ·p3)(p1 ·p4)ηµρηνσ
)
. (2.28)

The SQCD 4-scalar amplitudes, with the two pairs of particles being of distinct flavor, (2.9)
is double-copied to

M(1α, 2α, 3β , 4β) =− iκ2
(
s34
16

− p1 · p3 p2 · p3
s34

)
. (2.29)

1In Wigner’s classification of particles, a little group is a subgroup of the Poincaré group which leave
the momentum invariant. In four-dimensional Minkowskian spacetime, it’s SO(3) and E(2) for massive and
massless particles, respectively.

2We assume that the polarization vectors are on a Cartesian basis. In other bases, δij should be expressed
in that specific basis accordingly. For example, in D = 4, in terms of the helicity eigenstates, the external
dilaton is (e+µ e

−
ν + e−µ e

+
ν )/

√
2.
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Similarly, in the case where the particles are of the same flavour, the double copy of the
4-scalar amplitude (2.10) yields

M(1α, 2α, 3α, 4α) = −iκ2
(
s23 + s34

16
− p1 · p3 p2 · p3

s34
− p1 · p3 p3 · p4

s23

)
. (2.30)

The 6-scalar amplitude is also directly gained from (2.15),

M(1α,j , 2α,i, 3β,l, 4β,k, 5κ,n, 6κ,m) = i
κ4

256

n20
s12s34s56

+ i
κ4

256

[
n2134

(s134 −m2
α) s34s56

+
n2156

(s156 −m2
α) s34s56

+
(
cyclic [(1, 2, α) → (3, 4, β) → (5, 6, κ)]

)]
, (2.31)

where the numerators are again given by (2.17).

2.3 Two-Form-Dilaton-Gravity with Massive Scalars

2.3.1 Action and Feynman Rules

Our starting point is the Lagrangian of the two-form-dilaton-gravity,

Ladg =
√
|g|
[
− 2

κ2
R+

D − 2

2
gµν∂µϕ∂νϕ+

1

6
e−2κϕHλµνH

λµν
]
, (2.32)

where Hµνρ = ∂[µBνρ] is the field-strength associated to the two-form and R the Ricci
scalar. The interactions involving massive scalars may now be extracted from the amplitudes
computed above. In fact, we found that the minimal coupling of massive scalars and gravity
reproduces the 2-massive-1-graviton amplitude (2.23) and the 2-massive-2-graviton amplitude
(2.25). It is straightforward to extend the graviton couplings to higher orders,

Lmatter =
√
|g|
∑

α

(
gµν∂µφ

†
α∂νφα −m2

αφ
†
αφα

)
. (2.33)

From the 4-point order, we can get all other interaction terms up to quadratic order in κ.
The 6-scalar amplitude gives us the 6-scalar contact term. In the end, we find the following
Lagrangian from the double copy

LDC = Ladg +
√
|g|
∑

α

[
gµν∂µφ

†
α∂νφα −m2

αe
−κϕφ†

αφα

+
(κ2
32
φ†
αφα − κ4

512
(φ†

αφα)
2
)
DµD

µ
(∑

β

φ†
βφβ

)]
, (2.34)

where Dµ is the covariant derivative with the normal Levi-Civita connection. It is required
by the covariance of the Lagrangian. The dilaton propagator from (2.32) is

1

2

µ, ⌫ (13)

µ, ⌫ ⇢,� (14)

(15)

(16)

(17)

1

43

2

(18)

3

1 2

4

(19)

3

=
i

(D − 2)p2
, (2.35)

The graviton propagator and pure-graviton vertices are given in section 1.3. We do not need
the propagator of the B-field. Since the kinetic term of dilaton is non-canonical, we also
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need to dress each external dilaton by a factor 1/
√
D − 2. The dimension dependence of the

propagators of dilaton and graviton will cancel each other in pure massive scalar amplitudes
as expected from the SQCD side.

As introduced in chapter 1, in the weak-field approximation, we expand the metric as
gµν = ηµν + κhµν . This yields the couplings of graviton and dilatons,

1 Yang-Mills theory
The Feynman rules for the vertices are

k

a, µ b, ⌫ (1)

k1

k2

k3

µ, ⌫

⇢,� ↵,�

(2)

k1 k2

µ, ⌫ ⇢,�

(3)

k1 k2

µ, ⌫

1 2

(4)

k1

k3

k2

a, µ

c, ⇢ b, ⌫

=
igp
2
f̃abc [⌘µ⌫(p� q)⇢ + ⌘⌫⇢(q � k)µ + ⌘⇢µ(k � p)⌫ ] , (5)

c

b

d

a

=
ig2

8

h
f̃eab f̃ecd(⌘µ⇢⌘⌫� � ⌘µ�⌘⌫⇢)

+f̃eacf̃ebd(⌘µ⌫⌘⇢� � ⌘µ�⌘⇢⌫)

+f̃ead f̃ebc(⌘µ⌫⌘�⇢ � ⌘µ⇢⌘�⌫)
i
.

(6)

a, µ

|̄ i

(7)

1

= −iκD − 2

2
(k1 ·k2 ηµν − 2 kµ1 k

ν
2 ) , (2.36)

as well as the vertices of gravitons coupled to massive scalars are1 Yang-Mills theory

2

1

µ, ⌫ (1)

6

5

3

12

4

(2)

6

5

3

12

4

(3)

(4)

(5)

(6)

1

= −iκ
(
ηµν

2
(p1 · p2 +m2)− p

(µ
1 p

ν)
2

)
, (2.37)

1 Yang-Mills theory
The Feynman rules for the vertices are

pµ

k⇢

q⌫

a

cb

=
igp
2
f̃abc [⌘µ⌫(p� q)⇢ + ⌘⌫⇢(q � k)µ + ⌘⇢µ(k � p)⌫ ] , (1)

c

b

d

a

=
ig2

8

h
f̃eab f̃ecd(⌘µ⇢⌘⌫� � ⌘µ�⌘⌫⇢)

+f̃eacf̃ebd(⌘µ⌫⌘⇢� � ⌘µ�⌘⇢⌫)

+f̃ead f̃ebc(⌘µ⌫⌘�⇢ � ⌘µ⇢⌘�⌫)
i
.

(2)

a, µ

|̄i

(3)

(4)

2 1

µ, ⌫ ⇢,�

(5)

2 1

µ, ⌫

(6)

2 1

3 4

(7)

1

=
iκ2

2

[
ηρσp

(ν
1 p

µ)
2 + ηµνp

(σ
1 p

ρ)
2 − 2p

(σ
1 η

ρ)(µp
ν)
2 − 2p

(µ
1 η

ν)(σp
ρ)
2

+
(
m2 + p1 · p2

)(
ηµ(ρησ)ν − 1

2
ηµνηρσ

)]
,

(2.38)

3 4

2 1

(16)

3 4

2 1

(17)

µ, ⌫

3

4

1

2

(18)

6

2

4

3

1

5

(19)

(20)

(21)

3

=
iκ3

32

[
(p1 + p2) · (p3 + p4)η

µν − 2(pµ1 + pµ2 )(p
ν
3 + pν4)

]
. (2.39)

Note that the last vertex involves two different pairs of scalars in blue and red respectively.
For the vertex with two pairs of identical scalars and a graviton, we simply take (2.39) and
add another contribution by exchanging labels 2 and 4. The vertices of massive scalars
coupled to one or two gravitons deduced from (2.34) are,

2 1

3 4

(8)

2 1

3 4

(9)

2

1

(10)

2

1

µ, ⌫ (11)

2i

1j

a, µ (12)

2

1

µ, ⌫ (13)

µ, ⌫ ⇢,� (14)

(15)

2

= iκm2, (2.40)

1 Yang-Mills theory
The Feynman rules for the vertices are

pµ

k⇢

q⌫

a

cb

=
igp
2
f̃abc [⌘µ⌫(p� q)⇢ + ⌘⌫⇢(q � k)µ + ⌘⇢µ(k � p)⌫ ] , (1)

c

b

d

a

=
ig2

8

h
f̃eab f̃ecd(⌘µ⇢⌘⌫� � ⌘µ�⌘⌫⇢)

+f̃eacf̃ebd(⌘µ⌫⌘⇢� � ⌘µ�⌘⇢⌫)

+f̃ead f̃ebc(⌘µ⌫⌘�⇢ � ⌘µ⇢⌘�⌫)
i
.

(2)

a, µ

|̄i

(3)

2 1

3 4

(4)

2i 1j

a, µ b, ⌫

(5)

2 1

µ, ⌫ ⇢,�

(6)

1

= −iκ2m2. (2.41)
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The four-point vertex of a pair of massive scalar, a dilaton and a graviton is also derived
from (2.34),

1 Yang-Mills theory
The Feynman rules for the vertices are

pµ

k⇢

q⌫

a

cb

=
igp
2
f̃abc [⌘µ⌫(p� q)⇢ + ⌘⌫⇢(q � k)µ + ⌘⇢µ(k � p)⌫ ] , (1)

c

b

d

a

=
ig2

8

h
f̃eab f̃ecd(⌘µ⇢⌘⌫� � ⌘µ�⌘⌫⇢)

+f̃eacf̃ebd(⌘µ⌫⌘⇢� � ⌘µ�⌘⇢⌫)

+f̃ead f̃ebc(⌘µ⌫⌘�⇢ � ⌘µ⇢⌘�⌫)
i
.

(2)

a, µ

|̄i

(3)

(4)

2 1

µ, ⌫ ⇢,�

(5)

2 1

µ, ⌫

(6)

2 1

3 4

(7)

1

=
iκ2m2ηµν

2
. (2.42)

2.3.2 Matching to Double Copy Amplitude

Let us now explain the extraction of each contact term in (2.34). We first make an ansatz on
how the dilaton couples to massive scalars. It is also known that the dilaton appears as an
exponent when coupled to other fields,

Lϕφ†φ =
√
|g|
(
eλκϕgµν∂µφ

†
α∂νφα −m2

αe
ζκϕφ†

αφα

)
, (2.43)

whose leading term in κ gives the canonical kinetic and mass terms. We can compute the
3-point amplitude of two matter fields and a dilaton,

M(1, 2, 3ϕ) =
i(λ− ζ)κm2

√
D − 2

. (2.44)

Matching to the double copy result (2.24), we have λ − ζ = 1. The 2-massive-2-dilaton
amplitude from double copy (2.27) subtracted by all Feynman diagrams that contain only
cubic vertices yields the diagram that comes from the contact term,

1 Yang-Mills theory
The Feynman rules for the vertices are

pµ

k⇢

q⌫

a

cb

=
igp
2
f̃abc [⌘µ⌫(p� q)⇢ + ⌘⌫⇢(q � k)µ + ⌘⇢µ(k � p)⌫ ] , (1)

c

b

d

a

=
ig2

8

h
f̃eab f̃ecd(⌘µ⇢⌘⌫� � ⌘µ�⌘⌫⇢)

+f̃eacf̃ebd(⌘µ⌫⌘⇢� � ⌘µ�⌘⇢⌫)

+f̃ead f̃ebc(⌘µ⌫⌘�⇢ � ⌘µ⇢⌘�⌫)
i
.

(2)

a, µ

|̄i

(3)

2 1

3 4

(4)

2i 1j

a, µ b, ⌫

(5)

2 1

µ, ⌫ ⇢,�

(6)

1

=
−iκ2
2

(
m2(1 + 2λζ − 2λ2) +

λ2

4
s34

)
. (2.45)

We can also calculate this diagram directly from Feynman rules of the 4-point contact term,

−iκ2
2

(
m2(ζ2 − λ2) +

λ2

2
s34

)
. (2.46)

Comparing the above formulae, (2.45) and (2.46), we have two equations of λ and ζ. Together
with λ− ζ = 1, we find the solution,

λ = 0, ζ = −1. (2.47)

We also verified that (2.43) gives the correct 4-point amplitude of 2 massive scalars, 1 dilaton
and 1 graviton, of (2.26). As for the 2 massive scalar and 2 B-field scattering, we compute
the amplitude from the perturbative Lagrangian (2.34). It coincides with (2.28), so there is
no direct coupling of the B-field and massive scalars at least at 3- and 4-point levels.

We now proceed to consider the interactions among the massive scalars. These will be
presented in more detail since it is this chapter’s main result. The amplitude of 2 pairs of
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massive scalars of different flavors contains contributions from the following diagrams,

3 4

2 1

(16)

3 4

2 1

(17)

µ, ⌫

3

4

1

2

(18)

6

2

4

3

1

5

(19)

(20)

(21)

3

=
−iκ2m2

1m
2
2

(D − 2)s34
, (2.48)

3 4

2 1

(16)

3 4

2 1

(17)

µ, ⌫

3

4

1

2

(18)

6

2

4

3

1

5

(19)

(20)

(21)

3

= iκ2
(

m2
1m

2
2

(D − 2)s34
+
p1 · p3 p2 · p3

s34

)
. (2.49)

In order to match the double copy amplitude (2.29), a 4-scalar contact term is required,

1 Yang-Mills theory
The Feynman rules for the vertices are

pµ

k⇢

q⌫

a

cb

=
igp
2
f̃abc [⌘µ⌫(p� q)⇢ + ⌘⌫⇢(q � k)µ + ⌘⇢µ(k � p)⌫ ] , (1)

c

b

d

a

=
ig2

8

h
f̃eab f̃ecd(⌘µ⇢⌘⌫� � ⌘µ�⌘⌫⇢)

+f̃eacf̃ebd(⌘µ⌫⌘⇢� � ⌘µ�⌘⇢⌫)

+f̃ead f̃ebc(⌘µ⌫⌘�⇢ � ⌘µ⇢⌘�⌫)
i
.

(2)

a, µ

|̄i

(3)

(4)

2 1

µ, ⌫ ⇢,�

(5)

2 1

µ, ⌫

(6)

2 1

3 4

(7)

1

= −iκ2 s34
16
. (2.50)

A similar calculation applies to the 4-scalar amplitude, where all massive scalars are of the
same flavor. We only need to add the contribution by exchanging p1 and p3. The contact
term will be

2 1

3 4

(8)

(9)

2

1

µ, ⌫ (10)

2i

1j

a, µ (11)

2

1

µ, ⌫ (12)

µ, ⌫ ⇢,� (13)

(14)

(15)

(16)

2

= −iκ2 s34 + s14
16

. (2.51)

In summary, the 4-scalar interaction term can be extracted as

Lφ4 =
√
|g|κ

2

32
φ†
αφαDµD

µ(φ†
βφβ). (2.52)

The 6-scalar contact term is computed in the same way. For simplicity, the 3 pairs of scalars
are taken to be of different flavors. Cases where two or three pairs of scalar are of the same
flavor can be gained by simply exchanging the external particles. We match the amplitude
computed from summing all Feynman diagrams to the double copy result. All the diagrams,
except for the one from the 6-scalar interaction, are categorized into the six structures in fig.
2.1. Subtracting every diagram that falls into either category in fig. 2.1 from the double copy
amplitude will give us the 6-scalar contact term,

3 4

2 1

(17)

3 4

2 1

(18)

3 4

2 1

(19)

µ, ⌫

3

4

1

2

(20)

6
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4
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1

5

(21)

(22)

3

=
iκ4

256
(s12 + s34 + s56) . (2.53)

25



CHAPTER 2. DOUBLE COPY OF MASSIVE SCALAR QCD

The corresponding interaction will be

Lφ6 = −
√
|g| κ

4

512
(φ†

αφα)
2DµD

µ(φ†
βφβ). (2.54)

We now have calculated every term in (2.34).

2.4 Further details on the Double Copy Action

The established higher-order terms in the action (2.34) do look somewhat non-standard with
the double derivative DµDµ appearing. We would now like to unify them with the kinetic
and mass term in (2.34) by performing a suitable field redefinition.3 To this end, we consider
the shift

φα → φα +
κ2

32
φα (φ

†
βφβ) +

κ4

1024
φα (φ

†
βφβ)

2 (2.55)

that transforms the matter part of the Lagrangian (2.34) into

LDCmatter=
√
|g|
(
gµν∂µφ

†
α∂νφα −m2

αe
−κϕφ†

αφα

)(
1 +

κ2

16
(φ†

βφβ) +
3κ4

1024
(φ†

βφβ)
2 +O(κ6)

)
.

(2.56)

This action after the field redefinitions and the previous one (2.34) have identical scattering
amplitudes4. This form of the action suggests itself to an attractive resummation into the
compact form

LDC = Ladg +
√
|g|∂µφ

†
α∂µφα −m2

αe
−κϕφ†

αφα(
1− κ2

32φ
†
βφβ

)2 , (2.57)

with Ladg the two-form-dilaton-gravity theory of (2.32). Note that in 4D upon dualizing the
two-form to an axion χ via dχ = 4

κ e
2κϕ ∗ dB the axio-dilaton system displays a striking

similarity to the massive flavored scalar Lagrangian above. In 4D the double copy of scalar
QCD takes the form

L(SQCD)2 = −2
√
|g|

κ2
R+

√
|g| ∂µZ̄∂

µZ

(1− κ2

4 Z̄Z)
2
+
√

|g|∂µφ
†
α∂µφα −m2

αe
−κϕφ†

αφα(
1− κ2

32φ
†
βφβ

)2 . (2.58)

Here the complex scalar field Z is built from the dilaton ϕ and axion χ as

Z =
2

κ

κχ+ i(e−κϕ − 1)

κχ+ i(e−κϕ + 1)
(2.59)

enjoys an SL(2,R) symmetry (see e.g. [83]). We note in closing that such a symmetry is also
present in the scalar sector for the massless Nf = 1 case.

In conclusion, we explicitly constructed the double copy of scalar QCD in arbitrary
dimensions resulting in an extension of the established two-form-dilaton gravity model

3We thank Alexander Ochirov for crucial discussions on this point.
4For this the asymptotic equivalence of the two fields φα and φ′

α = φα + δφα is required, i.e. it suffices if
δφα is higher order in fields (and couplings).
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(“N = 0 supergravity”) by interacting massive flavored scalars displaying self-interactions to
arbitrary quadratic field orders. These self-interaction terms are short-range contact terms
and hence have no contributions to classical physics. Additionally, we found no coupling of
the flavored scalars to the two-form, i.e. axion in 4 dimensions, as is commonly expected,
yet not proven. We thus confirm that that at the classical level, it is sufficient to consider
massive particles coupled minimally to the dilaton gravity as the resulting consistent theory
of double copy of the classical version of scalar QCD, at least up to next-to-leading order.

The simple form of the proposed double copy Lagrangian (2.57) suggests that it might be
constrained by some underlying symmetries. It is not clear to us how to find these possible
constraints. To obtain a completed double copy theory, one has to go beyond perturbation
theory as we did in this chapter. This is very challenging and to the best of our knowledge,
this is no known method to do so at present.
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Chapter 3

Classical Double Copy of Worldline
QFT

This chapter is based o n the published article “Classical Double Copy of Worldline Quantum
Field Theory” [2], written in collaboration with Prof. Dr. Jan Plefka.

Following the quantum story of the double copy of massive particles, we would like to
explore the possibility of bypassing the quantum theory and directly performing double copy
procedure at the classical level. The worldline formalism has been employed for years as
an effective theory to describe classical massive particles coupled to gravity, such as black
holes and neutron stars. Moreover, it is known that the quantization of worldlines describes
quantum states in corresponding quantum field theory. Recently, Mogull et al. used a
worldline quantum field theory to model classical gravitational scattering of two massive black
holes. In WQFT, physical quantities are calculated as expectation values of corresponding
operators rather than solving equations of motions, and it is found to be directly linked to
the S-matrix elements in quantum theory of massive quarks. This connection suggests that at
the classical level, it is expected that the double copy can be realized for physical quantities
which are gauge-independent and on-shell akin to quantum scattering amplitudes. In practice,
physical observables are efficiently computed by summing up all Feynman diagrams, which is
another similarity to amplitudes.

The WQFT was originally developed to describe and simplify calculations of massive
particles interacting via pure Einstein gravity. To investigate the classical double copy, we
extend the formalism by considering massive (colored) point particles coupled to a bi-adjoint
scalar, Yang-Mills field, and dilaton gravity. The bi-adjoint scalar theory is required to restore
the locality structure, as explained in the following sections. We establish a prescription of a
perturbative classical double copy of these three theories. We also illustrate the validity of
the double copy by calculating the eikonal phase up to subleading order in all three theories.
Their connection to scattering amplitudes is clear and is shown explicitly at next-to-leading
order. For simplicity, we will focus on the D = 4 case in this chapter.

We will first briefly introduce the framework of worldline quantum field theory in sec-
tion 3.1, focusing on three specific models where massive objects coupled to a bi-adjoint scalar,
Yang-Mills field, and dilaton gravity, respectively. We will explain in detail how to calculate
observables in WQFT and presents the necessary Feynman rules. It is followed by section 3.2,
where we show the double copy of the eikonal phase up to subleading order in the coupling
constants. The relation of radiation and the eikonal double copy is discussed in section 3.3.
We further reveal the relationship of the WQFT and amplitude double copy, building upon
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the connection between eikonal approximation and the classical limit of scattering amplitude
in section 3.4.

3.1 Basics of Worldline Quantum Field Theory

As an introduction to the basic ideas on WQFT, we first consider the theory of massive
scalars coupled minimally to pure gravity. This theory successfully describes the scattering
of two non-spinning black holes up to order O(G2) [84–89].

We take the standard worldline-gravity action (1.69) and adopt the de Donder gauge
(1.39). Setting the einbein as e(τ) = 1/m, the worldline action (1.78) becomes

Spm = −m
2

∫
dτ (gµν ẋ

µẋν + 1) . (3.1)

We expand the metric around Minkowskian spacetime as usual. Additionally, we consider
the worldline to have a small deviation from a straight-line trajectory,

xµ(τ) = bµ + vµτ + zµ(τ), (3.2)

where bµ is a constant vector which will be later related to the impact parameter, vµ is the
velocity of the background straight-line orbit with v2 = 1. We take b · v = 0 which may
always be achieved upon shifting τ . This straight-line expansion is only valid for unbound
orbits, and we are thus limited to the scattering process. We note that it is consistent with
the small momentum exchange limit, which is essentially equivalent to the classical limit of
scattering amplitude. In principle, the background trajectory can be defined at arbitrary
reference time τ0 as long as the perturbation field satisfies

zµ(τ0) = 0, żµ(τ0) = 0. (3.3)

However, for our convenience, we usually choose to define it in the past infinity (τ0 = −∞).
In this case, the straight line coincides with the exact trajectory in the past infinity. Recently,
it has been realized that this setting corresponds to the “in-in” formalism that naturally
arises when one derives classical observables from scattering amplitudes [44]. This condition
also induces us to use retarded propagators to compute physical quantities.

In WQFT, we treat the perturbation of the metric and the worldline with an equal footing.
Practically, we will integrate out the fluctuations hµν and zµ with the path integral formalism
to arrive at the observables that depend only on the background parameters. As stated before,
physical quantities are computed as the expectation values of the corresponding operators.
In the path integral, we can express the expectation value of an operator O as

⟨O⟩ = 1

ZWQFT

∫
D[hµν ]

∏

i

D[zi]O eiSWQFT , (3.4)

where we have included multiple numbers of worldlines denoted by index i. ZWQFT is the
partition function,

ZWQFT =

∫
D[hµν ]

∏

i

D[zi]e
iSWQFT . (3.5)
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In the binary case (i = 1, 2), it turns out that the eikonal phase χ may be identified with the
logarithm of the partition function,

χ = −i lnZWQFT. (3.6)

The momentum deflection of a particle ∆pµi can be calculated by taking the derivative of the
eikonal with respect to the impact parameter bµi . Here we claim that this relation holds for
an arbitrary number of worldlines. The proof is easily done in the path integral. We consider
the derivative of lnZWQFT with respect to bµi ,

i
∂ lnZWQFT

∂bµi
=

〈
−∂SWQFT

∂bµi

〉
= −

∫ +∞

−∞
dτ

〈
∂Lpm

∂xµi

〉
, (3.7)

where in the last step we exploit the fact that in the full action bµi only appears as the
τ -independent background of xµi (τ) in the point particle action Spm =

∫
dτLpm, where Lpm

is the Lagrangian. As the expectation value of the equation of motion for x(τ) vanishes,
using the Euler-Lagrange equations, we can rewrite eq. (3.7) as

i
∂ lnZWQFT

∂bµi
= −

∫ +∞

−∞
dτ

〈
d

dτ

∂Lpm

∂ẋµi

〉
=
〈
pcai,µ
〉∣∣+∞

−∞ , (3.8)

where pcai,µ = −∂Lpm/∂ẋ
µ
i is the canonical momentum conjugated to xµ. Since we are studying

a scattering process, we may assume that the point particles are so far separated that the
interaction terms vanish in the past and future infinity. In this case pcai,µ reduces to the
kinematic momentum miẋ

µ
i , so we have

mi∆ẋ
µ
i = i

∂ lnZWQFT

∂bi,µ
. (3.9)

We therefore conclude that the eikonal is equivalent to the partition function in the sense
that they both derive the momentum deflection by taking the derivative with respect to the
impact parameter.

In practice, we compute the Feynman diagrams contributing to the expectation values.
The Feynman rule for fields in the bulk is the same as in pure gravity. To extract the
propagator of the worldline fluctuation z(τ), we plug the weak field and worldline expansion
(3.2) into (3.1). The terms independent of hµν reads

S(0)
pm = −m

2

∫
dτ ẋ2 = −m

2

∫
dτ
(
2 + 2v ·ż + ż2

)
. (3.10)

The first term in the bracket is just a constant, and the second is a boundary term, so they
are negligible. The third term is the kinetic term of z(τ), from which we can read off the
propagator

4

the integral shorthands
R
!
:=

R
d!
2⇡ ,

R
k
:=

R
d4k
(2⇡)4 as well as ��(!) := 2⇡�(!) and ��(4)(kµ) := (2⇡)4�(4)(kµ). When

evaluated on the worldline, the generic field � may be
expanded as

�(x(⌧)) =

Z

k

eik·(b+v⌧+z(⌧))�(�k) =

1X

n=0

in

n!

Z

k

eik·(b+v⌧)(k · z(⌧))n�(�k)

=

Z

k

eik·b�(�k)

✓
eik·v⌧ + i

Z

!

ei(k·v+!)⌧k · z(�!)
◆
+O(z2). (13)

We take the expansion only to linear order in zµ since
this is the highest term we need in this letter. A complete
expression of hµ⌫ to all orders in z may be found in [18].
Next we extract the Feynman rules from the worldline

actions. The worldline propagators are the same in all
three theories,

zµ z⌫
!

= � i

m

⌘µ⌫

!2
(14)

 †  
!

=
i

!
. (15)

The propagator of the dual field  ̃ is identical to the one
for  .
Let us now begin with the analysis of the Yang-Mills

coupled WQFT. With (12) and (13) we can expand the
interaction term of Spc from eq. (2) as

Spc
int =g

Z
d⌧ ẋµ(⌧) ·Aa(x(⌧))Ca(⌧) (16)

=g

Z

k

eik·bv ·Aa(�k)��(k · v)ca

+ g

Z

k,!

eik·bAa
µ(�k)��(k · v + !)

⇥
h
i
�
!zµ(�!) + vµk · z(�!)

�
ca

+ vµ( †T a (�!)+ †(!)T a )
i
+O

�
(z, )2

�

where we keep the interaction to linear order in world-
line fluctuations. The Feynman rules of the worldline-
gluon vertices can be directly read o↵ from (16), be-
low we represent the background worldline configurations
(bµ, vµ, ca) as dashed lines.

Aa
µ

k = igeik·b��(k · v)vµca (17)

z⇢

Aa
µ

!

k = �geik·b��(k ·v + !)

⇥ (!⌘µ⇢ + vµk⇢)ca
(18)

 †

Aa
µ

!

k = igeik·b��(k · v + !)vµ(T a ) (19)

 

Aa
µ

!

k = igeik·b��(k · v � !)vµ( †T a). (20)

Turning to the bi-adjoint scalar coupled WQFT, we
can expand the worldline-scalar coupling of (6) in the
same way,

Scc
int =

y

m

Z
d⌧�aã(x(⌧))Ca(⌧)C ã(⌧) (21)

=
y

m

Z

k

eik·b�aã(�k)��(k · v)cacã

+
y

m

Z

k,!

eik·b�aã(�k)��(k · v + !)
h
ik · z(�!)cacã

+
�
 †T a (�!) +  †(!)T a 

�
cã

+ ca
⇣
 ̃†T̃ ã ̃(�!) +  ̃ †(!)T̃ ã ̃

⌘i
+O

�
(z, )2

�
.

Again, we keep only the terms that we need in this work.
From the interaction (21) we extract the Feynman rules

�ab

k =
iy

m
eik·b��(k · v)cacã (22)

z⇢

�ab

!

k =� y

m
eik·b��(k · v + !)k⇢cacã (23)

 †

�ab

!

k =
iy

m
eik·b��(k · v + !)(T a )cã (24)

= − i

m

ηµν

ω2
. (3.11)

Since we are in the classical regime, we only care about tree diagrams and no ghosts are
needed. It is more natural to work in the momentum space to describe the interaction of
graviton and deflection,

hµν(x) =

∫

k
eik·xhµν(−k),

zµ(τ) =

∫

ω
e−iωτzµ(ω).

(3.12)
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For convenience, we use the integral shorthands,

∫

ω
:=

∫
dω

2π
,

∫

k
:=

∫
d4k

(2π)4
,

δ−(ω) := 2πδ(ω), δ−(4)(kµ) := (2π)4δ(4)(kµ)

(3.13)

to avoid proliferation of the 2π factors. We will leave the calculation details when we talk
about the specific models we need in this chapter. Since the deviation from the straight line
is implicitly in higher-order in G, when evaluated on the worldline, the graviton field can be
further expanded,

hµν(x(τ)) =

∫

k
eik·(b+vτ+z(τ))hµν(−k) =

∞∑

n=0

in

n!

∫

k
eik·(b+vτ)(k · z(τ))nhµν(−k)

=
∞∑

n=0

in

n!

∫

k,ω1,...,ωn

eik·bei(k·v+
∑n

i=1 ωi)τ

(
n∏

i=1

k · z (−ωi)

)
hµν(−k).

(3.14)

This produces infinitely many linear interactions in hµν , collectively written as

Sint
pm =Spm − S(0)

pm = −κm
∞∑

n=0

in

n!

∫

k,ω1,...,ωn

eik·bδ−
(
k · v +

n∑

i=1

ωi

)
hµν(−k)

( n∏

i=1

zρi(−ωi)
)

×
[
1

2

( n∏

i=1

kρi

)
vµvν +

n∑

i=1

ωi

( n∏

j ̸=i

kρj

)
v(µδν)ρi +

n∑

i<j

ωiωj

( n∏

l ̸=i,j

kρl

)
δ(µρi δ

ν)
ρj

]
, (3.15)

where we have integrated out τ to bring it fully to momentum space.

3.1.1 WQFT of Bi-adjoint scalar, Yang-Mills and Dilaton Gravity

In addition to the worldline coupled to Einstein gravity, we also wish to apply the WQFT
formalism to massive point particles coupled to the bi-adjoint scalar field theory (BS), Yang-
Mills theory (YM), and dilaton-gravity (DG). The actions can be uniformly written in a
compact form,

SWQFT = SBS/YM/DG +
∑

i

S
(i)
cc/pc/pm, (3.16)

where SBS/YM/DG is the respective field theory action and S
(i)
cc/pc/pm the respective i’th

particle worldline action.
Let us first look at the field theory actions. The Yang-Mills action is the same as given in

(1.1) with Feynman gauge (1.22). The gluon propagator is given in (1.23) and the three- and
four-gluon vertices are (1.24) and (1.25), respectively. These are all the Feynman rules of
YM field theory that we need in this chapter.

The action of bi-adjoint scalar theory is

SBS=

∫
d4x

(
1

2

(
∂µϕ

aã
)2− y

3
fabcf̃ ãb̃c̃ϕaãϕbb̃ϕcc̃

)
(3.17)

where ϕaã(x) is the bi-adjoint scalar field carrying two distinct color indices a and ã related
to the color and dual-color gauge groups, respectively, and y is the coupling constant. fabc
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and f̃ ãb̃c̃ are corresponding structure constants. We can easily deduce the Feynman rules in
the bi-adjoint scalar theory,

11

In the Feynman gauge, the gluon propagator and the
three-gluon vertex are

Aa
µ Ab

ν

k
=
−i

k2
ηµνδ

ab (A4)

Aa
µ

Ab
ν

Ac
ρ

k1

k2

k3
=igfabcV µνρ

123 (A5)

where

V µνρ
123 =

[
ηµν(k1−k2)

ρ + ηνρ(k2−k3)
µ + ηρµ(k3−k1)

ν
]
.

(A6)

The action of bi-adjoint scalar theory is

SBS=

∫
d4x

(
1

2

(
∂µφ

aã
)2− y

3
fabcf̃ ãb̃c̃φaãφbb̃φcc̃

)
(A7)

The Feynman rules are

φaã φbb̃

k
=

i

k2
(A8)

φaã

φbb̃ φcc̃

=− 2iyfabcf̃ ãb̃c̃. (A9)

For dilaton gravity, we strictly follow the convention
in [14] which extensively simplifies our calculation. Orig-
inally, the action is

SDG =− 2

κ2

∫
d4x

√−g [R− 2∂µϕ∂
µϕ] . (A10)

We will expand it in the weak field limit (4). Using the
field redefinition of {ϕ, hµν} and the gauge defined in [14],
we rewrite the action as

SDG =

∫
d4x

(1
2
∂ρhµν∂

ρhµν (A11)

+
κ

4·3!V
µαγ
123 Vνβδ

123 h1µνh2αβh3γδ +O(κ2,ϕ)
)
,

where Vνβδ
123 = V νβδ

123

∣∣∣
ki→∂i

is the position space version

of V νβδ
123 , with the labels 1, 2, 3 indicating on which hµν

the partial derivatives should be applied. This yields the
graviton propagator

hµν hρσ

k
=

i

k2
Pµνρσ (A12)

with

Pµνρσ =
ηµρηνσ + ηµσηνρ

2
(A13)

and the three-graviton vertex is simply

hµ1ν1

hµ2ν2 hµ3ν3

k1

k2

k3
=

−iκ

4
V α1α2α3
123 V β1β2β3

123

3∏

i=1

Pαiβiµiνi .

(A14)

From (A5) and (A14), we can already see the double copy
structure of the vertices.
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φbb̃ φcc̃

=− 2iyfabcf̃ ãb̃c̃. (A9)
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= −2iyfabcf̃ ãb̃c̃. (3.19)

As far as the double copy is concerned, one would expect to get the two-form-dilaton
gravity corresponding to YM theory. However, in the classical worldline formalism, due
to the anti-symmetry of the B-field, it decouples from the massive particles (at least to
next-to-leading order and minimal coupling). Therefore, in WQFT, we only need to consider
dilaton gravity. The action is given in (2.32) without the last term in the bracket involving
the B-field. Limited to D = 4, it reads,

Sdg =

∫
d4xLdg =

∫
d4x

√−g
[
− 2

κ2
R+ gµν∂µφ∂νφ

]
. (3.20)

After doing the weak field expansion, we follow the procedure in [90], which extensively
simplifies our calculation. Accordingly, we adopt a special gauge-fixing condition other than
the de Donder gauge and perform a field redefinition of ϕ, hµν . This allows decoupling the
dilaton to the worldline up to subleading order in κ, as well as to simplify the three-graviton
self-interaction as the square of the three-gluon one. The gauge-fixing term is given as

Sgf =
1

κ2

∫
d4x

√−ggµνfµfν , (3.21)

fµ =Γµ
νσg

νσ +
κ2

2

[
− 1

4

(
∂κh

κλ
)
hµλ − 1

4

(
∂µhκλ

)
hκλ +

(
∂κhµλ

)
hκλ

+
3

16
(∂µhκ)hλλ − 3

8
(∂κhµκ)h

λ
λ − 3

8

(
∂λhκκ

)
hµλ

]
.

(3.22)

The field redefinition is given as

hµν →hµν − ηµν

(
1

2
hµµ + 2ϕ

)
+ κ

(
−1

2
hµνh

ρ
ρ +

1

8
ηµνh

ρ
ρh

σ
σ

+
1

2
hµρh

ρ
ν − 2ϕhµν + 2ϕ2ηµν + ϕhµνh

ρ
ρ

)
,

(3.23a)

ϕ→ ϕ+
1

4
hµµ. (3.23b)

Additionally, we also add a total derivative term to simplify the action

0 = STD =

∫
d4x∂µ

[
hνκ∂νh

µκ − hµν∂κh
κ
ν

+
κ

4

(
hµνhσν∂νh

σν − hλκh
κν∂νh

µλ − hµνhρλ∂λhνρ + hµνh
νλ∂σh

σ
λ

)] (3.24)

33



CHAPTER 3. CLASSICAL DOUBLE COPY OF WORLDLINE QFT

This procedure leads to a simple expression for the field action,

Sdg + Sgf + STD =

∫
d4x

[
1

2
∂ρhµν∂

ρhµν +
κ

4

(
hµν∂

µ∂νhρσh
ρσ + 2hµν∂

σhµρ∂
νhρσ

− hµν∂
σhµρ∂

ρhνσ − hρσ∂
ρhµν∂

σhµν − ∂ρ∂σhµνh
ρµhσν

)]
+O

(
κ2, ϕ

)

=

∫
d4x

[
1

2
∂ρhµν∂

ρhµν +
κ

4 · 3!V
µαγ
123 Vνβδ

123 h1µνh2αβh3γδ

]
+O

(
κ2, ϕ

)
, (3.25)

where Vνβδ
123 = V νβδ

123

∣∣∣
ki→∂i

is the position space version of V νβδ
123 defined in (1.26) for the

three-gluon vertex, with the labels 1, 2, 3 indicating on which hµν the partial derivatives
should be applied. This yields the graviton propagator

11

Aa
µ

Ab
⌫

Ac
⇢

k1

k2

k3
=igfabcV µ⌫⇢

123 (A5)

where

V µ⌫⇢
123 =

⇥
⌘µ⌫(k1�k2)

⇢ + ⌘⌫⇢(k2�k3)
µ + ⌘⇢µ(k3�k1)

⌫
⇤
.

(A6)

The action of bi-adjoint scalar theory is

SBS=

Z
d4x

✓
1

2

�
@µ�

aã
�2� y

3
fabcf̃ ãb̃c̃�aã�bb̃�cc̃

◆
(A7)

The Feynman rules are

�aã �bb̃

k
=

i

k2
(A8)

�aã

�bb̃ �cc̃

=� 2iyfabcf̃ ãb̃c̃. (A9)

For dilaton gravity, we strictly follow the convention
in [16] which extensively simplifies our calculation. Orig-
inally, the action is

SDG =� 2

2

Z
d4x

p�g [R� 2@µ'@
µ'] . (A10)

We will expand it in the weak field limit (4). Using the
field redefinition of {', hµ⌫} and the gauge defined in [16],
we rewrite the action as

SDG =

Z
d4x

⇣1
2
@⇢hµ⌫@

⇢hµ⌫ (A11)

+


4·3!V
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123 V⌫��
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⌘
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where V⌫��
123 = V ⌫��

123

���
ki!@i

is the position space version

of V ⌫��
123 , with the labels 1, 2, 3 indicating on which hµ⌫

the partial derivatives should be applied. This yields the
graviton propagator

hµ⌫ h⇢�

k
=

i

k2
Pµ⌫⇢� (A12)

with

Pµ⌫⇢� =
⌘µ⇢⌘⌫� + ⌘µ�⌘⌫⇢

2
(A13)

and the three-graviton vertex is simply

hµ1⌫1

hµ2⌫2 hµ3⌫3

k1

k2

k3
=

�i

4
V ↵1↵2↵3
123 V �1�2�3

123

3Y

i=1

P↵i�iµi⌫i .

(A14)

From (A5) and (A14), we can already see the double copy
structure of the vertices.

Appendix B: Eikonal and momentum deflection

Here we provide a simple proof in the path integral for-
malism that the partition function ZWQFT can be iden-
tified with the exponentiated eikonal phase. Let us first
consider the derivative of lnZWQFT with respect to bµi ,

i
@ lnZWQFT

@bµi
=

⌧
�@SWQFT

@bµi

�
= �

Z +1

�1
d⌧

⌧
@Lpp

@xµ
i

�
,

(B1)

where in the last step we exploit the fact that in the full
action bµi only appears as the ⌧ -independent background
of xµ

i (⌧) in the point particle action Spp =
R
d⌧Lpp,

where Lpp is the Lagrangian. As the expectation value of
the equation of motion for x(⌧) vanishes, we can rewrite
eq.(B1) as

i
@ lnZWQFT
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Z +1

�1
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d

d⌧

@Lpp

@ẋµ
i

�
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pcani,µ

↵��+1
�1 ,

(B2)

where pcani,µ = �@Lpp/@ẋµ
i is the canonical momentum

conjugated to xµ. Since we are studying a scattering pro-
cess, in past and future infinity we may assume that the
point particles are so far separated that the interaction
terms vanish. In this case pcani,µ reduces to the kinematic

momentum miẋ
µ
i , so we have

mi�ẋµ
i = i

@ lnZWQFT

@bi,µ
. (B3)

Therefore in this letter, we define the generalized eikonal
phase for more than two worldlines as,

� = �i lnZWQFT. (B4)=
i

k2
ηµ(ρησ)ν (3.26)

and the three-graviton vertex
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�bb̃ �cc̃

=� 2iyfabcf̃ ãb̃c̃. (A9)
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From (A5) and (A14), we can already see the double copy
structure of the vertices.

Appendix B: Eikonal and momentum deflection

Here we provide a simple proof in the path integral for-
malism that the partition function ZWQFT can be iden-
tified with the exponentiated eikonal phase. Let us first
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where in the last step we exploit the fact that in the full
action bµi only appears as the ⌧ -independent background
of xµ

i (⌧) in the point particle action Spp =
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d⌧Lpp,

where Lpp is the Lagrangian. As the expectation value of
the equation of motion for x(⌧) vanishes, we can rewrite
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where pcani,µ = �@Lpp/@ẋµ
i is the canonical momentum

conjugated to xµ. Since we are studying a scattering pro-
cess, in past and future infinity we may assume that the
point particles are so far separated that the interaction
terms vanish. In this case pcani,µ reduces to the kinematic

momentum miẋ
µ
i , so we have

mi�ẋµ
i = i

@ lnZWQFT

@bi,µ
. (B3)

Therefore in this letter, we define the generalized eikonal
phase for more than two worldlines as,

� = �i lnZWQFT. (B4)

=
−iκ
4
V α1α2α3
123 V β1β2β3

123

3∏

i=1

ηαi(µi
ηνi)βi

. (3.27)

Compared to the three-gluon vertex (1.24), we can already see the structure of the double
copy.

We will now proceed to examine the worldline actions S
(i)
cc/pc/pm in (3.16). The action of

a massive point charge coupled to a non-abelian gauge field Aa
µ is [91, 92]

Spc =−
∫
dτ

(
1

2

(
ẋ2

e
+m2e

)
−iΨ†αΨ̇α+gẋ

µAa
µC

a

)
, (3.28)

where e(τ) is the einbein similar to the one introduced for gravity (1.79), and the dot over
a symbol denotes a derivative with respect to τ . The “color wave function” Ψα(τ) is an
auxiliary field carrying the color degrees of freedom of the particle, the α, β, . . . = 1, . . . , dR
are indices of the dR-dimensional representation of the gauge group, and

Ca(τ) = Ψ†α(T a)α
βΨβ (3.29)

is the associated color charge that determines the coupling to the gauge field Aa
µ(x). We

shall take the generators (T a)α
β to be acting on the fundamental of SU(N) such that

dR = N and the adjoint indices a, b, . . . = 1, . . . N2 − 1.1 This action is invariant under the
reparametrization of τ . The kinetic term can be transformed into the more familiar form
−m

∫
dτ

√
ẋ2 by solving the algebraic equations of motion for the einbein e(τ) and reinserting

1In fact, specifying the gauge group and the representation for the matter are not necessary. In principle,
we can pick any group and representation. We pick the fundamental one just for convenience.
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the solution into the action just as for Einstein gravity (1.80). However, as usual, it is better
for us to fix

e(τ) =
1

m
⇒ ẋ2 = 1 (3.30)

and τ is then the proper time.
Similarly, the action of a worldline minimally coupled to dilaton-gravity reads

Spm = −1

2

∫
dτ

(
e2κφgµν ẋ

µẋν

e
+m2e

)
, (3.31)

which differs from the pure-gravity-worldline action (1.78) only by the exponentiated dilaton
coupling e2κφ. Again, upon integrating out e(τ) we arrive at the more common form of the
action −m

∫
dτeκφ

√
gµν ẋµẋν . We fix the worldline gauge by choosing

e(τ) =
1

m
⇒ e2κφgµν ẋ

µẋν = 1. (3.32)

Thanks to the field redefinition (3.23), the worldline is decoupled from φ up to quadratic
order, which in terms of the redefined fields then reads

Spm = −m
2

∫
dτ
(
ẋ2 + κhµν ẋ

µẋν +
κ2

2
hµρh

ρ
ν ẋ

µẋν
)
+O(κ3). (3.33)

Finally, let us introduce the massive point particle coupling to a bi-adjoint scalar field
theory. A point particle interacting with a bi-adjoint scalar field (WBS) is described by [93,94]

Scc = −
∫
dτ
(1
2

(
ẋ2

e
+m2e

)
− iΨ†Ψ̇− iΨ̃† ˙̃Ψ− e y ϕaãC

aC̃ ã
)
, (3.34)

where Ψα(τ) and Ψ̃α̃(τ) are the color and dual color wave functions, and we have omitted
the (dual-)color indies for brevity. The corresponding charges are defined in a similar fashion
as (3.29) in Spc

Ca =Ψ†T aΨ, C̃ ã = Ψ̃†T̃ ãΨ̃. (3.35)

In this case, we set the worldline parametrization

e(τ) =
1

m
⇒ ẋ2 +

2y

m2
ϕaãC

aC̃ ã = 1. (3.36)

Following the spirit of the pure gravity case, we will expand the worldline coordinate
xµ(τ) along a background straight line defined in the past infinity as (3.2). We are thus
obligated to use retarded propagators for physical observables. However, in the next section,
we will be focusing on the calculation of the eikonal, which does not have a natural direction
of time, and the type of propagator is hence uncertain. Fortunately, as in this work our
main concern for the double copy construction is the integrand, so the iε description of the
propagators is of no direct concern. Therefore we may this obstruction.

In addition to the straight-line expansion, we also decompose the color wave function in
the background,

Ψ(τ) = ψ + Ψ(τ), (3.37)
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where the lowercase ψ = Ψ(−∞) = const is the initial condition, and calligraphic uppercase
Ψ(τ) is the fluctuation that will be quantized. Consequently, the color charge is

Ca = ca + ψ†T aΨ + Ψ †T aψ + Ψ †T aΨ, (3.38)

where we have defined the background color charge

ca = ψ†T aψ. (3.39)

A similar decomposition applies to the dual-color wave function Ψ̃(τ), and all respective dual
quantities are denoted with a tilde. Note that the background x(τ) = bµ + vµτ and Ψ(τ) = ψ
solves the equations of motion in the field free scenario(s) ϕaã = Aa

µ = hµν = φ = 0.
In WQFT, as illustrated before, we integrate both the field in the bulk and fluctuations of

the worldlines. Specific to the cases we consider here, we will integrate out the BS/YM/DG
fields ϕaã;A

a
µ;hµν , φ as well as all fluctuations of worldline degrees of freedom z(τ), Ψ(τ), Ψ̃(τ)

in the path integral, so the results only depend on the background fields b, v, ψ. In the path
integral, similar to (3.4), the expectation value of an operator O is expressed as

⟨O⟩ = 1

ZWQFT

∫
D[Φ]

∏

i

D[zi]
(
D[Ψi, Ψ̃i]

)
O eiSWQFT , (3.40)

where Φ ∈ {ϕaã, Aa
µ, hµν , φ} denotes the bosonic fields in the respective theories. The partition

function follows,

ZWQFT =

∫
D[Φ]

∏

i

D[zi]
(
D[Ψi, Ψ̃i]

)
eiSWQFT . (3.41)

Moving to momentum space, we express the color wave function fluctuation in the same way
with (3.12),

Ψ(τ) =

∫

ω
e−iωτΨ(ω),

Ψ †(τ) =
∫

ω
e−iωτΨ †(−ω).

(3.42)

The same also applies to the dual-color wave function Ψ̃ . When evaluated on the worldline,
the generic field Φ(x(τ)) may be expanded in the same way as the pure graviton (3.14),

Φ(x(τ)) =

∫

k
eik·(b+vτ+z(τ))Φ(−k) =

∞∑

n=0

in

n!

∫

k
eik·(b+vτ)(k · z(τ))nΦ(−k)

=

∫

k
eik·bΦ(−k)

(
eik·vτ + i

∫

ω
ei(k·v+ω)τk · z(−ω)

)
+O(z2).

(3.43)

We take the expansion only to linear order in zµ since this is the highest term we need in
this chapter. A complete expression of hµν to all orders in z may be found in [84].

3.1.2 WQFT Feynman Rules

Next, we extract the Feynman rules from the worldline actions. The worldline propagators
are the same in all three theories. In addition to the z(τ) propagators, we also have the color
wave function fluctuation Ψ(τ),

4

the integral shorthands
R
!
:=

R
d!
2⇡ ,

R
k
:=

R
d4k
(2⇡)4 as well as ��(!) := 2⇡�(!) and ��(4)(kµ) := (2⇡)4�(4)(kµ). When

evaluated on the worldline, the generic field � may be
expanded as

�(x(⌧)) =

Z

k

eik·(b+v⌧+z(⌧))�(�k) =

1X

n=0

in

n!

Z

k

eik·(b+v⌧)(k · z(⌧))n�(�k)

=

Z

k

eik·b�(�k)

✓
eik·v⌧ + i

Z

!

ei(k·v+!)⌧k · z(�!)
◆
+O(z2). (13)

We take the expansion only to linear order in zµ since
this is the highest term we need in this letter. A complete
expression of hµ⌫ to all orders in z may be found in [18].
Next we extract the Feynman rules from the worldline

actions. The worldline propagators are the same in all
three theories,

zµ z⌫
!

= � i

m

⌘µ⌫

!2
(14)

 †  
!

=
i

!
. (15)

The propagator of the dual field  ̃ is identical to the one
for  .
Let us now begin with the analysis of the Yang-Mills

coupled WQFT. With (12) and (13) we can expand the
interaction term of Spc from eq. (2) as

Spc
int =g

Z
d⌧ ẋµ(⌧) ·Aa(x(⌧))Ca(⌧) (16)

=g

Z

k

eik·bv ·Aa(�k)��(k · v)ca

+ g

Z

k,!

eik·bAa
µ(�k)��(k · v + !)

⇥
h
i
�
!zµ(�!) + vµk · z(�!)

�
ca

+ vµ( †T a (�!)+ †(!)T a )
i
+O

�
(z, )2

�

where we keep the interaction to linear order in world-
line fluctuations. The Feynman rules of the worldline-
gluon vertices can be directly read o↵ from (16), be-
low we represent the background worldline configurations
(bµ, vµ, ca) as dashed lines.

Aa
µ

k = igeik·b��(k · v)vµca (17)

z⇢

Aa
µ

!

k = �geik·b��(k ·v + !)

⇥ (!⌘µ⇢ + vµk⇢)ca
(18)

 †

Aa
µ

!

k = igeik·b��(k · v + !)vµ(T a ) (19)

 

Aa
µ

!

k = igeik·b��(k · v � !)vµ( †T a). (20)

Turning to the bi-adjoint scalar coupled WQFT, we
can expand the worldline-scalar coupling of (6) in the
same way,

Scc
int =

y

m

Z
d⌧�aã(x(⌧))Ca(⌧)C ã(⌧) (21)

=
y

m

Z

k

eik·b�aã(�k)��(k · v)cacã

+
y

m

Z

k,!

eik·b�aã(�k)��(k · v + !)
h
ik · z(�!)cacã

+
�
 †T a (�!) +  †(!)T a 

�
cã

+ ca
⇣
 ̃†T̃ ã ̃(�!) +  ̃ †(!)T̃ ã ̃

⌘i
+O

�
(z, )2

�
.

Again, we keep only the terms that we need in this work.
From the interaction (21) we extract the Feynman rules

�ab

k =
iy

m
eik·b��(k · v)cacã (22)

z⇢

�ab

!

k =� y

m
eik·b��(k · v + !)k⇢cacã (23)

 †

�ab

!

k =
iy

m
eik·b��(k · v + !)(T a )cã (24)

=
i

ω
. (3.44)

36



3.1. BASICS OF WORLDLINE QUANTUM FIELD THEORY

The propagator of the dual field Ψ̃ is identical to the one for Ψ . Let us now begin with the
analysis of the Yang-Mills coupled WQFT. With (3.12), (3.42) and (3.43) we can expand the
interaction term of Spc from eq. (3.28) as

Sint
pc :=− g

∫
dτ ẋµ(τ) ·Aa(x(τ))Ca(τ) (3.45)

=− g

∫

k
eik·bv ·Aa(−k)δ−(k · v)ca − g

∫

k,ω
eik·bAa

µ(−k)δ−(k · v + ω)

×
[
i
(
ωzµ(−ω) + vµk · z(−ω)

)
ca + vµ(ψ†T aΨ(−ω)+Ψ †(ω)T aψ)

]
+O

(
(z, Ψ)2

)
,

where we keep the interaction to linear order in worldline fluctuations. The Feynman rules
of the worldline-gluon vertices can be directly read off from (3.45). Below we represent the
background worldline configurations (bµ, vµ, ca) as dashed lines:

4

the integral shorthands
R
!
:=

R
d!
2⇡ ,

R
k
:=

R
d4k
(2⇡)4 as well as ��(!) := 2⇡�(!) and ��(4)(kµ) := (2⇡)4�(4)(kµ). When

evaluated on the worldline, the generic field � may be
expanded as

�(x(⌧)) =

Z

k

eik·(b+v⌧+z(⌧))�(�k) =

1X

n=0

in

n!

Z

k

eik·(b+v⌧)(k · z(⌧))n�(�k)

=

Z

k

eik·b�(�k)

✓
eik·v⌧ + i

Z

!

ei(k·v+!)⌧k · z(�!)
◆
+O(z2). (13)

We take the expansion only to linear order in zµ since
this is the highest term we need in this letter. A complete
expression of hµ⌫ to all orders in z may be found in [18].

Next we extract the Feynman rules from the worldline
actions. The worldline propagators are the same in all
three theories,

zµ z⌫
!

= � i

m

⌘µ⌫

!2
(14)

 †  
!

=
i

!
. (15)

The propagator of the dual field  ̃ is identical to the one
for  .

Let us now begin with the analysis of the Yang-Mills
coupled WQFT. With (12) and (13) we can expand the
interaction term of Spc from eq. (2) as

Spc
int =g

Z
d⌧ ẋµ(⌧) ·Aa(x(⌧))Ca(⌧) (16)

=g

Z

k

eik·bv ·Aa(�k)��(k · v)ca

+ g

Z

k,!

eik·bAa
µ(�k)��(k · v + !)

⇥
h
i
�
!zµ(�!) + vµk · z(�!)

�
ca

+ vµ( †T a (�!)+ †(!)T a )
i
+O

�
(z, )2

�

where we keep the interaction to linear order in world-
line fluctuations. The Feynman rules of the worldline-
gluon vertices can be directly read o↵ from (16), be-
low we represent the background worldline configurations
(bµ, vµ, ca) as dashed lines.

Aa
µ

k = igeik·b��(k · v)vµca (17)

z⇢

Aa
µ

!

k = �geik·b��(k ·v + !)

⇥ (!⌘µ⇢ + vµk⇢)ca
(18)

 †

Aa
µ

!

k = igeik·b��(k · v + !)vµ(T a ) (19)

 

Aa
µ

!

k = igeik·b��(k · v � !)vµ( †T a). (20)

Turning to the bi-adjoint scalar coupled WQFT, we
can expand the worldline-scalar coupling of (6) in the
same way,

Scc
int =

y

m

Z
d⌧�aã(x(⌧))Ca(⌧)C ã(⌧) (21)

=
y

m

Z

k

eik·b�aã(�k)��(k · v)cacã

+
y

m

Z

k,!

eik·b�aã(�k)��(k · v + !)
h
ik · z(�!)cacã

+
�
 †T a (�!) +  †(!)T a 

�
cã

+ ca
⇣
 ̃†T̃ ã ̃(�!) +  ̃ †(!)T̃ ã ̃

⌘i
+O

�
(z, )2

�
.

Again, we keep only the terms that we need in this work.
From the interaction (21) we extract the Feynman rules

�ab

k =
iy

m
eik·b��(k · v)cacã (22)

z⇢

�ab

!

k =� y

m
eik·b��(k · v + !)k⇢cacã (23)

 †

�ab

!

k =
iy

m
eik·b��(k · v + !)(T a )cã (24)

= −igeik·bδ−(k · v)vµca (3.46)

4

the integral shorthands
R
!
:=

R
d!
2⇡ ,

R
k
:=

R
d4k
(2⇡)4 as well as ��(!) := 2⇡�(!) and ��(4)(kµ) := (2⇡)4�(4)(kµ). When

evaluated on the worldline, the generic field � may be
expanded as

�(x(⌧)) =

Z

k

eik·(b+v⌧+z(⌧))�(�k) =

1X

n=0

in

n!

Z

k

eik·(b+v⌧)(k · z(⌧))n�(�k)

=

Z

k

eik·b�(�k)

✓
eik·v⌧ + i

Z

!

ei(k·v+!)⌧k · z(�!)
◆
+O(z2). (13)

We take the expansion only to linear order in zµ since
this is the highest term we need in this letter. A complete
expression of hµ⌫ to all orders in z may be found in [18].

Next we extract the Feynman rules from the worldline
actions. The worldline propagators are the same in all
three theories,

zµ z⌫
!

= � i

m

⌘µ⌫

!2
(14)

 †  
!

=
i

!
. (15)

The propagator of the dual field  ̃ is identical to the one
for  .

Let us now begin with the analysis of the Yang-Mills
coupled WQFT. With (12) and (13) we can expand the
interaction term of Spc from eq. (2) as

Spc
int =g

Z
d⌧ ẋµ(⌧) ·Aa(x(⌧))Ca(⌧) (16)

=g

Z

k

eik·bv ·Aa(�k)��(k · v)ca

+ g

Z

k,!

eik·bAa
µ(�k)��(k · v + !)

⇥
h
i
�
!zµ(�!) + vµk · z(�!)

�
ca

+ vµ( †T a (�!)+ †(!)T a )
i
+O

�
(z, )2

�

where we keep the interaction to linear order in world-
line fluctuations. The Feynman rules of the worldline-
gluon vertices can be directly read o↵ from (16), be-
low we represent the background worldline configurations
(bµ, vµ, ca) as dashed lines.

Aa
µ

k = igeik·b��(k · v)vµca (17)

z⇢

Aa
µ

!

k = �geik·b��(k ·v + !)

⇥ (!⌘µ⇢ + vµk⇢)ca
(18)

 †

Aa
µ

!

k = igeik·b��(k · v + !)vµ(T a ) (19)

 

Aa
µ

!

k = igeik·b��(k · v � !)vµ( †T a). (20)

Turning to the bi-adjoint scalar coupled WQFT, we
can expand the worldline-scalar coupling of (6) in the
same way,

Scc
int =

y

m

Z
d⌧�aã(x(⌧))Ca(⌧)C ã(⌧) (21)

=
y

m

Z

k

eik·b�aã(�k)��(k · v)cacã

+
y

m

Z

k,!

eik·b�aã(�k)��(k · v + !)
h
ik · z(�!)cacã

+
�
 †T a (�!) +  †(!)T a 

�
cã

+ ca
⇣
 ̃†T̃ ã ̃(�!) +  ̃ †(!)T̃ ã ̃

⌘i
+O

�
(z, )2

�
.

Again, we keep only the terms that we need in this work.
From the interaction (21) we extract the Feynman rules

�ab

k =
iy

m
eik·b��(k · v)cacã (22)

z⇢

�ab

!

k =� y

m
eik·b��(k · v + !)k⇢cacã (23)

 †

�ab

!

k =
iy

m
eik·b��(k · v + !)(T a )cã (24)=geik·bδ−(k ·v + ω)(ω ηµρ + vµkρ)ca (3.47)

4

the integral shorthands
R
!
:=

R
d!
2⇡ ,

R
k
:=

R
d4k
(2⇡)4 as well as ��(!) := 2⇡�(!) and ��(4)(kµ) := (2⇡)4�(4)(kµ). When

evaluated on the worldline, the generic field � may be
expanded as

�(x(⌧)) =

Z

k

eik·(b+v⌧+z(⌧))�(�k) =

1X

n=0

in

n!

Z

k

eik·(b+v⌧)(k · z(⌧))n�(�k)

=

Z

k

eik·b�(�k)

✓
eik·v⌧ + i

Z

!

ei(k·v+!)⌧k · z(�!)
◆
+O(z2). (13)

We take the expansion only to linear order in zµ since
this is the highest term we need in this letter. A complete
expression of hµ⌫ to all orders in z may be found in [18].
Next we extract the Feynman rules from the worldline

actions. The worldline propagators are the same in all
three theories,

zµ z⌫
!

= � i

m

⌘µ⌫

!2
(14)

 †  
!

=
i

!
. (15)

The propagator of the dual field  ̃ is identical to the one
for  .
Let us now begin with the analysis of the Yang-Mills

coupled WQFT. With (12) and (13) we can expand the
interaction term of Spc from eq. (2) as

Spc
int =g

Z
d⌧ ẋµ(⌧) ·Aa(x(⌧))Ca(⌧) (16)

=g

Z

k

eik·bv ·Aa(�k)��(k · v)ca

+ g

Z

k,!

eik·bAa
µ(�k)��(k · v + !)

⇥
h
i
�
!zµ(�!) + vµk · z(�!)

�
ca

+ vµ( †T a (�!)+ †(!)T a )
i
+O

�
(z, )2

�

where we keep the interaction to linear order in world-
line fluctuations. The Feynman rules of the worldline-
gluon vertices can be directly read o↵ from (16), be-
low we represent the background worldline configurations
(bµ, vµ, ca) as dashed lines.

Aa
µ

k = igeik·b��(k · v)vµca (17)

z⇢

Aa
µ

!

k = �geik·b��(k ·v + !)

⇥ (!⌘µ⇢ + vµk⇢)ca
(18)

 †

Aa
µ

!

k = igeik·b��(k · v + !)vµ(T a ) (19)

 

Aa
µ

!

k = igeik·b��(k · v � !)vµ( †T a). (20)

Turning to the bi-adjoint scalar coupled WQFT, we
can expand the worldline-scalar coupling of (6) in the
same way,

Scc
int =

y

m

Z
d⌧�aã(x(⌧))Ca(⌧)C ã(⌧) (21)

=
y

m

Z

k

eik·b�aã(�k)��(k · v)cacã

+
y

m

Z

k,!

eik·b�aã(�k)��(k · v + !)
h
ik · z(�!)cacã

+
�
 †T a (�!) +  †(!)T a 

�
cã

+ ca
⇣
 ̃†T̃ ã ̃(�!) +  ̃ †(!)T̃ ã ̃

⌘i
+O

�
(z, )2

�
.

Again, we keep only the terms that we need in this work.
From the interaction (21) we extract the Feynman rules

�ab

k =
iy

m
eik·b��(k · v)cacã (22)

z⇢

�ab

!

k =� y

m
eik·b��(k · v + !)k⇢cacã (23)

 †

�ab

!

k =
iy

m
eik·b��(k · v + !)(T a )cã (24)

=− igeik·bδ−(k · v + ω)vµ(T aψ) (3.48)

4

the integral shorthands
R
!
:=

R
d!
2⇡ ,

R
k
:=

R
d4k
(2⇡)4 as well as ��(!) := 2⇡�(!) and ��(4)(kµ) := (2⇡)4�(4)(kµ). When

evaluated on the worldline, the generic field � may be
expanded as

�(x(⌧)) =

Z

k

eik·(b+v⌧+z(⌧))�(�k) =

1X

n=0

in

n!

Z

k

eik·(b+v⌧)(k · z(⌧))n�(�k)

=

Z

k

eik·b�(�k)

✓
eik·v⌧ + i

Z

!

ei(k·v+!)⌧k · z(�!)
◆
+O(z2). (13)

We take the expansion only to linear order in zµ since
this is the highest term we need in this letter. A complete
expression of hµ⌫ to all orders in z may be found in [18].
Next we extract the Feynman rules from the worldline

actions. The worldline propagators are the same in all
three theories,

zµ z⌫
!

= � i

m

⌘µ⌫

!2
(14)

 †  
!

=
i

!
. (15)

The propagator of the dual field  ̃ is identical to the one
for  .
Let us now begin with the analysis of the Yang-Mills

coupled WQFT. With (12) and (13) we can expand the
interaction term of Spc from eq. (2) as

Spc
int =g

Z
d⌧ ẋµ(⌧) ·Aa(x(⌧))Ca(⌧) (16)

=g

Z

k

eik·bv ·Aa(�k)��(k · v)ca

+ g

Z

k,!

eik·bAa
µ(�k)��(k · v + !)

⇥
h
i
�
!zµ(�!) + vµk · z(�!)

�
ca

+ vµ( †T a (�!)+ †(!)T a )
i
+O

�
(z, )2

�

where we keep the interaction to linear order in world-
line fluctuations. The Feynman rules of the worldline-
gluon vertices can be directly read o↵ from (16), be-
low we represent the background worldline configurations
(bµ, vµ, ca) as dashed lines.

Aa
µ

k = igeik·b��(k · v)vµca (17)

z⇢

Aa
µ

!

k = �geik·b��(k ·v + !)

⇥ (!⌘µ⇢ + vµk⇢)ca
(18)

 †

Aa
µ

!

k = igeik·b��(k · v + !)vµ(T a ) (19)

 

Aa
µ

!

k = igeik·b��(k · v � !)vµ( †T a). (20)

Turning to the bi-adjoint scalar coupled WQFT, we
can expand the worldline-scalar coupling of (6) in the
same way,

Scc
int =

y

m

Z
d⌧�aã(x(⌧))Ca(⌧)C ã(⌧) (21)

=
y

m

Z

k

eik·b�aã(�k)��(k · v)cacã

+
y

m

Z

k,!

eik·b�aã(�k)��(k · v + !)
h
ik · z(�!)cacã

+
�
 †T a (�!) +  †(!)T a 

�
cã

+ ca
⇣
 ̃†T̃ ã ̃(�!) +  ̃ †(!)T̃ ã ̃

⌘i
+O

�
(z, )2

�
.

Again, we keep only the terms that we need in this work.
From the interaction (21) we extract the Feynman rules

�ab

k =
iy

m
eik·b��(k · v)cacã (22)

z⇢

�ab

!

k =� y

m
eik·b��(k · v + !)k⇢cacã (23)

 †

�ab

!

k =
iy

m
eik·b��(k · v + !)(T a )cã (24)

=− igeik·bδ−(k · v − ω)vµ(ψ†T a), (3.49)

where we have used the shorthand notation δ− defined in (3.13).

Turning to the bi-adjoint scalar coupled WQFT, we can expand the worldline-scalar
coupling of (3.34) in the same way,

Sint
cc :=

y

m

∫
dτϕaã(x(τ))Ca(τ)C ã(τ) (3.50)

=
y

m

∫

k
eik·bϕaã(−k)δ−(k · v)cacã + y

m

∫

k,ω
eik·bϕaã(−k)δ−(k · v + ω)

×
[
ik · z(−ω)cacã +

(
ψ†T aΨ(−ω) + Ψ †(ω)T aψ

)
cã

+ ca
(
ψ̃†T̃ ãΨ̃(−ω) + Ψ̃ †(ω)T̃ ãψ̃

)]
+O

(
(z, Ψ)2

)
.

Again, we keep only the terms that we need in this work. From the interaction (3.50) we

37



CHAPTER 3. CLASSICAL DOUBLE COPY OF WORLDLINE QFT

extract the Feynman rules

4

the integral shorthands
R
!
:=

R
d!
2⇡ ,

R
k
:=

R
d4k
(2⇡)4 as well as ��(!) := 2⇡�(!) and ��(4)(kµ) := (2⇡)4�(4)(kµ). When

evaluated on the worldline, the generic field � may be
expanded as

�(x(⌧)) =

Z

k

eik·(b+v⌧+z(⌧))�(�k) =

1X

n=0

in

n!

Z

k

eik·(b+v⌧)(k · z(⌧))n�(�k)

=

Z

k

eik·b�(�k)

✓
eik·v⌧ + i

Z

!

ei(k·v+!)⌧k · z(�!)
◆
+O(z2). (13)

We take the expansion only to linear order in zµ since
this is the highest term we need in this letter. A complete
expression of hµ⌫ to all orders in z may be found in [18].
Next we extract the Feynman rules from the worldline

actions. The worldline propagators are the same in all
three theories,

zµ z⌫
!

= � i

m

⌘µ⌫

!2
(14)

 †  
!

=
i

!
. (15)

The propagator of the dual field  ̃ is identical to the one
for  .
Let us now begin with the analysis of the Yang-Mills

coupled WQFT. With (12) and (13) we can expand the
interaction term of Spc from eq. (2) as

Spc
int =g

Z
d⌧ ẋµ(⌧) ·Aa(x(⌧))Ca(⌧) (16)

=g

Z

k

eik·bv ·Aa(�k)��(k · v)ca

+ g

Z

k,!

eik·bAa
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⇥
h
i
�
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�
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+ vµ( †T a (�!)+ †(!)T a )
i
+O

�
(z, )2

�

where we keep the interaction to linear order in world-
line fluctuations. The Feynman rules of the worldline-
gluon vertices can be directly read o↵ from (16), be-
low we represent the background worldline configurations
(bµ, vµ, ca) as dashed lines.

Aa
µ

k = igeik·b��(k · v)vµca (17)

z⇢

Aa
µ

!

k = �geik·b��(k ·v + !)

⇥ (!⌘µ⇢ + vµk⇢)ca
(18)

 †

Aa
µ

!

k = igeik·b��(k · v + !)vµ(T a ) (19)

 

Aa
µ

!

k = igeik·b��(k · v � !)vµ( †T a). (20)

Turning to the bi-adjoint scalar coupled WQFT, we
can expand the worldline-scalar coupling of (6) in the
same way,

Scc
int =

y

m

Z
d⌧�aã(x(⌧))Ca(⌧)C ã(⌧) (21)

=
y

m
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k

eik·b�aã(�k)��(k · v)cacã

+
y

m
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h
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+
�
 †T a (�!) +  †(!)T a 

�
cã
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⇣
 ̃†T̃ ã ̃(�!) +  ̃ †(!)T̃ ã ̃

⌘i
+O

�
(z, )2

�
.

Again, we keep only the terms that we need in this work.
From the interaction (21) we extract the Feynman rules

�ab

k =
iy

m
eik·b��(k · v)cacã (22)

z⇢

�ab

!

k =� y

m
eik·b��(k · v + !)k⇢cacã (23)

 †

�ab

!

k =
iy

m
eik·b��(k · v + !)(T a )cã (24)

=
iy

m
eik·bδ−(k · v)cacã (3.51)
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the integral shorthands
R
!
:=

R
d!
2⇡ ,

R
k
:=

R
d4k
(2⇡)4 as well as ��(!) := 2⇡�(!) and ��(4)(kµ) := (2⇡)4�(4)(kµ). When

evaluated on the worldline, the generic field � may be
expanded as

�(x(⌧)) =

Z

k
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1X
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in
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k
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✓
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ei(k·v+!)⌧k · z(�!)
◆
+O(z2). (13)

We take the expansion only to linear order in zµ since
this is the highest term we need in this letter. A complete
expression of hµ⌫ to all orders in z may be found in [18].
Next we extract the Feynman rules from the worldline

actions. The worldline propagators are the same in all
three theories,

zµ z⌫
!

= � i

m

⌘µ⌫

!2
(14)

 †  
!

=
i

!
. (15)

The propagator of the dual field  ̃ is identical to the one
for  .
Let us now begin with the analysis of the Yang-Mills

coupled WQFT. With (12) and (13) we can expand the
interaction term of Spc from eq. (2) as

Spc
int =g

Z
d⌧ ẋµ(⌧) ·Aa(x(⌧))Ca(⌧) (16)

=g

Z

k
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i
+O

�
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�

where we keep the interaction to linear order in world-
line fluctuations. The Feynman rules of the worldline-
gluon vertices can be directly read o↵ from (16), be-
low we represent the background worldline configurations
(bµ, vµ, ca) as dashed lines.

Aa
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k = igeik·b��(k · v)vµca (17)

z⇢
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!

k = �geik·b��(k ·v + !)

⇥ (!⌘µ⇢ + vµk⇢)ca
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 †
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k = igeik·b��(k · v + !)vµ(T a ) (19)
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!

k = igeik·b��(k · v � !)vµ( †T a). (20)

Turning to the bi-adjoint scalar coupled WQFT, we
can expand the worldline-scalar coupling of (6) in the
same way,

Scc
int =
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Z
d⌧�aã(x(⌧))Ca(⌧)C ã(⌧) (21)

=
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+
y

m

Z

k,!

eik·b�aã(�k)��(k · v + !)
h
ik · z(�!)cacã

+
�
 †T a (�!) +  †(!)T a 

�
cã

+ ca
⇣
 ̃†T̃ ã ̃(�!) +  ̃ †(!)T̃ ã ̃

⌘i
+O

�
(z, )2

�
.

Again, we keep only the terms that we need in this work.
From the interaction (21) we extract the Feynman rules

�ab

k =
iy

m
eik·b��(k · v)cacã (22)

z⇢

�ab

!

k =� y

m
eik·b��(k · v + !)k⇢cacã (23)

 †

�ab

!

k =
iy

m
eik·b��(k · v + !)(T a )cã (24)

=− y

m
eik·bδ−(k · v + ω)kρcacã (3.52)

4

the integral shorthands
R
!
:=

R
d!
2⇡ ,

R
k
:=

R
d4k
(2⇡)4 as well as ��(!) := 2⇡�(!) and ��(4)(kµ) := (2⇡)4�(4)(kµ). When

evaluated on the worldline, the generic field � may be
expanded as

�(x(⌧)) =

Z

k

eik·(b+v⌧+z(⌧))�(�k) =

1X

n=0

in

n!

Z

k

eik·(b+v⌧)(k · z(⌧))n�(�k)

=

Z

k

eik·b�(�k)

✓
eik·v⌧ + i

Z

!

ei(k·v+!)⌧k · z(�!)
◆
+O(z2). (13)

We take the expansion only to linear order in zµ since
this is the highest term we need in this letter. A complete
expression of hµ⌫ to all orders in z may be found in [18].
Next we extract the Feynman rules from the worldline

actions. The worldline propagators are the same in all
three theories,

zµ z⌫
!

= � i

m

⌘µ⌫

!2
(14)

 †  
!

=
i

!
. (15)

The propagator of the dual field  ̃ is identical to the one
for  .
Let us now begin with the analysis of the Yang-Mills

coupled WQFT. With (12) and (13) we can expand the
interaction term of Spc from eq. (2) as

Spc
int =g

Z
d⌧ ẋµ(⌧) ·Aa(x(⌧))Ca(⌧) (16)

=g

Z

k

eik·bv ·Aa(�k)��(k · v)ca

+ g

Z

k,!

eik·bAa
µ(�k)��(k · v + !)

⇥
h
i
�
!zµ(�!) + vµk · z(�!)

�
ca

+ vµ( †T a (�!)+ †(!)T a )
i
+O

�
(z, )2

�

where we keep the interaction to linear order in world-
line fluctuations. The Feynman rules of the worldline-
gluon vertices can be directly read o↵ from (16), be-
low we represent the background worldline configurations
(bµ, vµ, ca) as dashed lines.

Aa
µ

k = igeik·b��(k · v)vµca (17)

z⇢

Aa
µ

!

k = �geik·b��(k ·v + !)

⇥ (!⌘µ⇢ + vµk⇢)ca
(18)

 †

Aa
µ

!

k = igeik·b��(k · v + !)vµ(T a ) (19)

 

Aa
µ

!

k = igeik·b��(k · v � !)vµ( †T a). (20)

Turning to the bi-adjoint scalar coupled WQFT, we
can expand the worldline-scalar coupling of (6) in the
same way,

Scc
int =

y

m

Z
d⌧�aã(x(⌧))Ca(⌧)C ã(⌧) (21)

=
y

m

Z

k

eik·b�aã(�k)��(k · v)cacã

+
y

m

Z

k,!

eik·b�aã(�k)��(k · v + !)
h
ik · z(�!)cacã

+
�
 †T a (�!) +  †(!)T a 

�
cã

+ ca
⇣
 ̃†T̃ ã ̃(�!) +  ̃ †(!)T̃ ã ̃

⌘i
+O

�
(z, )2

�
.

Again, we keep only the terms that we need in this work.
From the interaction (21) we extract the Feynman rules

�ab

k =
iy

m
eik·b��(k · v)cacã (22)

z⇢

�ab

!

k =� y

m
eik·b��(k · v + !)k⇢cacã (23)

 †

�ab

!

k =
iy

m
eik·b��(k · v + !)(T a )cã (24)=

iy

m
eik·bδ−(k · v + ω)(T aψ)cã (3.53)
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�ab

!

k =
iy

m
eik·b��(k · v � !)( †T a)cã. (25)

For vertices that involves the dual wave function, we sim-

ply use (24) or (25) and change  to  ̃.
In the dilaton-gravity coupled WQFT, the interaction

term is remarkably simplified by the field redefinitions
of {', hµ⌫}. In the end the linear order in hµ⌫ is no
di↵erent than the interaction term of a point mass in
pure gravity, which is given in [18] to all orders in z(!).
Here we provide the first terms we need in this letter,

Spm
int =� m

2

Z

k

eik·b��(k · v)hµ⌫(�k)vµv⌫ � i
m

2

Z

k,!

eik·b��(k · v + !)hµ⌫(�k)z⇢(�!)
⇣
2!v(µ�⌫)⇢ + vµv⌫k⇢

⌘

� m2

4

Z

k1,k2

e(k1+k2)·b��((k1 + k2)·v)hµ⇢(�k1)h
⇢
⌫ (�k2)v

µv⌫ +O(k3, z2), (26)

from which we obtain the Feynman rules,

hµ⌫

k =� i
m

2
eik·b��(k · v)vµv⌫ (27)

z⇢

hµ⌫

!

k
=
m

2
eik·b��(k · v + !)
⇣
2!v(µ�⌫)⇢ + vµv⌫k⇢

⌘ (28)

hµ⌫ h⇢�

k1 k2 = �m2

2

Z

k1,k2

ei(k1+k2)·b

��((k1+k2)·v) v(µ⌘⌫)(⇢v�),
(29)

where the parenthesis of Lorentz indices denotes sym-

metrization with unit weight, e.g. v
(µ
1 v

⌫)
2 = 1

2 (v
µ
1 v

⌫
2 +

v⌫1v
µ
2 ).

III. CLASSICAL DOUBLE COPY

One of the main challenges of constructing the double
copy in the classical limit of quantum field theories is
that the locality structure is concealed. This is rooted in
the classical limit of the massive scalar propagator [18],
which contains both double and single propagators as we
can see in WQFT from (14) and (15). Following [10] we
tackle this di�culty by using the bi-adjoint scalar theory
to identify the correct locality structure, i.e. disentangle
the kinematical numerators from the propagator terms.
Another important strategy to establish the classical

double copy is to consider more than two worldlines even
if we are ultimately interested only in two-body interac-
tions. This is to avoid the situation where some color
factors in the two-body situation are vanishing but the
corresponding numerators do not, which under the dou-
ble copy map may yield non-zero contributions. This
may be evaded if we use as many worldlines as worldline-
field interactions occur. Specifically, we will consider an

(n+2)-body system at NnLO. In the WQFT formalism,
this is equivalent to taking into account only tree dia-
grams. To retrieve the binary system from this, we need
to sum all possible ways of fusing the (n+ 2) worldlines
into 2 worldlines. In summary, our double copy relation
of the eikonal phase at N(n�1)LO reads

�BS
n =� y2n

Z
dµ1,2,...,(n+1)

X

i,j

CiKijC̃j , (30a)

�YM
n =� (ig)2n

Z
dµ1,2,...,(n+1)

X

i,j

CiKijNj , (30b)

�DG
n =�

⇣
2

⌘2n
Z

dµ1,2,...,(n+1)

X

i,j

NiKijNj , (30c)

where Ci, C̃j denotes the color and dual color factors,
Nj are the numerators, and Kij are the so-called double
copy kernels that encode the locality structure. The sums
extend over the dimensionalities of the numerators and
the color factors. For further convenience, we have also
defined the integral measure

dµ1,2,...,n =

nY

i=1

✓
d4ki
(2⇡)4

eiki·bi��(ki ·pi)
◆
��(4)

✓ nX

i=1

kµi

◆
,

(31)

where ki is the total outgoing momentum of bosonic fields
�(x) attached to a worldline. Note that we have defined
the momentum of the massive particle as

pµi := miv
µ
i , so that ��(ki ·pi) =

��(ki ·vi)
mi

. (32)

Hereafter we will always express the numerator Nj in
terms of the momentum pµi which is necessary in order
to balance the mass dimension under the double copy.
The kinematic numerators Ni are arranged to satisfy the
same algebraic equations as the color factors Ci,

Ci + Cj + Ck = 0 ) Ni +Nj +Nk = 0. (33)

It is worth mentioning that we have the color-kinematic
duality already at quartic order in the coupling constant.

=
iy

m
eik·bδ−(k · v − ω)(ψ†T a)cã. (3.54)

For vertices that involves the dual wave function, we simply use (3.53) or (3.54) and change
Ψ to Ψ̃.

In the dilaton-gravity coupled WQFT, the interaction term is remarkably simplified by
the field redefinitions (3.23) of {φ, hµν}. In the end the linear order in hµν in (3.33) is no
different than the interaction term of a point mass in pure gravity (3.15). From (3.33), we
here explicitly provide the leading terms in z(ω),

Sint
pm =−mκ

2

∫

k
eik·bδ−(k · v)hµν(−k)vµvν

−imκ
2

∫

k,ω
eik·bδ−(k · v + ω)hµν(−k)zρ(−ω)

(
2ωv(µδν)ρ + vµvνkρ

)
(3.55)

−mκ2

4

∫

k1,k2

e(k1+k2)·bδ−((k1 + k2)·v)hµρ(−k1)h ρ
ν (−k2)vµvν +O(k3, z2).

We obtain the Feynman rules,

5

 

�ab

!

k =
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m
eik·b��(k · v � !)( †T a)cã. (25)

For vertices that involves the dual wave function, we sim-

ply use (24) or (25) and change  to  ̃.
In the dilaton-gravity coupled WQFT, the interaction

term is remarkably simplified by the field redefinitions
of {', hµ⌫}. In the end the linear order in hµ⌫ is no
di↵erent than the interaction term of a point mass in
pure gravity, which is given in [18] to all orders in z(!).
Here we provide the first terms we need in this letter,

Spm
int =� m

2

Z

k

eik·b��(k · v)hµ⌫(�k)vµv⌫ � i
m

2

Z

k,!

eik·b��(k · v + !)hµ⌫(�k)z⇢(�!)
⇣
2!v(µ�⌫)⇢ + vµv⌫k⇢

⌘

� m2

4

Z

k1,k2

e(k1+k2)·b��((k1 + k2)·v)hµ⇢(�k1)h
⇢
⌫ (�k2)v

µv⌫ +O(k3, z2), (26)

from which we obtain the Feynman rules,

hµ⌫

k =� i
m

2
eik·b��(k · v)vµv⌫ (27)

z⇢

hµ⌫

!

k
=
m

2
eik·b��(k · v + !)
⇣
2!v(µ�⌫)⇢ + vµv⌫k⇢

⌘ (28)

hµ⌫ h⇢�

k1 k2 = �m2

2

Z

k1,k2

ei(k1+k2)·b

��((k1+k2)·v) v(µ⌘⌫)(⇢v�),
(29)

where the parenthesis of Lorentz indices denotes sym-

metrization with unit weight, e.g. v
(µ
1 v

⌫)
2 = 1

2 (v
µ
1 v

⌫
2 +

v⌫1v
µ
2 ).

III. CLASSICAL DOUBLE COPY

One of the main challenges of constructing the double
copy in the classical limit of quantum field theories is
that the locality structure is concealed. This is rooted in
the classical limit of the massive scalar propagator [18],
which contains both double and single propagators as we
can see in WQFT from (14) and (15). Following [10] we
tackle this di�culty by using the bi-adjoint scalar theory
to identify the correct locality structure, i.e. disentangle
the kinematical numerators from the propagator terms.

Another important strategy to establish the classical
double copy is to consider more than two worldlines even
if we are ultimately interested only in two-body interac-
tions. This is to avoid the situation where some color
factors in the two-body situation are vanishing but the
corresponding numerators do not, which under the dou-
ble copy map may yield non-zero contributions. This
may be evaded if we use as many worldlines as worldline-
field interactions occur. Specifically, we will consider an

(n+2)-body system at NnLO. In the WQFT formalism,
this is equivalent to taking into account only tree dia-
grams. To retrieve the binary system from this, we need
to sum all possible ways of fusing the (n+ 2) worldlines
into 2 worldlines. In summary, our double copy relation
of the eikonal phase at N(n�1)LO reads

�BS
n =� y2n

Z
dµ1,2,...,(n+1)

X

i,j

CiKijC̃j , (30a)

�YM
n =� (ig)2n

Z
dµ1,2,...,(n+1)

X

i,j

CiKijNj , (30b)

�DG
n =�

⇣
2

⌘2n
Z

dµ1,2,...,(n+1)

X

i,j

NiKijNj , (30c)

where Ci, C̃j denotes the color and dual color factors,
Nj are the numerators, and Kij are the so-called double
copy kernels that encode the locality structure. The sums
extend over the dimensionalities of the numerators and
the color factors. For further convenience, we have also
defined the integral measure

dµ1,2,...,n =
nY

i=1

✓
d4ki
(2⇡)4

eiki·bi��(ki ·pi)
◆
��(4)

✓ nX

i=1

kµi

◆
,

(31)

where ki is the total outgoing momentum of bosonic fields
�(x) attached to a worldline. Note that we have defined
the momentum of the massive particle as

pµi := miv
µ
i , so that ��(ki ·pi) =

��(ki ·vi)
mi

. (32)

Hereafter we will always express the numerator Nj in
terms of the momentum pµi which is necessary in order
to balance the mass dimension under the double copy.
The kinematic numerators Ni are arranged to satisfy the
same algebraic equations as the color factors Ci,

Ci + Cj + Ck = 0 ) Ni +Nj +Nk = 0. (33)

It is worth mentioning that we have the color-kinematic
duality already at quartic order in the coupling constant.

=−imκ
2
eik·bδ−(k · v)vµvν (3.56)
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�ab
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m
eik·b��(k · v � !)( †T a)cã. (25)

For vertices that involves the dual wave function, we sim-

ply use (24) or (25) and change  to  ̃.
In the dilaton-gravity coupled WQFT, the interaction

term is remarkably simplified by the field redefinitions
of {', hµ⌫}. In the end the linear order in hµ⌫ is no
di↵erent than the interaction term of a point mass in
pure gravity, which is given in [18] to all orders in z(!).
Here we provide the first terms we need in this letter,

Spm
int =� m

2

Z

k

eik·b��(k · v)hµ⌫(�k)vµv⌫ � i
m

2

Z

k,!

eik·b��(k · v + !)hµ⌫(�k)z⇢(�!)
⇣
2!v(µ�⌫)⇢ + vµv⌫k⇢

⌘

� m2

4

Z

k1,k2

e(k1+k2)·b��((k1 + k2)·v)hµ⇢(�k1)h
⇢
⌫ (�k2)v

µv⌫ +O(k3, z2), (26)

from which we obtain the Feynman rules,

hµ⌫

k =� i
m

2
eik·b��(k · v)vµv⌫ (27)

z⇢

hµ⌫

!

k
=
m

2
eik·b��(k · v + !)
⇣
2!v(µ�⌫)⇢ + vµv⌫k⇢

⌘ (28)

hµ⌫ h⇢�

k1 k2 = �m2

2

Z

k1,k2

ei(k1+k2)·b

��((k1+k2)·v) v(µ⌘⌫)(⇢v�),
(29)

where the parenthesis of Lorentz indices denotes sym-

metrization with unit weight, e.g. v
(µ
1 v

⌫)
2 = 1

2 (v
µ
1 v

⌫
2 +

v⌫1v
µ
2 ).

III. CLASSICAL DOUBLE COPY

One of the main challenges of constructing the double
copy in the classical limit of quantum field theories is
that the locality structure is concealed. This is rooted in
the classical limit of the massive scalar propagator [18],
which contains both double and single propagators as we
can see in WQFT from (14) and (15). Following [10] we
tackle this di�culty by using the bi-adjoint scalar theory
to identify the correct locality structure, i.e. disentangle
the kinematical numerators from the propagator terms.

Another important strategy to establish the classical
double copy is to consider more than two worldlines even
if we are ultimately interested only in two-body interac-
tions. This is to avoid the situation where some color
factors in the two-body situation are vanishing but the
corresponding numerators do not, which under the dou-
ble copy map may yield non-zero contributions. This
may be evaded if we use as many worldlines as worldline-
field interactions occur. Specifically, we will consider an

(n+2)-body system at NnLO. In the WQFT formalism,
this is equivalent to taking into account only tree dia-
grams. To retrieve the binary system from this, we need
to sum all possible ways of fusing the (n+ 2) worldlines
into 2 worldlines. In summary, our double copy relation
of the eikonal phase at N(n�1)LO reads

�BS
n =� y2n

Z
dµ1,2,...,(n+1)

X

i,j

CiKijC̃j , (30a)

�YM
n =� (ig)2n

Z
dµ1,2,...,(n+1)

X

i,j

CiKijNj , (30b)

�DG
n =�

⇣
2

⌘2n
Z

dµ1,2,...,(n+1)

X

i,j

NiKijNj , (30c)

where Ci, C̃j denotes the color and dual color factors,
Nj are the numerators, and Kij are the so-called double
copy kernels that encode the locality structure. The sums
extend over the dimensionalities of the numerators and
the color factors. For further convenience, we have also
defined the integral measure

dµ1,2,...,n =
nY

i=1

✓
d4ki
(2⇡)4

eiki·bi��(ki ·pi)
◆
��(4)

✓ nX

i=1

kµi

◆
,

(31)

where ki is the total outgoing momentum of bosonic fields
�(x) attached to a worldline. Note that we have defined
the momentum of the massive particle as

pµi := miv
µ
i , so that ��(ki ·pi) =

��(ki ·vi)
mi

. (32)

Hereafter we will always express the numerator Nj in
terms of the momentum pµi which is necessary in order
to balance the mass dimension under the double copy.
The kinematic numerators Ni are arranged to satisfy the
same algebraic equations as the color factors Ci,

Ci + Cj + Ck = 0 ) Ni +Nj +Nk = 0. (33)

It is worth mentioning that we have the color-kinematic
duality already at quartic order in the coupling constant.

=
mκ

2
eik·bδ−(k · v + ω)

(
2ωv(µδν)ρ + vµvνkρ

)
(3.57)
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eik·b��(k · v � !)( †T a)cã. (25)

For vertices that involves the dual wave function, we sim-

ply use (24) or (25) and change  to  ̃.
In the dilaton-gravity coupled WQFT, the interaction

term is remarkably simplified by the field redefinitions
of {', hµ⌫}. In the end the linear order in hµ⌫ is no
di↵erent than the interaction term of a point mass in
pure gravity, which is given in [18] to all orders in z(!).
Here we provide the first terms we need in this letter,

Spm
int =� m

2

Z

k

eik·b��(k · v)hµ⌫(�k)vµv⌫ � i
m

2

Z

k,!

eik·b��(k · v + !)hµ⌫(�k)z⇢(�!)
⇣
2!v(µ�⌫)⇢ + vµv⌫k⇢

⌘

� m2

4

Z

k1,k2

e(k1+k2)·b��((k1 + k2)·v)hµ⇢(�k1)h
⇢
⌫ (�k2)v

µv⌫ +O(k3, z2), (26)

from which we obtain the Feynman rules,
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2
eik·b��(k · v)vµv⌫ (27)
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2
eik·b��(k · v + !)
⇣
2!v(µ�⌫)⇢ + vµv⌫k⇢

⌘ (28)

hµ⌫ h⇢�

k1 k2 = �m2

2

Z

k1,k2

ei(k1+k2)·b

��((k1+k2)·v) v(µ⌘⌫)(⇢v�),
(29)

where the parenthesis of Lorentz indices denotes sym-

metrization with unit weight, e.g. v
(µ
1 v

⌫)
2 = 1

2 (v
µ
1 v

⌫
2 +

v⌫1v
µ
2 ).

III. CLASSICAL DOUBLE COPY

One of the main challenges of constructing the double
copy in the classical limit of quantum field theories is
that the locality structure is concealed. This is rooted in
the classical limit of the massive scalar propagator [18],
which contains both double and single propagators as we
can see in WQFT from (14) and (15). Following [10] we
tackle this di�culty by using the bi-adjoint scalar theory
to identify the correct locality structure, i.e. disentangle
the kinematical numerators from the propagator terms.
Another important strategy to establish the classical

double copy is to consider more than two worldlines even
if we are ultimately interested only in two-body interac-
tions. This is to avoid the situation where some color
factors in the two-body situation are vanishing but the
corresponding numerators do not, which under the dou-
ble copy map may yield non-zero contributions. This
may be evaded if we use as many worldlines as worldline-
field interactions occur. Specifically, we will consider an

(n+2)-body system at NnLO. In the WQFT formalism,
this is equivalent to taking into account only tree dia-
grams. To retrieve the binary system from this, we need
to sum all possible ways of fusing the (n+ 2) worldlines
into 2 worldlines. In summary, our double copy relation
of the eikonal phase at N(n�1)LO reads

�BS
n =� y2n

Z
dµ1,2,...,(n+1)

X

i,j

CiKijC̃j , (30a)

�YM
n =� (ig)2n

Z
dµ1,2,...,(n+1)

X

i,j

CiKijNj , (30b)

�DG
n =�

⇣
2

⌘2n
Z

dµ1,2,...,(n+1)

X

i,j

NiKijNj , (30c)

where Ci, C̃j denotes the color and dual color factors,
Nj are the numerators, and Kij are the so-called double
copy kernels that encode the locality structure. The sums
extend over the dimensionalities of the numerators and
the color factors. For further convenience, we have also
defined the integral measure

dµ1,2,...,n =

nY

i=1

✓
d4ki
(2⇡)4

eiki·bi��(ki ·pi)
◆
��(4)

✓ nX

i=1

kµi

◆
,

(31)

where ki is the total outgoing momentum of bosonic fields
�(x) attached to a worldline. Note that we have defined
the momentum of the massive particle as

pµi := miv
µ
i , so that ��(ki ·pi) =

��(ki ·vi)
mi

. (32)

Hereafter we will always express the numerator Nj in
terms of the momentum pµi which is necessary in order
to balance the mass dimension under the double copy.
The kinematic numerators Ni are arranged to satisfy the
same algebraic equations as the color factors Ci,

Ci + Cj + Ck = 0 ) Ni +Nj +Nk = 0. (33)

It is worth mentioning that we have the color-kinematic
duality already at quartic order in the coupling constant.

=−mκ2

2

∫

k1,k2

ei(k1+k2)·bδ−((k1+k2)·v) v(µην)(ρvσ). (3.58)
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3.2. EIKONAL PHASE AND THE DOUBLE COPY

3.2 Eikonal Phase and the Double Copy

One of the main challenges of constructing the double copy in the classical limit of quantum
field theories is that the locality structure is concealed. This is rooted in the classical limit
of the massive scalar propagator [84], which contains both double and single propagators
as we can see in WQFT from (3.11) and (3.44). Following [93] we tackle this difficulty by
using the bi-adjoint scalar theory to identify the correct locality structure, i.e. disentangle
the kinematical numerators from the propagator terms.

Another important strategy to establish the classical double copy is to consider more
than two worldlines even if we are ultimately interested only in two-body interactions. This
is to avoid the situation where some color factors in the two-body situation are vanishing but
the corresponding numerators do not, which under the double copy map may yield non-zero
contributions. This may be evaded if we use as many worldlines as worldline-field interactions
occur. Specifically, we will consider an (n+ 2)-body system at NnLO. To retrieve the binary
system from this, we need to sum all possible ways of fusing the (n+ 2) worldlines into 2
worldlines. In summary, our double copy relation of the eikonal phase at N(n−1)LO reads

χBS
n =− y2n

∫
dµ1,2,...,(n+1)

∑

i,j

CiKijC̃j , (3.59a)

χYM
n =− (ig)2n

∫
dµ1,2,...,(n+1)

∑

i,j

CiKijNj , (3.59b)

χDG
n =−

(κ
2

)2n ∫
dµ1,2,...,(n+1)

∑

i,j

NiKijNj , (3.59c)

where Ci, C̃j denotes the color and dual color factors, Nj are the numerators, and Kij are
the so-called double copy kernels that encode the locality structure. The sums extend over
the dimensionalities of the numerators and the color factors. For further convenience, we
have also defined the integral measure

dµ1,2,...,n =
n∏

i=1

(
d4ki
(2π)4

eiki·biδ−(ki ·pi)
)
δ−(4)
( n∑

i=1

kµi

)
, (3.60)

where ki is the total outgoing momentum of bosonic fields Φ(x) attached to a worldline. Note
that we have defined the momentum of the massive particle as

pµi := miv
µ
i , so that δ−(ki ·pi) =

δ−(ki ·vi)
mi

. (3.61)

Hereafter we will always express the numerator Nj in terms of the momentum pµi which is
necessary in order to balance the mass dimension under the double copy. The kinematic
numerators Ni are arranged to satisfy the same algebraic equations as the color factors Ci,

Ci + Cj + Ck = 0 ⇒ Ni +Nj +Nk = 0. (3.62)

It is worth mentioning that we have the color-kinematic duality already at quartic order in
the coupling constant.
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CHAPTER 3. CLASSICAL DOUBLE COPY OF WORLDLINE QFT

3.2.1 Eikonal at Leading Order (LO)

Let us first consider the double copy of the eikonal at leading order. The locality structure at
leading order is trivial, so we do not need to employ the bi-adjoint scalar theory in order to
double copy YM color charged particles to DG ones. In Yang-Mills coupled WQFT (WYM)
the eikonal phase at this order involves only one diagram. Using the Feynman rules (3.46)
and the gluon propagator (1.23), we have

iχYM
1 =

6

A. Eikonal at leading order (LO)

The locality structure at leading order is trivial, so we
do not need to employ the bi-adjoint scalar theory in
order to double copy YM color charged particles to DG
ones. In Yang-Mills coupled WQFT (WYM) the eikonal
phase at this order involves only one diagram. Using the
Feynman rules (17) and the gluon propagator (A4), we
have

i�YM
1 =

1

2

k1 = ig2
Z

dµ1,2
(p1 ·p2)(c1 ·c2)

k21
(34)

where we have massaged the formula to fit the form as
(30b). We can identify the color factor, the numerator
and the double copy kernel as

C = (c1 ·c2), N = (p1 ·p2), K =
1

k21
. (35)

In worldline coupled dilaton-gravity (WDG), thanks
to the decoupling of ' from the worldline, we have also
only one diagram mediated by hµ⌫ . With (27) and the

graviton propagator (A12), we obtain

i�DG
1 =

1

2

k1 =
�i2

4

Z
dµ1,2

(p1 · p2)2
k21

. (36)

Hence at the leading order the eikonal of Yang-Mills and
dilaton gravtiy obviously possess a double copy relation
(30).

B. Eikonal at Next-to-Leading order (NLO)

As explained before, at next-to-leading order, to avoid
the vanishing of some contributions in worldline coupled
bi-adjoint scalar theory (WBS) and Yang-Mills coupled
WQFT theory, we will consider three worldlines. At this
order the locality structure is non-trivial. As we will see,
the double copy kernel is o↵-diagonal. Therefore, we will
first consider the bi-adjoint scalar theory to identify the
kernel. The Feynman diagrams in WBS can be calculated
using the Feynman rules (22)-(25) and the three-point
vertex of �aã (A9),

1

2
3

k2
k3 =�iy4

Z
dµ1,2,3

k22k
2
3

k2 · k3
(k2 ·p1)2

(c1 ·c2)(c1 ·c3)(c̃1 ·c̃2)(c̃1 ·c̃2) (37)

1

2
3

k2
k3 =�iy4

Z
dµ1,2,3

k22k
2
3

1

k2 ·p1
�
(cba1 ca2c

b
3)(c̃1 ·c̃2)(c̃1 ·c̃3) + (c1 ·c2)(c1 ·c3)(c̃b̃ã1 c̃ã2 c̃

b̃
3)
�

(38)

1

2
3

k3
k2

=�iy4
Z

dµ1,2,3

k22k
2
3

�1

k2 ·p1
�
(cab1 ca2c

b
3)(c̃1 ·c̃2)(c̃1 ·c̃3) + (c1 ·c2)(c1 ·c3)(c̃ãb̃1 c̃ã2 c̃

b̃
3)
�

(39)

1

2

3

k1

k2

k3 =�iy4
Z

dµ1,2,3

k21k
2
2k

2
3

2fabcca1c
b
2c

c
3f̃

ãb̃c̃c̃ã1 c̃
b̃
2c̃

c̃
3 (40)

where for compactness we have defined

cab :=
�
 †T aT b 

�
, c̃ãb̃ :=

⇣
 ̃†T̃ ãT̃ b̃ ̃

⌘
. (41)

Note that in (38) and (39), the propagator with an arrow
denotes either the color or dual color wave function, and
we have added up their contributions. We stress that the
factors cab are absent in the equation of motion, so they
will not explicitly appear in the classical solutions [29].
In fact, summing up (38) and (39) we can remove cab by

cab � cba = fabccc , (42)

and similarly for the dual-color sector. However, these
factors turn out to be critical for the double copy: be-
cause of them we find classical numerators that satisfy
color-kinematics duality at this order. From (37) - (39)
we can identify 3 (dual-)color factors,

C
(123)
i =

�
(c1 ·c2)(c1 ·c3) , (cab1 ca2c

b
3) , (c

ba
1 ca2c

b
3)
 

(43)

C̃
(123)
i =

�
(c̃1 ·c̃2)(c̃1 ·c̃3) , (c̃ãb̃1 c̃ã2 c̃

b̃
3) , (c̃

b̃ã
1 c̃ã2 c̃

b̃
3)
 
. (44)

Note that here we only consider diagrams with worldline
propagators of particle 1. There are also contributions in-

= ig2
∫

dµ1,2
(p1 ·p2)(c1 ·c2)

k21
, (3.63)

where we have massaged the formula to fit the form as (3.59b). It is straightforward to
identify the color factor, the numerator and the double copy kernel

C = (c1 ·c2), N = (p1 ·p2), K =
1

k21
. (3.64)

In worldline coupled dilaton-gravity (WDG), thanks to the decoupling of φ from the
worldline, we also have only one diagram mediated by hµν . With (3.56) and the graviton
propagator (1.40), we obtain

iχDG
1 =

6

A. Eikonal at leading order (LO)

The locality structure at leading order is trivial, so we
do not need to employ the bi-adjoint scalar theory in
order to double copy YM color charged particles to DG
ones. In Yang-Mills coupled WQFT (WYM) the eikonal
phase at this order involves only one diagram. Using the
Feynman rules (17) and the gluon propagator (A4), we
have

i�YM
1 =

1

2

k1 = ig2
Z

dµ1,2
(p1 ·p2)(c1 ·c2)

k21
(34)

where we have massaged the formula to fit the form as
(30b). We can identify the color factor, the numerator
and the double copy kernel as

C = (c1 ·c2), N = (p1 ·p2), K =
1

k21
. (35)

In worldline coupled dilaton-gravity (WDG), thanks
to the decoupling of ' from the worldline, we have also
only one diagram mediated by hµ⌫ . With (27) and the

graviton propagator (A12), we obtain

i�DG
1 =

1

2

k1 =
�i2

4

Z
dµ1,2

(p1 · p2)2
k21

. (36)

Hence at the leading order the eikonal of Yang-Mills and
dilaton gravtiy obviously possess a double copy relation
(30).

B. Eikonal at Next-to-Leading order (NLO)

As explained before, at next-to-leading order, to avoid
the vanishing of some contributions in worldline coupled
bi-adjoint scalar theory (WBS) and Yang-Mills coupled
WQFT theory, we will consider three worldlines. At this
order the locality structure is non-trivial. As we will see,
the double copy kernel is o↵-diagonal. Therefore, we will
first consider the bi-adjoint scalar theory to identify the
kernel. The Feynman diagrams in WBS can be calculated
using the Feynman rules (22)-(25) and the three-point
vertex of �aã (A9),

1

2
3

k2
k3 =�iy4

Z
dµ1,2,3

k22k
2
3

k2 · k3
(k2 ·p1)2

(c1 ·c2)(c1 ·c3)(c̃1 ·c̃2)(c̃1 ·c̃2) (37)

1

2
3

k2
k3 =�iy4

Z
dµ1,2,3

k22k
2
3

1

k2 ·p1
�
(cba1 ca2c

b
3)(c̃1 ·c̃2)(c̃1 ·c̃3) + (c1 ·c2)(c1 ·c3)(c̃b̃ã1 c̃ã2 c̃

b̃
3)
�

(38)

1
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3

k3
k2

=�iy4
Z

dµ1,2,3

k22k
2
3

�1

k2 ·p1
�
(cab1 ca2c

b
3)(c̃1 ·c̃2)(c̃1 ·c̃3) + (c1 ·c2)(c1 ·c3)(c̃ãb̃1 c̃ã2 c̃

b̃
3)
�

(39)
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3

k1

k2

k3 =�iy4
Z

dµ1,2,3

k21k
2
2k
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3

2fabcca1c
b
2c

c
3f̃

ãb̃c̃c̃ã1 c̃
b̃
2c̃

c̃
3 (40)

where for compactness we have defined

cab :=
�
 †T aT b 

�
, c̃ãb̃ :=

⇣
 ̃†T̃ ãT̃ b̃ ̃

⌘
. (41)

Note that in (38) and (39), the propagator with an arrow
denotes either the color or dual color wave function, and
we have added up their contributions. We stress that the
factors cab are absent in the equation of motion, so they
will not explicitly appear in the classical solutions [29].
In fact, summing up (38) and (39) we can remove cab by

cab � cba = fabccc , (42)

and similarly for the dual-color sector. However, these
factors turn out to be critical for the double copy: be-
cause of them we find classical numerators that satisfy
color-kinematics duality at this order. From (37) - (39)
we can identify 3 (dual-)color factors,

C
(123)
i =

�
(c1 ·c2)(c1 ·c3) , (cab1 ca2c

b
3) , (c

ba
1 ca2c

b
3)
 

(43)

C̃
(123)
i =

�
(c̃1 ·c̃2)(c̃1 ·c̃3) , (c̃ãb̃1 c̃ã2 c̃

b̃
3) , (c̃

b̃ã
1 c̃ã2 c̃

b̃
3)
 
. (44)

Note that here we only consider diagrams with worldline
propagators of particle 1. There are also contributions in-

=
−iκ2
4

∫
dµ1,2

(p1 · p2)2
k21

. (3.65)

Hence at the leading order, the eikonal of Yang-Mills and dilaton gravity obviously possess a
double copy relation (3.59).

3.2.2 Eikonal at Next-to-Leading Order (NLO)

As explained before, at next-to-leading order, to avoid the vanishing of some contributions in
worldline coupled bi-adjoint scalar theory (WBS) and Yang-Mills coupled WQFT theory, we
will consider three worldlines. At this order the locality structure is non-trivial. As we will
see, the double copy kernel is off-diagonal. Therefore, we will first consider the bi-adjoint
scalar theory to identify the kernel.

The Feynman diagrams in WBS can be calculated using the Feynman rules (3.51)-(3.54)
and the three-point vertex of ϕaã (3.19),
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A. Eikonal at leading order (LO)

The locality structure at leading order is trivial, so we
do not need to employ the bi-adjoint scalar theory in
order to double copy YM color charged particles to DG
ones. In Yang-Mills coupled WQFT (WYM) the eikonal
phase at this order involves only one diagram. Using the
Feynman rules (17) and the gluon propagator (A4), we
have

i�YM
1 =

1

2

k1 = ig2
Z

dµ1,2
(p1 ·p2)(c1 ·c2)

k21
(34)

where we have massaged the formula to fit the form as
(30b). We can identify the color factor, the numerator
and the double copy kernel as

C = (c1 ·c2), N = (p1 ·p2), K =
1

k21
. (35)

In worldline coupled dilaton-gravity (WDG), thanks
to the decoupling of ' from the worldline, we have also
only one diagram mediated by hµ⌫ . With (27) and the

graviton propagator (A12), we obtain
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�i2

4

Z
dµ1,2

(p1 · p2)2
k21

. (36)

Hence at the leading order the eikonal of Yang-Mills and
dilaton gravtiy obviously possess a double copy relation
(30).

B. Eikonal at Next-to-Leading order (NLO)

As explained before, at next-to-leading order, to avoid
the vanishing of some contributions in worldline coupled
bi-adjoint scalar theory (WBS) and Yang-Mills coupled
WQFT theory, we will consider three worldlines. At this
order the locality structure is non-trivial. As we will see,
the double copy kernel is o↵-diagonal. Therefore, we will
first consider the bi-adjoint scalar theory to identify the
kernel. The Feynman diagrams in WBS can be calculated
using the Feynman rules (22)-(25) and the three-point
vertex of �aã (A9),
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b̃
3)
�

(39)

1

2

3

k1

k2

k3 =�iy4
Z

dµ1,2,3

k21k
2
2k

2
3

2fabcca1c
b
2c

c
3f̃
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3 (40)

where for compactness we have defined

cab :=
�
 †T aT b 

�
, c̃ãb̃ :=

⇣
 ̃†T̃ ãT̃ b̃ ̃

⌘
. (41)

Note that in (38) and (39), the propagator with an arrow
denotes either the color or dual color wave function, and
we have added up their contributions. We stress that the
factors cab are absent in the equation of motion, so they
will not explicitly appear in the classical solutions [29].
In fact, summing up (38) and (39) we can remove cab by

cab � cba = fabccc , (42)

and similarly for the dual-color sector. However, these
factors turn out to be critical for the double copy: be-
cause of them we find classical numerators that satisfy
color-kinematics duality at this order. From (37) - (39)
we can identify 3 (dual-)color factors,

C
(123)
i =
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(c1 ·c2)(c1 ·c3) , (cab1 ca2c
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3) , (c
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. (44)

Note that here we only consider diagrams with worldline
propagators of particle 1. There are also contributions in-
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2
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(k2 ·p1)2

(c1 ·c2)(c1 ·c3)(c̃1 ·c̃2)(c̃1 ·c̃2) (3.66)
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A. Eikonal at leading order (LO)

The locality structure at leading order is trivial, so we
do not need to employ the bi-adjoint scalar theory in
order to double copy YM color charged particles to DG
ones. In Yang-Mills coupled WQFT (WYM) the eikonal
phase at this order involves only one diagram. Using the
Feynman rules (17) and the gluon propagator (A4), we
have
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2

k1 = ig2
Z

dµ1,2
(p1 ·p2)(c1 ·c2)

k21
(34)

where we have massaged the formula to fit the form as
(30b). We can identify the color factor, the numerator
and the double copy kernel as

C = (c1 ·c2), N = (p1 ·p2), K =
1

k21
. (35)

In worldline coupled dilaton-gravity (WDG), thanks
to the decoupling of ' from the worldline, we have also
only one diagram mediated by hµ⌫ . With (27) and the

graviton propagator (A12), we obtain
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. (36)

Hence at the leading order the eikonal of Yang-Mills and
dilaton gravtiy obviously possess a double copy relation
(30).

B. Eikonal at Next-to-Leading order (NLO)

As explained before, at next-to-leading order, to avoid
the vanishing of some contributions in worldline coupled
bi-adjoint scalar theory (WBS) and Yang-Mills coupled
WQFT theory, we will consider three worldlines. At this
order the locality structure is non-trivial. As we will see,
the double copy kernel is o↵-diagonal. Therefore, we will
first consider the bi-adjoint scalar theory to identify the
kernel. The Feynman diagrams in WBS can be calculated
using the Feynman rules (22)-(25) and the three-point
vertex of �aã (A9),
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where for compactness we have defined
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 †T aT b 
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, c̃ãb̃ :=

⇣
 ̃†T̃ ãT̃ b̃ ̃

⌘
. (41)

Note that in (38) and (39), the propagator with an arrow
denotes either the color or dual color wave function, and
we have added up their contributions. We stress that the
factors cab are absent in the equation of motion, so they
will not explicitly appear in the classical solutions [29].
In fact, summing up (38) and (39) we can remove cab by

cab � cba = fabccc , (42)

and similarly for the dual-color sector. However, these
factors turn out to be critical for the double copy: be-
cause of them we find classical numerators that satisfy
color-kinematics duality at this order. From (37) - (39)
we can identify 3 (dual-)color factors,
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Note that here we only consider diagrams with worldline
propagators of particle 1. There are also contributions in-
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(3.67)
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A. Eikonal at leading order (LO)

The locality structure at leading order is trivial, so we
do not need to employ the bi-adjoint scalar theory in
order to double copy YM color charged particles to DG
ones. In Yang-Mills coupled WQFT (WYM) the eikonal
phase at this order involves only one diagram. Using the
Feynman rules (17) and the gluon propagator (A4), we
have
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Z

dµ1,2
(p1 ·p2)(c1 ·c2)

k21
(34)

where we have massaged the formula to fit the form as
(30b). We can identify the color factor, the numerator
and the double copy kernel as

C = (c1 ·c2), N = (p1 ·p2), K =
1

k21
. (35)

In worldline coupled dilaton-gravity (WDG), thanks
to the decoupling of ' from the worldline, we have also
only one diagram mediated by hµ⌫ . With (27) and the

graviton propagator (A12), we obtain
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Hence at the leading order the eikonal of Yang-Mills and
dilaton gravtiy obviously possess a double copy relation
(30).

B. Eikonal at Next-to-Leading order (NLO)

As explained before, at next-to-leading order, to avoid
the vanishing of some contributions in worldline coupled
bi-adjoint scalar theory (WBS) and Yang-Mills coupled
WQFT theory, we will consider three worldlines. At this
order the locality structure is non-trivial. As we will see,
the double copy kernel is o↵-diagonal. Therefore, we will
first consider the bi-adjoint scalar theory to identify the
kernel. The Feynman diagrams in WBS can be calculated
using the Feynman rules (22)-(25) and the three-point
vertex of �aã (A9),

1

2
3

k2
k3 =�iy4

Z
dµ1,2,3

k22k
2
3

k2 · k3
(k2 ·p1)2

(c1 ·c2)(c1 ·c3)(c̃1 ·c̃2)(c̃1 ·c̃2) (37)

1

2
3

k2
k3 =�iy4

Z
dµ1,2,3

k22k
2
3

1

k2 ·p1
�
(cba1 ca2c

b
3)(c̃1 ·c̃2)(c̃1 ·c̃3) + (c1 ·c2)(c1 ·c3)(c̃b̃ã1 c̃ã2 c̃

b̃
3)
�

(38)

1

2
3

k3
k2

=�iy4
Z

dµ1,2,3

k22k
2
3

�1

k2 ·p1
�
(cab1 ca2c

b
3)(c̃1 ·c̃2)(c̃1 ·c̃3) + (c1 ·c2)(c1 ·c3)(c̃ãb̃1 c̃ã2 c̃

b̃
3)
�

(39)

1

2

3

k1

k2

k3 =�iy4
Z

dµ1,2,3

k21k
2
2k

2
3

2fabcca1c
b
2c

c
3f̃

ãb̃c̃c̃ã1 c̃
b̃
2c̃

c̃
3 (40)

where for compactness we have defined

cab :=
�
 †T aT b 

�
, c̃ãb̃ :=

⇣
 ̃†T̃ ãT̃ b̃ ̃

⌘
. (41)

Note that in (38) and (39), the propagator with an arrow
denotes either the color or dual color wave function, and
we have added up their contributions. We stress that the
factors cab are absent in the equation of motion, so they
will not explicitly appear in the classical solutions [29].
In fact, summing up (38) and (39) we can remove cab by

cab � cba = fabccc , (42)

and similarly for the dual-color sector. However, these
factors turn out to be critical for the double copy: be-
cause of them we find classical numerators that satisfy
color-kinematics duality at this order. From (37) - (39)
we can identify 3 (dual-)color factors,

C
(123)
i =

�
(c1 ·c2)(c1 ·c3) , (cab1 ca2c

b
3) , (c

ba
1 ca2c

b
3)
 

(43)

C̃
(123)
i =

�
(c̃1 ·c̃2)(c̃1 ·c̃3) , (c̃ãb̃1 c̃ã2 c̃

b̃
3) , (c̃

b̃ã
1 c̃ã2 c̃

b̃
3)
 
. (44)

Note that here we only consider diagrams with worldline
propagators of particle 1. There are also contributions in-

= −iy4
∫

dµ1,2,3
k22k

2
3

−1

k2 ·p1
(
(cab1 c

a
2c

b
3)(c̃1 ·c̃2)(c̃1 ·c̃3) + (c1 ·c2)(c1 ·c3)(c̃ãb̃1 c̃ã2 c̃b̃3)

)

(3.68)
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A. Eikonal at leading order (LO)

The locality structure at leading order is trivial, so we
do not need to employ the bi-adjoint scalar theory in
order to double copy YM color charged particles to DG
ones. In Yang-Mills coupled WQFT (WYM) the eikonal
phase at this order involves only one diagram. Using the
Feynman rules (17) and the gluon propagator (A4), we
have

i�YM
1 =

1

2

k1 = ig2
Z

dµ1,2
(p1 ·p2)(c1 ·c2)

k21
(34)

where we have massaged the formula to fit the form as
(30b). We can identify the color factor, the numerator
and the double copy kernel as

C = (c1 ·c2), N = (p1 ·p2), K =
1

k21
. (35)

In worldline coupled dilaton-gravity (WDG), thanks
to the decoupling of ' from the worldline, we have also
only one diagram mediated by hµ⌫ . With (27) and the

graviton propagator (A12), we obtain

i�DG
1 =

1

2

k1 =
�i2

4

Z
dµ1,2

(p1 · p2)2
k21

. (36)

Hence at the leading order the eikonal of Yang-Mills and
dilaton gravtiy obviously possess a double copy relation
(30).

B. Eikonal at Next-to-Leading order (NLO)

As explained before, at next-to-leading order, to avoid
the vanishing of some contributions in worldline coupled
bi-adjoint scalar theory (WBS) and Yang-Mills coupled
WQFT theory, we will consider three worldlines. At this
order the locality structure is non-trivial. As we will see,
the double copy kernel is o↵-diagonal. Therefore, we will
first consider the bi-adjoint scalar theory to identify the
kernel. The Feynman diagrams in WBS can be calculated
using the Feynman rules (22)-(25) and the three-point
vertex of �aã (A9),

1

2
3

k2
k3 =�iy4

Z
dµ1,2,3

k22k
2
3

k2 · k3
(k2 ·p1)2

(c1 ·c2)(c1 ·c3)(c̃1 ·c̃2)(c̃1 ·c̃2) (37)

1

2
3

k2
k3 =�iy4

Z
dµ1,2,3

k22k
2
3

1

k2 ·p1
�
(cba1 ca2c

b
3)(c̃1 ·c̃2)(c̃1 ·c̃3) + (c1 ·c2)(c1 ·c3)(c̃b̃ã1 c̃ã2 c̃

b̃
3)
�

(38)

1

2
3

k3
k2

=�iy4
Z

dµ1,2,3

k22k
2
3

�1

k2 ·p1
�
(cab1 ca2c

b
3)(c̃1 ·c̃2)(c̃1 ·c̃3) + (c1 ·c2)(c1 ·c3)(c̃ãb̃1 c̃ã2 c̃

b̃
3)
�

(39)

1

2

3

k1

k2

k3 =�iy4
Z

dµ1,2,3

k21k
2
2k

2
3

2fabcca1c
b
2c

c
3f̃

ãb̃c̃c̃ã1 c̃
b̃
2c̃

c̃
3 (40)

where for compactness we have defined

cab :=
�
 †T aT b 

�
, c̃ãb̃ :=

⇣
 ̃†T̃ ãT̃ b̃ ̃

⌘
. (41)

Note that in (38) and (39), the propagator with an arrow
denotes either the color or dual color wave function, and
we have added up their contributions. We stress that the
factors cab are absent in the equation of motion, so they
will not explicitly appear in the classical solutions [29].
In fact, summing up (38) and (39) we can remove cab by

cab � cba = fabccc , (42)

and similarly for the dual-color sector. However, these
factors turn out to be critical for the double copy: be-
cause of them we find classical numerators that satisfy
color-kinematics duality at this order. From (37) - (39)
we can identify 3 (dual-)color factors,

C
(123)
i =

�
(c1 ·c2)(c1 ·c3) , (cab1 ca2c

b
3) , (c

ba
1 ca2c

b
3)
 

(43)

C̃
(123)
i =

�
(c̃1 ·c̃2)(c̃1 ·c̃3) , (c̃ãb̃1 c̃ã2 c̃

b̃
3) , (c̃

b̃ã
1 c̃ã2 c̃

b̃
3)
 
. (44)

Note that here we only consider diagrams with worldline
propagators of particle 1. There are also contributions in-

= −iy4
∫

dµ1,2,3
k21k

2
2k

2
3

2fabcca1c
b
2c

c
3f̃

ãb̃c̃c̃ã1 c̃
b̃
2c̃

c̃
3 (3.69)

where for compactness we have defined

cab :=
(
ψ†T aT bψ

)
, c̃ãb̃ :=

(
ψ̃†T̃ ãT̃ b̃ψ̃

)
. (3.70)

Note that in (3.67) and (3.68), the propagator with an arrow denotes either the color or dual
color wave function, and we have added up their contributions. We stress that the factors
cab are absent in the equation of motion, so they will not explicitly appear in the classical
solutions [95]. In fact, summing up (3.67) and (3.68) we can remove cab by

cab − cba = fabccc , (3.71)

and similarly for the dual-color sector. However, these factors turn out to be critical for
the double copy: because of them we find classical numerators that satisfy color-kinematics
duality at this order. From (3.66) - (3.68) we can identify 3 (dual-)color factors,

C
(123)
i =

{
(c1 ·c2)(c1 ·c3) , (cab1 ca2cb3) , (cba1 ca2cb3)

}
(3.72)

C̃
(123)
i =

{
(c̃1 ·c̃2)(c̃1 ·c̃3) , (c̃ãb̃1 c̃ã2 c̃b̃3) , (c̃b̃ã1 c̃ã2 c̃b̃3)

}
. (3.73)

Note that here we only consider diagrams with worldline propagators of particle 1. There
are also contributions involving propagators of 2 and 3, which can be gained simply by
relabeling (123) in (3.66)-(3.68) and give us another 6 color factors. Together with the single
(dual)-color factor emerging from (3.69)

C
(0)
i = fabcca1c

b
2c

c
3, C̃

(0)
i = f̃ ãb̃c̃c̃ã1 c̃

b̃
2c̃

c̃
3, (3.74)

we see that the double copy kernel Kij is 10-dimensional. Fortunately, Kij is block-diagonal.
The block that corresponds to the three-dimensional space (3.72) is

K
(123)
ij =

1

k22k
2
3




k2·k3
(k2·p1)2

−1
k2·p1

1
k2·p1

−1
k2·p1 0 0
1

k2·p1 0 0


 (3.75)

and analogously for the color-dual (3.73). By permutations of (123) we may obtain other
blocks. The last block coupling to the structure constant is extracted from (3.69) and is
1-dimensional, thus we have

K
(0)
ij =

2

k21k
2
2k

2
3

. (3.76)

We now proceed to consider the Yang-Mills coupled WQFT (WYM) theory. The Feynman
diagrams are very similar to those of WBS theory. With the WYM Feynman rules (3.46) -
(3.49), we may compute the contributions to the eikonal phase

7

volving propagators of 2 and 3, which can be gained sim-
ply by relabeling (123) in (37)-(39) and give us another 6
color factors. Together with the single (dual)-color factor
emerging from (40)

C
(0)
i = fabcca1c

b
2c

c
3, C̃

(0)
i = f̃ ãb̃c̃c̃ã1 c̃

b̃
2c̃

c̃
3, (45)

we see that the double copy kernel Kij is 10-dimensional.
Fortunately, Kij is block-diagonal. The block that cor-

responds to the three-dimensional space (43) is

K
(123)
ij =

1

k22k
2
3

0
B@

k2·k3

(k2·p1)2
�1

k2·p1

1
k2·p1�1

k2·p1
0 0

1
k2·p1

0 0

1
CA . (46)

and analogously for the color-dual (44). By permutations
of (123) we may obtain other blocks. The last block
coupling to the structure constant is extracted from (40)
and is 1-dimensional, we have

K
(0)
ij =

2

k21k
2
2k

2
3

. (47)

We now proceed to consider the Yang-Mills coupled
WQFT (WYM) theory. The Feynman diagrams are very
similar to those of WBS theory. With the WYM Feyn-
man rules (17) - (20), we may compute the contributions
to the eikonal phase

1

2
3

k2
k3 = �ig4

Z
dµ1,2,3

k22k
2
3

(c1 ·c2)(c1 ·c3)
✓

k2 ·k3
(k2 ·p1)2

n0 +
1

k2 ·p1
n1

◆
(48)

1

2
3

k2
k3 = �ig4

Z
dµ1,2,3

k22k
2
3

(cba1 ca2c
b
3)

k2 ·p1
n0 (49)

1

2
3

k3
k2

= �ig4
Z

dµ1,2,3

k22k
2
3

�(cab1 ca2c
b
3)

k2 ·p1
n0 (50)

1

2

3

k1

k2

k3 = �ig4
Z

dµ1,2,3
2fabcca1c

b
2c

c
3

k21k
2
2k

2
3

(�n1) (51)

where we have defined

n0 = p1 ·p2 p1 ·p3 (52)

n1 = k2 ·p3 p1 ·p2 � k3 ·p2 p1 ·p3 � k2 ·p1 p2 ·p3. (53)

Based on the color factors identified in (43), (45) and the
double copy kernel (46), (47), we are led to organize the
numerators as

N
(123)
j =

⇢
n0 ,

�n1

2
,
n1

2

�
(54)

N
(0)
j = � n1 , (55)

so that the WYM eikonal may be decomposed in the form

of (30b),

�2 = �g4
Z

dµ1,2,3

X

i,j

⇣
C

(0)
i K

(0)
ij N

(0)
j

+
�
C

(123)
i K

(123)
ij N

(123)
j + cyclic

�⌘
. (56)

Fortunately, this decomposition automatically satisfies
the color-kinematics duality

cab1 ca2c
b
3 � cba1 ca2c

b
3 =fabcca1c

b
2c

c
3 (57)

�n1

2
� n1

2
=� n1. (58)

Note that the decomposition of N
(123)
j is not unique due

= −ig4
∫

dµ1,2,3
k22k

2
3

(c1 ·c2)(c1 ·c3)
(

k2 ·k3
(k2 ·p1)2

n0 +
1

k2 ·p1
n1

)
(3.77)
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volving propagators of 2 and 3, which can be gained sim-
ply by relabeling (123) in (37)-(39) and give us another 6
color factors. Together with the single (dual)-color factor
emerging from (40)

C
(0)
i = fabcca1c

b
2c

c
3, C̃

(0)
i = f̃ ãb̃c̃c̃ã1 c̃

b̃
2c̃

c̃
3, (45)

we see that the double copy kernel Kij is 10-dimensional.
Fortunately, Kij is block-diagonal. The block that cor-

responds to the three-dimensional space (43) is

K
(123)
ij =

1

k22k
2
3

0
B@

k2·k3

(k2·p1)2
�1

k2·p1

1
k2·p1�1

k2·p1
0 0

1
k2·p1

0 0

1
CA . (46)

and analogously for the color-dual (44). By permutations
of (123) we may obtain other blocks. The last block
coupling to the structure constant is extracted from (40)
and is 1-dimensional, we have

K
(0)
ij =

2

k21k
2
2k

2
3

. (47)

We now proceed to consider the Yang-Mills coupled
WQFT (WYM) theory. The Feynman diagrams are very
similar to those of WBS theory. With the WYM Feyn-
man rules (17) - (20), we may compute the contributions
to the eikonal phase

1

2
3

k2
k3 = �ig4

Z
dµ1,2,3

k22k
2
3

(c1 ·c2)(c1 ·c3)
✓

k2 ·k3
(k2 ·p1)2

n0 +
1

k2 ·p1
n1

◆
(48)

1

2
3

k2
k3 = �ig4

Z
dµ1,2,3

k22k
2
3

(cba1 ca2c
b
3)

k2 ·p1
n0 (49)

1

2
3

k3
k2

= �ig4
Z

dµ1,2,3

k22k
2
3

�(cab1 ca2c
b
3)

k2 ·p1
n0 (50)

1

2

3

k1

k2

k3 = �ig4
Z

dµ1,2,3
2fabcca1c

b
2c

c
3

k21k
2
2k

2
3

(�n1) (51)

where we have defined

n0 = p1 ·p2 p1 ·p3 (52)

n1 = k2 ·p3 p1 ·p2 � k3 ·p2 p1 ·p3 � k2 ·p1 p2 ·p3. (53)

Based on the color factors identified in (43), (45) and the
double copy kernel (46), (47), we are led to organize the
numerators as

N
(123)
j =

⇢
n0 ,

�n1

2
,
n1

2

�
(54)

N
(0)
j = � n1 , (55)

so that the WYM eikonal may be decomposed in the form

of (30b),

�2 = �g4
Z

dµ1,2,3

X

i,j

⇣
C

(0)
i K

(0)
ij N

(0)
j

+
�
C

(123)
i K

(123)
ij N

(123)
j + cyclic

�⌘
. (56)

Fortunately, this decomposition automatically satisfies
the color-kinematics duality

cab1 ca2c
b
3 � cba1 ca2c

b
3 =fabcca1c

b
2c

c
3 (57)

�n1

2
� n1

2
=� n1. (58)

Note that the decomposition of N
(123)
j is not unique due

= −ig4
∫

dµ1,2,3
k22k

2
3

(cba1 c
a
2c

b
3)

k2 ·p1
n0 (3.78)
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volving propagators of 2 and 3, which can be gained sim-
ply by relabeling (123) in (37)-(39) and give us another 6
color factors. Together with the single (dual)-color factor
emerging from (40)

C
(0)
i = fabcca1c

b
2c

c
3, C̃

(0)
i = f̃ ãb̃c̃c̃ã1 c̃

b̃
2c̃

c̃
3, (45)

we see that the double copy kernel Kij is 10-dimensional.
Fortunately, Kij is block-diagonal. The block that cor-

responds to the three-dimensional space (43) is

K
(123)
ij =

1

k22k
2
3

0
B@

k2·k3

(k2·p1)2
�1

k2·p1

1
k2·p1�1

k2·p1
0 0

1
k2·p1

0 0

1
CA . (46)

and analogously for the color-dual (44). By permutations
of (123) we may obtain other blocks. The last block
coupling to the structure constant is extracted from (40)
and is 1-dimensional, we have

K
(0)
ij =

2

k21k
2
2k

2
3

. (47)

We now proceed to consider the Yang-Mills coupled
WQFT (WYM) theory. The Feynman diagrams are very
similar to those of WBS theory. With the WYM Feyn-
man rules (17) - (20), we may compute the contributions
to the eikonal phase

1

2
3

k2
k3 = �ig4

Z
dµ1,2,3

k22k
2
3

(c1 ·c2)(c1 ·c3)
✓

k2 ·k3
(k2 ·p1)2

n0 +
1

k2 ·p1
n1

◆
(48)

1

2
3

k2
k3 = �ig4

Z
dµ1,2,3

k22k
2
3

(cba1 ca2c
b
3)

k2 ·p1
n0 (49)

1

2
3

k3
k2

= �ig4
Z

dµ1,2,3

k22k
2
3

�(cab1 ca2c
b
3)

k2 ·p1
n0 (50)

1

2

3

k1

k2

k3 = �ig4
Z

dµ1,2,3
2fabcca1c

b
2c

c
3

k21k
2
2k

2
3

(�n1) (51)

where we have defined

n0 = p1 ·p2 p1 ·p3 (52)

n1 = k2 ·p3 p1 ·p2 � k3 ·p2 p1 ·p3 � k2 ·p1 p2 ·p3. (53)

Based on the color factors identified in (43), (45) and the
double copy kernel (46), (47), we are led to organize the
numerators as

N
(123)
j =

⇢
n0 ,

�n1

2
,
n1

2

�
(54)

N
(0)
j = � n1 , (55)

so that the WYM eikonal may be decomposed in the form

of (30b),

�2 = �g4
Z

dµ1,2,3

X

i,j

⇣
C

(0)
i K

(0)
ij N

(0)
j

+
�
C

(123)
i K

(123)
ij N

(123)
j + cyclic

�⌘
. (56)

Fortunately, this decomposition automatically satisfies
the color-kinematics duality

cab1 ca2c
b
3 � cba1 ca2c

b
3 =fabcca1c

b
2c

c
3 (57)

�n1

2
� n1

2
=� n1. (58)

Note that the decomposition of N
(123)
j is not unique due

= −ig4
∫

dµ1,2,3
k22k

2
3

−(cab1 c
a
2c

b
3)

k2 ·p1
n0 (3.79)
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volving propagators of 2 and 3, which can be gained sim-
ply by relabeling (123) in (37)-(39) and give us another 6
color factors. Together with the single (dual)-color factor
emerging from (40)

C
(0)
i = fabcca1c

b
2c

c
3, C̃

(0)
i = f̃ ãb̃c̃c̃ã1 c̃

b̃
2c̃

c̃
3, (45)

we see that the double copy kernel Kij is 10-dimensional.
Fortunately, Kij is block-diagonal. The block that cor-

responds to the three-dimensional space (43) is

K
(123)
ij =

1

k22k
2
3

0
B@

k2·k3

(k2·p1)2
�1

k2·p1

1
k2·p1�1

k2·p1
0 0

1
k2·p1

0 0

1
CA . (46)

and analogously for the color-dual (44). By permutations
of (123) we may obtain other blocks. The last block
coupling to the structure constant is extracted from (40)
and is 1-dimensional, we have

K
(0)
ij =

2

k21k
2
2k

2
3

. (47)

We now proceed to consider the Yang-Mills coupled
WQFT (WYM) theory. The Feynman diagrams are very
similar to those of WBS theory. With the WYM Feyn-
man rules (17) - (20), we may compute the contributions
to the eikonal phase
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k3 = �ig4

Z
dµ1,2,3

k22k
2
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(c1 ·c2)(c1 ·c3)
✓
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1
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◆
(48)
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n0 (49)
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Z
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k21k
2
2k

2
3

(�n1) (51)

where we have defined

n0 = p1 ·p2 p1 ·p3 (52)

n1 = k2 ·p3 p1 ·p2 � k3 ·p2 p1 ·p3 � k2 ·p1 p2 ·p3. (53)

Based on the color factors identified in (43), (45) and the
double copy kernel (46), (47), we are led to organize the
numerators as

N
(123)
j =

⇢
n0 ,

�n1

2
,
n1

2

�
(54)

N
(0)
j = � n1 , (55)

so that the WYM eikonal may be decomposed in the form

of (30b),

�2 = �g4
Z

dµ1,2,3

X

i,j

⇣
C

(0)
i K

(0)
ij N

(0)
j

+
�
C

(123)
i K

(123)
ij N

(123)
j + cyclic

�⌘
. (56)

Fortunately, this decomposition automatically satisfies
the color-kinematics duality

cab1 ca2c
b
3 � cba1 ca2c

b
3 =fabcca1c

b
2c

c
3 (57)

�n1

2
� n1

2
=� n1. (58)

Note that the decomposition of N
(123)
j is not unique due

= −ig4
∫

dµ1,2,3
2fabcca1c

b
2c

c
3

k21k
2
2k

2
3

(−n1) (3.80)

where we have defined

n0 = p1 ·p2 p1 ·p3 (3.81)

n1 = k2 ·p3 p1 ·p2 − k3 ·p2 p1 ·p3 − k2 ·p1 p2 ·p3. (3.82)

Based on the color factors identified in (3.72), (3.74) and the double copy kernel (3.75),
(3.76), we are led to organize the numerators as

N
(123)
j =

{
n0 ,

−n1
2

,
n1
2

}
(3.83)

N
(0)
j = − n1 , (3.84)

so that the WYM eikonal may be decomposed in the form of (3.59b),

χ2 = −g4
∫

dµ1,2,3
∑

i,j

(
C

(0)
i K

(0)
ij N

(0)
j +

(
C

(123)
i K

(123)
ij N

(123)
j + cyclic

))
. (3.85)

Fortunately, this decomposition automatically satisfies the color-kinematics duality

cab1 c
a
2c

b
3 − cba1 c

a
2c

b
3 =f

abcca1c
b
2c

c
3 (3.86)

−n1
2

− n1
2

=− n1. (3.87)

Note that the decomposition of N
(123)
j is not unique due to the Jacobi relation (3.71)2.

We note that the color-kinematic duality is satisfied automatically up to this leading and
next-to-leading order if one uses Feynman gauge (this is not so in other gauges). We expect
this property to break at higher orders in perturbation theory where the need of generalized
gauge transformations arises. One then adds to the eikonal an arbitrary function multiplying
the color factor Jacobi identity (eq. (3.86)) in order to create a color-kinematic duality
respecting representation.

In principle, we are now prepared to execute the double copy as proposed in (3.59c) to
get the eikonal phase in the worldline coupled dilaton gravity theory (WDG). In order to

2For example, we could also have N
(123)
j = (n0 0 n1). Color-kinematic duality still holds and the double

copy gives the correct gravitational result. We have chosen to write N
(123)
j in a symmetric form.
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3.3. RADIATION AND THE DOUBLE COPY

check the validity of our double copy prescription, we directly compute the eikonal in WDG
theory with (3.56) - (3.58) we find for the graphs not involving bulk graviton interactions

8

to the Jacobi relation (42)2. We note that the color-
kinematic duality is satisfied automatically up to this
leading and next-to leading order if one uses Feynman
gauge (this is not so in other gauges). We expect this
property to break at higher orders in perturbation the-
ory were the need of generalized gauge transformations
arises. On then adds to the eikonal an arbitrary function
multiplying the color factor Jacobi identity (eq. (57))
in order to create a color-kinematic duality respecting

representation.

In principle, we are now prepared to execute the dou-
ble copy as proposed in (30c) to get the eikonal phase in
the worldline coupled dilaton gravity theory (WDG). In
order to check the validity of our double copy prescrip-
tion, we directly compute the eikonal in WDG theory
with (27) - (29) we find for the graphs not involving bulk
graviton interactions

1

2
3

k2
k3 =

�i4

16

Z
dµ1,2,3

k22k
2
3(k2 ·p1)2

�
(k2 ·k3)(p1 ·p2)2(p1 ·p3)2 � 4(k2 ·p1)2(p1 ·p2)(p1 ·p3)(p2 ·p3)

� 2(k3 ·p2)(k2 ·p1)(p1 ·p2)(p1 ·p3)2 + 2(k2 ·p3)(k2 ·p1)(p1 ·p3)(p1 ·p2)2
� (59)

1

2 3
k2 k3

=
�i4

16

Z
dµ1,2,3

k22k
2
3

�
2(p1 ·p2)(p1 ·p3)(p2 ·p3)

�
. (60)

Summing up the two diagrams (59) and (60), we can
check that the result can be written as

�i4

16

Z
dµ1,2,3

k22k
2
3

✓
k2 ·k3n2

0

(k2 ·p1)2
+

2n0n1

k2 ·p1

◆
(61)

=
�i4

16

Z
dµ1,2,3

X

i,j

N
(123)
i K

(123)
ij N

(123)
j .

In the last line we have arranged the result to the form of

(30c) with the double copy kernel K
(123)
ij and the numer-

ator N
(123)
i defined in (46) and (54) respectively. Turning

to the bulk graviton interaction graphs thanks to the field
redefinition of {', hµ⌫}, the three-graviton vertex (A5) is
directly proportional to the square of three-gluon vertex,
so we can easily compute the last diagram which is man-
ifestly a double-copy of the WYM one

1

2

3

k1

k2

k3 =
�i4

16

Z
dµ1,2,3

2n2
1

k21k
2
2k

2
3

. (62)

From (61) and (62) we therefore conclude that the double
copy of the WYM eikonal coincides with the one of WDG
also at the next-to-leading order (O(4)).

2 For example, we could also have N
(123)
j = (n0 0 n1). Color-

kinematic duality still holds and the double copy gives the cor-

rect gravitational result. We have chosen to write N
(123)
j in a

symmetric form.

IV. RADIATIVE DOUBLE COPY

In this letter we are mainly considering the conserva-
tive sector of the WQFT, however, with a slight modi-
fication we can generalize the eikonal double copy (30)
to classical radiation. In WQFT, the � field radiation is
computed as [25, 26]

�ik2 h�(k)i|k2=0 (63)

For � 2 {Aa
µ, hµ⌫}, we also need to contract it with the

polarizations {✏µ, ✏µ⌫} respectively. We take the gluon
radiation as an example. Loosely speaking, the radiation
at orderO(g2n�1) can be obtained from the eikonal phase
at O(g2n) by cutting o↵ one worldline. Diagrammati-
cally, the gluon radiation of a binary source at leading
order can be gained from (48)-(51) by cutting the prop-
agator k3 and identifying k3 with the momentum of the
radiated gluon. The on-shell condition k3 ·✏ = 0 plays the
same role as the ��(k3 · p3) in the measure of the eikonal
phase. This ensures that the gluon radiation can be de-
composed into CiKijNj , with Ci attained from (43) and
(40) by striping o↵ c3, Ni from (54) and (55) by replacing
pµ3 by ✏µ and Kij being identical to (46). From the same
approach we can also get the gravitational radiation and
decompose it as NiKijNj . Therefore we conclude that
the double copy construction works for radiation, too.
We note that this is equivalent to the approach consid-
ered by Shen [10] and Goldberger and Ridgway [9] where
the radiation is calculated by solving the equations of
motion.

V. FROM AMPLITUDE TO EIKONAL

The expectation values in WQFT are directly linked
to the classical limit of S-matrix element. Consequently,

=
−iκ4
16

∫
dµ1,2,3

k22k
2
3(k2 ·p1)2

(
(k2 ·k3)(p1 ·p2)2(p1 ·p3)2

− 4(k2 ·p1)2(p1 ·p2)(p1 ·p3)(p2 ·p3)− 2(k3 ·p2)(k2 ·p1)(p1 ·p2)(p1 ·p3)2

+ 2(k2 ·p3)(k2 ·p1)(p1 ·p3)(p1 ·p2)2
)

(3.88)
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to the Jacobi relation (42)2. We note that the color-
kinematic duality is satisfied automatically up to this
leading and next-to leading order if one uses Feynman
gauge (this is not so in other gauges). We expect this
property to break at higher orders in perturbation the-
ory were the need of generalized gauge transformations
arises. On then adds to the eikonal an arbitrary function
multiplying the color factor Jacobi identity (eq. (57))
in order to create a color-kinematic duality respecting

representation.

In principle, we are now prepared to execute the dou-
ble copy as proposed in (30c) to get the eikonal phase in
the worldline coupled dilaton gravity theory (WDG). In
order to check the validity of our double copy prescrip-
tion, we directly compute the eikonal in WDG theory
with (27) - (29) we find for the graphs not involving bulk
graviton interactions

1

2
3

k2
k3 =

�i4

16

Z
dµ1,2,3

k22k
2
3(k2 ·p1)2

�
(k2 ·k3)(p1 ·p2)2(p1 ·p3)2 � 4(k2 ·p1)2(p1 ·p2)(p1 ·p3)(p2 ·p3)

� 2(k3 ·p2)(k2 ·p1)(p1 ·p2)(p1 ·p3)2 + 2(k2 ·p3)(k2 ·p1)(p1 ·p3)(p1 ·p2)2
� (59)

1

2 3
k2 k3

=
�i4

16

Z
dµ1,2,3

k22k
2
3

�
2(p1 ·p2)(p1 ·p3)(p2 ·p3)

�
. (60)

Summing up the two diagrams (59) and (60), we can
check that the result can be written as

�i4

16

Z
dµ1,2,3

k22k
2
3

✓
k2 ·k3n2

0

(k2 ·p1)2
+

2n0n1

k2 ·p1

◆
(61)

=
�i4

16

Z
dµ1,2,3

X

i,j

N
(123)
i K

(123)
ij N

(123)
j .

In the last line we have arranged the result to the form of

(30c) with the double copy kernel K
(123)
ij and the numer-

ator N
(123)
i defined in (46) and (54) respectively. Turning

to the bulk graviton interaction graphs thanks to the field
redefinition of {', hµ⌫}, the three-graviton vertex (A5) is
directly proportional to the square of three-gluon vertex,
so we can easily compute the last diagram which is man-
ifestly a double-copy of the WYM one

1

2

3

k1

k2

k3 =
�i4

16

Z
dµ1,2,3

2n2
1

k21k
2
2k

2
3

. (62)

From (61) and (62) we therefore conclude that the double
copy of the WYM eikonal coincides with the one of WDG
also at the next-to-leading order (O(4)).

2 For example, we could also have N
(123)
j = (n0 0 n1). Color-

kinematic duality still holds and the double copy gives the cor-

rect gravitational result. We have chosen to write N
(123)
j in a

symmetric form.

IV. RADIATIVE DOUBLE COPY

In this letter we are mainly considering the conserva-
tive sector of the WQFT, however, with a slight modi-
fication we can generalize the eikonal double copy (30)
to classical radiation. In WQFT, the � field radiation is
computed as [25, 26]

�ik2 h�(k)i|k2=0 (63)

For � 2 {Aa
µ, hµ⌫}, we also need to contract it with the

polarizations {✏µ, ✏µ⌫} respectively. We take the gluon
radiation as an example. Loosely speaking, the radiation
at orderO(g2n�1) can be obtained from the eikonal phase
at O(g2n) by cutting o↵ one worldline. Diagrammati-
cally, the gluon radiation of a binary source at leading
order can be gained from (48)-(51) by cutting the prop-
agator k3 and identifying k3 with the momentum of the
radiated gluon. The on-shell condition k3 ·✏ = 0 plays the
same role as the ��(k3 · p3) in the measure of the eikonal
phase. This ensures that the gluon radiation can be de-
composed into CiKijNj , with Ci attained from (43) and
(40) by striping o↵ c3, Ni from (54) and (55) by replacing
pµ3 by ✏µ and Kij being identical to (46). From the same
approach we can also get the gravitational radiation and
decompose it as NiKijNj . Therefore we conclude that
the double copy construction works for radiation, too.
We note that this is equivalent to the approach consid-
ered by Shen [10] and Goldberger and Ridgway [9] where
the radiation is calculated by solving the equations of
motion.

V. FROM AMPLITUDE TO EIKONAL

The expectation values in WQFT are directly linked
to the classical limit of S-matrix element. Consequently,

=
−iκ4
16

∫
dµ1,2,3
k22k

2
3

(
2(p1 ·p2)(p1 ·p3)(p2 ·p3)

)
. (3.89)

Summing up the two diagrams, we can check that the result can be written as

−iκ4
16

∫
dµ1,2,3
k22k

2
3

(
k2 ·k3n20
(k2 ·p1)2

+
2n0n1
k2 ·p1

)
=

−iκ4
16

∫
dµ1,2,3

∑

i,j

N
(123)
i K

(123)
ij N

(123)
j . (3.90)

We have arranged the result to the form of (3.59c) with the double copy kernel K
(123)
ij and

the numerator N
(123)
i defined in (3.75) and (3.83) respectively. Turning to the bulk graviton

interaction graphs, thanks to the field redefinition of {φ, hµν}, the three-graviton vertex
(3.27) is directly proportional to the square of three-gluon vertex (1.24), so we can easily
compute the last diagram which is manifestly a double-copy of the WYM one
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to the Jacobi relation (42)2. We note that the color-
kinematic duality is satisfied automatically up to this
leading and next-to leading order if one uses Feynman
gauge (this is not so in other gauges). We expect this
property to break at higher orders in perturbation the-
ory were the need of generalized gauge transformations
arises. On then adds to the eikonal an arbitrary function
multiplying the color factor Jacobi identity (eq. (57))
in order to create a color-kinematic duality respecting

representation.

In principle, we are now prepared to execute the dou-
ble copy as proposed in (30c) to get the eikonal phase in
the worldline coupled dilaton gravity theory (WDG). In
order to check the validity of our double copy prescrip-
tion, we directly compute the eikonal in WDG theory
with (27) - (29) we find for the graphs not involving bulk
graviton interactions

1

2
3

k2
k3 =

�i4

16

Z
dµ1,2,3

k22k
2
3(k2 ·p1)2

�
(k2 ·k3)(p1 ·p2)2(p1 ·p3)2 � 4(k2 ·p1)2(p1 ·p2)(p1 ·p3)(p2 ·p3)

� 2(k3 ·p2)(k2 ·p1)(p1 ·p2)(p1 ·p3)2 + 2(k2 ·p3)(k2 ·p1)(p1 ·p3)(p1 ·p2)2
� (59)

1

2 3
k2 k3

=
�i4

16

Z
dµ1,2,3

k22k
2
3

�
2(p1 ·p2)(p1 ·p3)(p2 ·p3)

�
. (60)

Summing up the two diagrams (59) and (60), we can
check that the result can be written as

�i4

16

Z
dµ1,2,3

k22k
2
3

✓
k2 ·k3n2

0

(k2 ·p1)2
+

2n0n1

k2 ·p1

◆
(61)

=
�i4

16

Z
dµ1,2,3

X

i,j

N
(123)
i K

(123)
ij N

(123)
j .

In the last line we have arranged the result to the form of

(30c) with the double copy kernel K
(123)
ij and the numer-

ator N
(123)
i defined in (46) and (54) respectively. Turning

to the bulk graviton interaction graphs thanks to the field
redefinition of {', hµ⌫}, the three-graviton vertex (A5) is
directly proportional to the square of three-gluon vertex,
so we can easily compute the last diagram which is man-
ifestly a double-copy of the WYM one

1

2

3

k1

k2

k3 =
�i4

16

Z
dµ1,2,3

2n2
1

k21k
2
2k

2
3

. (62)

From (61) and (62) we therefore conclude that the double
copy of the WYM eikonal coincides with the one of WDG
also at the next-to-leading order (O(4)).

2 For example, we could also have N
(123)
j = (n0 0 n1). Color-

kinematic duality still holds and the double copy gives the cor-

rect gravitational result. We have chosen to write N
(123)
j in a

symmetric form.

IV. RADIATIVE DOUBLE COPY

In this letter we are mainly considering the conserva-
tive sector of the WQFT, however, with a slight modi-
fication we can generalize the eikonal double copy (30)
to classical radiation. In WQFT, the � field radiation is
computed as [25, 26]

�ik2 h�(k)i|k2=0 (63)

For � 2 {Aa
µ, hµ⌫}, we also need to contract it with the

polarizations {✏µ, ✏µ⌫} respectively. We take the gluon
radiation as an example. Loosely speaking, the radiation
at orderO(g2n�1) can be obtained from the eikonal phase
at O(g2n) by cutting o↵ one worldline. Diagrammati-
cally, the gluon radiation of a binary source at leading
order can be gained from (48)-(51) by cutting the prop-
agator k3 and identifying k3 with the momentum of the
radiated gluon. The on-shell condition k3 ·✏ = 0 plays the
same role as the ��(k3 · p3) in the measure of the eikonal
phase. This ensures that the gluon radiation can be de-
composed into CiKijNj , with Ci attained from (43) and
(40) by striping o↵ c3, Ni from (54) and (55) by replacing
pµ3 by ✏µ and Kij being identical to (46). From the same
approach we can also get the gravitational radiation and
decompose it as NiKijNj . Therefore we conclude that
the double copy construction works for radiation, too.
We note that this is equivalent to the approach consid-
ered by Shen [10] and Goldberger and Ridgway [9] where
the radiation is calculated by solving the equations of
motion.

V. FROM AMPLITUDE TO EIKONAL

The expectation values in WQFT are directly linked
to the classical limit of S-matrix element. Consequently,

=
−iκ4
16

∫
dµ1,2,3

2n21
k21k

2
2k

2
3

. (3.91)

From (3.90) and (3.91) we thus conclude that the double copy of the WYM eikonal coincides
with the one of WDG also at the next-to-leading order (O(κ4)).

3.3 Radiation and the Double Copy

In this chapter, we are mainly considering the conservative sector of the WQFT. However,
with a slight modification, we can generalize the eikonal double copy (3.59) to classical
radiation. In WQFT, the Φ field radiation is computed as [85,86]

−ik2 ⟨Φ(k)⟩|k2=0 (3.92)

For Φ ∈ {Aa
µ, hµν}, we also need to contract it with the polarizations {ϵµ, ϵµν} respectively. We

take the gluon radiation as an example. Loosely speaking, the radiation at order O(g2n−1) can
be obtained from the eikonal phase at O(g2n) by cutting off one worldline. Diagrammatically,
the gluon radiation of a binary source at leading order can be gained from (3.77)-(3.80) by
cutting the propagator k3 and identifying k3 with the momentum of the radiated gluon. The
on-shell condition k3 · ϵ = 0 plays the same role as the δ−(k3 · p3) in the measure of the eikonal
phase. This ensures that the gluon radiation can be decomposed into CiKijNj , with Ci
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CHAPTER 3. CLASSICAL DOUBLE COPY OF WORLDLINE QFT

attained from (3.72) and (3.69) by striping off c3, Ni from (3.83) and (3.84) by replacing
pµ3 by ϵµ and Kij being identical to (3.75). From the same approach, we can also get the
gravitational radiation and decompose it as NiKijNj . Therefore we conclude that the double
copy construction works for radiation, too. We note that this is equivalent to the approach
considered by Shen [93] and Goldberger and Ridgway [96] where the radiation is calculated
by solving the equations of motion.

3.4 From Amplitude to Eikonal

As was mentioned at the beginning of this chapter, the expectation values in WQFT are
directly linked to the classical limit of S-matrix element. Consequently, we can expect that
the classical double copy of WQFT discussed is also closely related to the double copy at
the level of the scattering amplitude. In this section, we will briefly introduce the procedure
to get the classical limit of the scattering amplitude. Specifically, we consider the double
copy of scalar QCD, which is discussed in the previous section. We claim that the classical
limit of the amplitude of n distinct scalar pairs corresponds to the WYM eikonal phase at
O
(
g2(n−1)

)
and show the connection explicitly at O

(
g4
)
. Moreover, we will demonstrate

that the double copy of the eikonal phase is the classical limit of the BCJ double copy of the
scattering amplitude.

The exponentiated eikonal phase is directly related to the classical limit of scattering
amplitude [97,98],

(1 + ∆q)e
iχ − 1 =

∑

n=2

1

2n

∫
dµ1,2,...,n lim

ℏ→0
A(n→ n) (3.93)

where A(n → n) denotes an amplitude of n pairs of distinct massive scalars, and χ is the
total eikonal phase, which scales as ℏ−1 and receives contributions from all higher-loop
amplitudes. The introduction of the “quantum remainder” ∆q (scaling as ℏn≥0) is needed for
consistency [99]. Here, we only care about tree diagrams, so we have

χn−1 =
−i
2n

∫
dµ1,2,...,n lim

ℏ→0
Atree(n→ n). (3.94)

3.4.1 From SQCD amplitude and WQFT Eikonal

The correspondence at the 2 → 2 level is relatively straightforward. The amplitude of two
pairs of scalars of different flavors is (2.9). For an easier comparison with the eikonal, we
rewrite it as

Atree(2 → 2) =

1 Yang-Mills theory

p̂1+
k1

2 , j

p̂2+
k2

2 , l

i, p̂1� k1

2

k, p̂2� k2

2

(1)

p̂1 � k1

2

p̂2 +
k2

2
p̂2 � k2

2

p̂1 +
k1

2

(2)

The Feynman rules for the vertices are

k

a, µ b, ⌫ (3)

k1

k2

k3

µ, ⌫

⇢,� ↵,�

(4)

k1 k2

µ, ⌫ ⇢,�

(5)

k1 k2

µ, ⌫

1 2

(6)

k1

k3

k2

a, µ

c, ⇢ b, ⌫

=
igp
2
f̃abc [⌘µ⌫(p� q)⇢ + ⌘⌫⇢(q � k)µ + ⌘⇢µ(k � p)⌫ ] , (7)

1

=ig2T a
ijT

a
lk

4 p1 ·(p2 + k1
2 )

k21
, (3.95)

where we have introduced p̂i as the average of the in- and outgoing momentum of particle i,
which is orthogonal to its momentum transfer due to the on-shellness of the external scalar,

0 = m2
i −m2

i = (p̂i +
ki
2
)2 − (p̂i +

ki
2
)2 = 2p̂i · ki (3.96)
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3.4. FROM AMPLITUDE TO EIKONAL

In the classical limit we take small momentum transfers ki → ℏki, and consider the expansion
in small ℏ following [44]. We identify the momentum as p̂i → pi, although since p̂2i ≠ m2

i ,
we need to change the definition of pi to pi = m̂ivi with m̂

2
i = p̂2i . Up to the highest order

considered in this chapter, the redefinition will not change the WQFT result. Performing the
classical limit of the Yang-Mills amplitude, we also need to consider the classical limit of the
color factors, which was recently investigated by de la Cruz et al. [100],

T a
ij → ca. (3.97)

Taking the leading order in ℏ, we have

Atree(2 → 2) → ig2(c1 ·c2)
4 p1 ·p2
k21

, (3.98)

which coincide with the leading order eikonal (3.63) up to a prefactor. To check that the
eikonal double copy agrees with that of amplitudes, we also consider the 4-scalar double copy
amplitude (2.29). Following the similar procedure, we found that it agrees with (3.65).

Let us now turn to the 3 → 3 case. The 6−point amplitude of three distinct scalar pairs
in SQCD is already given in (2.15). Nonetheless, for simpler comparison with the eikonal, we
rewrite it as

Atree(3 → 3) =

9

we can expect that the classical double copy of WQFT
discussed is also closely related to the double copy at the
level of the scattering amplitude. In this section, we will
consider scalar QCD, i.e. massive scalar fields coupled to
Yang-Mills whose double copy has been studied in [30].
We claim that the classical limit of the scattering ampli-
tude of n distinct scalar pairs corresponds to the WYM
eikonal phase at O

�
g2(n�1)

�
and show the connection

explicitly at O
�
g4
�
. Moreover, we will demonstrate that

the double copy of the eikonal phase is the classical limit
of the BCJ double copy of the scattering amplitude.

The exponentiated eikonal phase is directly related to
the classical limit of scattering amplitude[31, 32],

(1 +�q)e
i� � 1 =

X

n=2

1

2n

Z
dµ1,2,...,n lim

~!0
A(n ! n)

(64)

where A(n ! n) denotes an amplitude of n pairs of dis-
tinct massive scalars, and � is the total eikonal phase,
which scales as ~�1 and receives contributions from all
higher-loop amplitudes. The introduction of the “quan-
tum remainder” �q (scaling as ~n�0) is needed for con-
sistency [33]. Here, we only care about tree diagrams,
therefore we have

�n�1 =
�i

2n

Z
dµ1,2,...,n lim

~!0
Atree(n ! n). (65)

The correspondence at the 2 ! 2 level is rather trivial,
so we will focus on the 3 ! 3 case. The leading order
6-scalar amplitude in SQCD is [30]3

Atree(3 ! 3) = p̂2+
k2

2 , l

p̂1+
k1

2 , j

p̂3+
k3

2 , n

k, p̂2� k2

2

i, p̂1� k1

2

m, p̂3� k3

2

=
8ĉ(0)n̂(0)

k21k
2
2k

2
3

+


8

k22k
2
3

✓
ĉ(123)n̂(123)

2p̂1 ·k2 � k2 ·k3

+
ĉ(132)n̂(132)

2p̂1 ·k3 � k3 ·k2

◆
+ cyclic

�
, (66)

where we have introduced p̂i as the average of the in- and
outgoing momentum of particle i which is orthogonal to
its momentum transfer p̂i · ki = 0. The color factors are

ĉ(0) = fabcT a
ijT

b
klT

c
mn

ĉ(123) = (T bT a)ijT
a
klT

b
mn (67)

ĉ(132) = (T aT b)ijT
a
klT

b
mn.

where i, j, ..., l denote the color indices of the massive

3 We have converted the result of [30] to follow our conventions.

scalars. The corresponding numerators are

n̂(0) =�ig4p̂1,µp̂2,⌫ p̂3,⇢V
µ⌫⇢
123 (68)

n̂(123)=
�ig4

2

⇣
4p̂1 ·p̂2 p̂1 ·p̂3 + 2p̂1 ·p̂3 k1 ·p̂2 � 2p̂1 ·p̂2 k1 ·p̂3

� 2p̂1 ·k2 p̂2 ·p̂3 � k1 ·p̂2 k1 ·p̂3 + k2 ·k3 p̂2 ·p̂3
⌘

(69)

n̂(132)=
�ig4

2

⇣
4p̂1 ·p̂2 p̂1 ·p̂3 + 2p̂1 ·p̂2 k1 ·p̂3 � 2p̂1 ·p̂3 k1 ·p̂2

� 2p̂1 ·k3 p̂2 ·p̂3 � k1 ·p̂2 k1 ·p̂3 + k2 ·k3 p̂2 ·p̂3
⌘
,

(70)

which has been brought into a form to satisfy color-
kinematic duality n̂(132) � n̂(123) = n̂(0). In the classical
limit we take small momentum transfers ki ! ~ki, and
consider the expansion in small ~ following [19]. In (69)
and (70), we have already sorted the terms in powers
of ki. We identify the momentum as p̂i = pi, although
since p̂2i 6= m2

i , we need to change the definition of pi
to pi = m̂ivi with m̂2

i = p̂2i .
4 At this order, the redef-

inition will not change the WQFT result. The massive
propagators will become

1

2p̂1 ·k2 � k2 ·k3
! 1

~
1

2p1 ·k2
+

k2 ·k3
4(p1 ·k2)2

+O(~). (71)

Performing the classical limit of the Yang-Mills ampli-
tude, we also need to consider the classical limit of the
color factors, which was recently investigated by de la
Cruz et al. [20]. Built on their insight, we propose the
classical limit of the color factors to be

T a
ij ! ca (72)

(T aT b)ij ! cacb + ~ cab (73)

fabc ! ~fabc. (74)

Note that the sub-leading term in (73) guarantees that
the Jacobi identity holds in the classical limit.
It is now straightforward to compute the classical limit

of the amplitude (66) and extract the eikonal using (65).
Keeping only the leading order terms in the classical ~ !
0 limit, we have

ĉ(0)n̂(0)

k21k
2
2k

2
3

! C
(0)
i K

(0)
ij N

(0)
j (75)

1

k22k
2
3

✓
ĉ(123)n̂(123)

2p̂1 ·k2 � k2 ·k3
+

ĉ(132)n̂(132)

2p̂1 ·k3 � k2 ·k3

◆

! C
(123)
i K

(123)
ij N

(123)
j . (76)

We therefore recover the eikonal phase of SQCD from the
WQFT, which directly operates at the classical level.

4 This is related to the fact that we use Feynman propagators in
the amplitudes, for the details, see [18].

=
8ĉ(0)n̂(0)

k21k
2
2k

2
3

+

[
8

k22k
2
3

(
ĉ(123)n̂(123)

2p̂1 ·k2 − k2 ·k3
+

ĉ(132)n̂(132)

2p̂1 ·k3 − k3 ·k2

)
+ cyclic

]
. (3.99)

The color factors are3

ĉ(0) = fabcT a
ijT

b
klT

c
mn

ĉ(123) = (T bT a)ijT
a
klT

b
mn (3.100)

ĉ(132) = (T aT b)ijT
a
klT

b
mn.

The corresponding numerators are

n̂(0) =−ig4p̂1,µp̂2,ν p̂3,ρV µνρ
123 (3.101)

n̂(123)=
−ig4
2

(
4p̂1 ·p̂2 p̂1 ·p̂3 + 2p̂1 ·p̂3 k1 ·p̂2 − 2p̂1 ·p̂2 k1 ·p̂3

− 2p̂1 ·k2 p̂2 ·p̂3 − k1 ·p̂2 k1 ·p̂3 + k2 ·k3 p̂2 ·p̂3
)

(3.102)

n̂(132)=
−ig4
2

(
4p̂1 ·p̂2 p̂1 ·p̂3 + 2p̂1 ·p̂2 k1 ·p̂3 − 2p̂1 ·p̂3 k1 ·p̂2

− 2p̂1 ·k3 p̂2 ·p̂3 − k1 ·p̂2 k1 ·p̂3 + k2 ·k3 p̂2 ·p̂3
)
, (3.103)

3Note the correspondence to the color factors defined in (2.16) ĉ(0) ↔ c0, ĉ(123) ↔ c(156), ĉ(132) ↔ c(134).
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which has been brought into a form to satisfy color-kinematic duality

ĉ(132) − ĉ(123) =ĉ(0)

n̂(132) − n̂(123) =n̂(0).
(3.104)

In (3.102) and (3.103), we have already sorted the terms in powers of ki. The massive
propagators will become

1

2p̂1 ·k2 − k2 ·k3
→ 1

ℏ
1

2p1 ·k2
+

k2 ·k3
4(p1 ·k2)2

+O(ℏ). (3.105)

We also need to expand the color factors quadratic in the generators and linear in structure
constant. Though the subleading order of (T aT b)ij is not explicitly derived yet, built on the
insight of [100], we propose the classical limit of the color factors to be

(T aT b)ij → cacb + ℏ cab (3.106)

fabc → ℏfabc. (3.107)

Note that the sub-leading term in (3.106) guarantees that the Jacobi identity holds in the
classical limit.

It is now straightforward to compute the classical limit of the amplitude (3.99) and extract
the eikonal using (3.94). Keeping only the leading order terms in the classical ℏ → 0 limit,
we have

ĉ(0)n̂(0)

k21k
2
2k

2
3

→ C
(0)
i K

(0)
ij N

(0)
j (3.108)

1

k22k
2
3

(
ĉ(123)n̂(123)

2p̂1 ·k2 − k2 ·k3
+

ĉ(132)n̂(132)

2p̂1 ·k3 − k2 ·k3

)
→ C

(123)
i K

(123)
ij N

(123)
j . (3.109)

We therefore recover the eikonal phase of SQCD from the WQFT, which directly operates at
the classical level.

We can also consider the classical limit of the double copy of SQCD, which is just the
6-scalar amplitude in dilaton gravity given in (2.31). Equivalently, we can just replace the
color factors with the numerators in (3.99). We can then likewise consider the classical limit
of this gravitational amplitude,

n̂(0)n̂(0)

k21k
2
2k

2
3

→ N
(0)
i K

(0)
ij N

(0)
j (3.110)

1

k22k
2
3

(
n̂(123)n̂(123)

2p̂1 ·k2 − k2 ·k3
+

n̂(132)n̂(132)

2p̂1 ·k3 − k2 ·k3

)
→ N

(123)
i K

(123)
ij N

(123)
j , (3.111)

which coincides with our calculation in WDG. We have therefore verified that the classical
double copy of the world line quantum field theory is in full agreement with the quantum
double copy of amplitudes at LO and NLO. Note that the double copy of SQCD contains
self-interactions of massive scalars (2.34). However, these are short-range interactions and do
not contribute to the classical theory. So we do not need to introduce additional terms in
WDG, and the double copy automatically works out.
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3.5 A Comment on the WQFT double copy

There is a comment we want to make regarding the double copy at the classical level. An
alternative route was taken in the works [5, 90], involving the authors of this work, where
a path integral based approach was taken. There, starting from the actions describing the
coupling of massive, charged particles to Yang-Mills or dilaton-gravity, the force mediating
fields (gluons, dilatons, and graviton) were integrated out, yielding an effective action for
the point particles, thereby taking the classical ℏ → 0 limit. It was shown at LO and NLO
that the resulting effective action could be obtained by a suitably generalized double copy
prescription [90] taking inspiration from the amplitudes approach. Concretely, the need for
a trivalent graph structure was artificially introduced via delta functions on the worldline
for higher valence worldline-bulk field vertices. Nevertheless, this double copy prescription
was shown to break down for the effective action at the NNLO [5]. It was speculated in [5]
that the reason for this breakdown lies in the attempt of double copying a gauge-variant and
off-shell quantity – the effective action – which is at tension with the on-shell nature of the
scattering amplitude double copy. The main difference between this previous attempt and
the WQFT approach is that, in WQFT, not only do we integrate out the force mediating
field in the bulk, but we also integrate out the small fluctuations of the worldline around a
straight-line background. We thus arrive at results depending only on the background values,
which are on-shell and gauge invariant. We are also limited to the scattering cases with a
small deflection angle, which is consistent with the eikonal approximation and classical limit
of scattering amplitude. Therefore, due to the parallel relation of WQFT expectation values
to scattering amplitudes, we expect the double copy relation goes beyond the eikonal and
radiation. In fact, all expectation values in WYM and WDG should feature the double copy
relation as long as they are directly related to the quantum amplitudes.
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Chapter 4

Geodesics from Classical Double
Copy

This chapter is based on the published article “Geodesics From Classical Double Copy” [3],
written in collaboration with Dr. Riccardo Gonzo. We will adapt the conventions for the
consistency of this thesis. In particular, we change the convention of the signature of the
metric from diag(−,+,+,+) to diag(+,−,−,−).

The double copy relation at the classical level can be surprisingly realized in a non-
perturbative way. As mentioned in the introduction chapter 1, it has been shown that
some exact solutions of the Einstein equation can be obtained by corresponding solutions of
Yang-Mills theory.

The classical YM theory is usually studied as a toy model for gravity, but it is also
important by itself. One example is that the equations of motion of classical YM theory
describe the dynamics of the quark-gluon plasma, which is believed to be the predominant
phase of matters before the entire universe was formed [101–103]. In particular, for de-
scribing high-energy heavy ions collisions, the gluon field is also treated classically as a first
approximation [104–107].

In this chapter, we are interested in extending the Kerr-Schild double copy to the case of
a probe particle moving in the static Yang-Mills and gravitational backgrounds. In particular,
we will examine the dynamics of a test charge in the

√
Schw and the equatorial plane of

the
√
Kerr background by directly solving the equations of motion. We characterize the

orbits and find they feature elliptic, hyperbolic, and plunge behavior just as in the gravity
background. More importantly, we reveal a double copy relation between the conserved
quantities in the gauge and gravity theory, which enables us to fully recover geodesic equations
for Schwarzschild and Kerr from that of

√
Schw and

√
Kerr, respectively. Interestingly, the

map works naturally for both bound and unbound orbits, which is beyond scattering amplitude
double copy that only accounts for unbound cases.

We will introduce the double copy of conserved charges in section 4.1. This is followed
by the detailed analysis of the trajectories of a test charge in

√
Schw background in both

massive and massless cases in section 4.2. We also show the double copy to Schwarzschild
geodesics explicitly. In section 4.3, we perform similar calculations in the

√
Kerr field but

focus only on the equatorial plane.
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4.1 Conserved Charges and the Double Copy

In this section, we derive the relation between the conserved charges of a test charged particle
in the YM potential and the corresponding charges for a probe particle in the Kerr-Schild
gravitational background. Let us first consider a point particle of mass m and color charge
c moving in a YM background Aa

µ(x). Its dynamics is governed by the worldline action as
(3.28). For convenience, we here rewrite the Lagrangian,

LYM =
ḡµνv

µvν

2e
+
em2

2
− iψ†dψ

dτ
+ g cavµAa

µ(x), (4.1)

where vµ(τ) = dxµ/dτ is the full four-velocity.1 Note that (4.1) is valid for both m > 0 and
m = 0. For massive particles, we set e(τ) = 1/m as in (3.30). In the massless case, we simply
take e(τ) = 1, giving the affine parametrization as explained in section 1.6. The constraint
on the velocity is

ḡµνv
µvν = λ

{
λ = 1 for m > 0

λ = 0 for m = 0.
(4.2)

We consider a static YM field of the Kerr-Schild “single copy” form (1.50). For a charged
test particle moving in this background we crucially require the coupling constant to be
small enough not to affect the gauge field configuration. Let us now focus on the conserved
quantities of the test particle. Suppose we have a cyclic coordinate ξ, which doesn’t appear
explicitly in the Lagrangian. From Noether’s theorem, we know that the corresponding
conserved charge is2

pYM
ξ =

∂LYM

∂vξ
=
∂vµ

∂vξ

(
ḡµνv

ν

e
+
g2

4π
cac̃aφ(x)kµ(x)

)
. (4.3)

Likewise, the Lagrangian of the point mass in the corresponding double copy gravitational
Kerr-Schild background reads

LGR =
(ḡµν + κhµν)v

µvν

2e
+
em2

2
, (4.4)

where we have separated the deviation from the Minkowskian space

κhµν = −2GMφ(x)kµ(x)kν(x). (4.5)

Again, setting the einbein e(τ) = 1/m for massive particles and e(τ) = 1 for massless particles
gives us the relativistic constraint

(ḡµν + κhµν)v
µvν = λ

{
λ = 1 for m > 0

λ = 0 for m = 0.
(4.6)

It is clear that ξ is also a cyclic coordinate for LGR, so we have a conserved charge for the
point mass

pGR
ξ =

∂LGR

∂vξ
=
∂vµ

∂vξ

(
ḡµνv

ν

e
− 2GM

e
φkνv

νkµ

)
. (4.7)

1Note that the definition of vµ(τ) is different from the background value vµ defined in worldline quantum
field theories in chapter 3.

2See [108,109] for alternative approaches on how to derive the conserved charges.
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Comparing eq. (4.3) and (4.7), we can derive the correspondence rules for Kerr-Schild double
copy,

g2

4π
→ 2G c̃a → −Mkµ. (4.8)

The relation mapping the conserved charges in Yang-Mills to those in gravity background
follows

ca → vµ

e
so that C := c · c̃→ −M

e
k · v. (4.9)

We note that the double copy map works for both C > 0 and C < 0, corresponding
to repulsive and attractive forces, respectively. Nevertheless, in the analysis of solutions of
the equations of motion, we will focus on the case C < 0 to resemble gravity, where the
interaction is always “attractive”(see Fig. 4.1).

Figure 4.1: For a massive charged particle, we can have both attractive and repulsive gauge
theory forces depending on the sign of the charges. This suggests focusing on the case C < 0,
because masses in gravity are always positive.

In the case where the dynamics are integrable, knowing the conserved charges is sufficient
to solve the equations of motion completely. In particular, this is true for

√
Schw and

equatorial orbits in
√
Kerr. In the following sections, we will apply (4.9) to obtain the

conserved energy and angular momentum for a probe particle moving in the Schwarzschild
background and on the equatorial plane of the Kerr background.

4.2 Test Charge in Coulomb-like Background

The Euler–Lagrange equations of (4.1) give us Wong’s equations

d2xµ

dτ2
+ Γµ

νρv
νvρ = egcaF a,µ

νv
ν (4.10)

dca

dτ
= gfabcvµAb

µc
c(τ), (4.11)

where Γµ
νρ is the Christoffel symbol for spherical coordinates, and e is chosen to be a constant.

For
√
Schw background in spherical coordinates (1.53), the field strength is

F a
rt = −F a

tr = − g

4π

c̃a

r2
, (4.12)
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with all other components vanishing. Thanks to the spherical symmetry of the problem, we
can restrict our analysis to the x − y plane by setting θ = π/2 and dθ/dτ = 0. Then the
θ−component of (4.10) is simply

d

dτ

(
r2

dϕ

dτ

)
= 0 → L := r2vϕ, (4.13)

which corresponds to the conservation of the z-component of the angular momentum L. This
is universal for both massive and massless cases.

4.2.1 Massive Probe

Let us now focus on the specific case with a massive probe. Setting e = 1/m and restricting
to the θ = π/2 plane, we can rewrite Wong’s equations as

dvr(τ)

dτ
− L2

r(τ)3
=

g2

4πm

ca(τ)c̃a

r(τ)2
vt(τ)

dvt(τ)

dτ
=

g2

4πm

ca(τ)c̃a

r(τ)2
vr(τ)

dca(τ)

dτ
=
g2

4π
fabcvt(τ)

c̃bcc(τ)

r(τ)
,

(4.14)

where we have made manifest the explicit dependence on the proper time τ . A crucial
ingredient in solving the equations of motion is to observe that the scalar product of the two
color vectors C := ca(τ)c̃a is always conserved

dC

dτ
=
g2

4π
fabcvt(τ)

c̃ac̃bcc(τ)

r(τ)
= 0. (4.15)

In the following, we will consider color charges of opposite signs so that the force is attractive:
therefore C < 0. Another significant conserved charge is the energy which can be defined
from the t−component of Wong’s equation

dvt(τ)

dτ
= − d

dτ

[
g2

4πm

ca(τ)c̃a

r(τ)

]
→ h := vt +

α

m

C

r
, (4.16)

where for conciseness we have defined α = g2/4π. The energy (4.16) and angular momentum
charge (4.13) could also be derived directly from the Lagrangian approach as (4.3).

Thanks to (4.15), the non-Abelian
√
Schw potential problem can be effectively reduced

to the Abelian Coulomb potential, where the strength of the potential is determined by C.
Even though the structure of the solution has been fully known in the Abelian case since a
long time ago [110], we would like to display it here to show the features of the orbits.

Using the r−component of the equations of motion, we have

d2r(τ)

dτ2
− L2

r(τ)3
=
α

m

C

r(τ)2

(
h− α

m

C

r(τ)

)
, (4.17)

and changing variable to u := 1
r as a function of ϕ

d2u(ϕ)

dϕ2
+ u(ϕ) = − αC

mL2

(
h− αCu(ϕ)

m

)
, (4.18)
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where we have used the simple relation

du

dϕ
= − 1

L

dr

dτ
. (4.19)

Moreover, u(ϕ) is constrained by the relativistic condition ḡµνv
µvν = 1 which effectively

reduces the degrees of freedom to the ones of a first order differential equation. If we define
the critical value of the angular momentum

Lcrit = −αC
m
, (4.20)

then (4.18) can be rewritten as

d2u(ϕ)

dϕ2
+ u(ϕ) =

Lcrit

L2
(h+ Lcritu(ϕ)) , (4.21)

while ḡµνv
µvν = 1 gives

(
du(ϕ)

dϕ

)2

=
1

L2

[
(h+ Lcritu(ϕ))

2 − L2u(ϕ)2 − 1
]
. (4.22)

The analytic solution of the differential equation (4.21) for L < Lcrit is

u(±)(ϕ) =

B1L sinh

(
ϕ
√

L2
crit−L2

L

)

√
L2
crit − L2

+

(
B

(±)
2

(
L2−L2

crit

)
−hLcrit

)
cosh

(
ϕ
√

L2
crit−L2

L

)
+hLcrit

L2 − L2
crit

,

(4.23)

where

B1 = u(ϕ)

∣∣∣∣∣
ϕ=0

B2 =
du(ϕ)

dϕ

∣∣∣∣∣
ϕ=0

B
(±)
2 = ± 1

L

√
(h+B1Lcrit)

2 −B2
1L

2 − 1. (4.24)

The last equation is directly deduced from eq. (4.23). A similar result holds for L > Lcrit by
using analytic continuation arguments

u(±)(ϕ) =

B1L sin

(
ϕ
√

L2−L2
crit

L

)

√
L2 − L2

crit

+

(
B

(±)
2

(
L2−L2

crit

)
− hLcrit

)
cos
(
ϕ
√

L2−L2
crit

L

)
+hLcrit

L2 − L2
crit

.

(4.25)

Instead, the critical case L = Lcrit gives

u(±)(ϕ) = B
(±)
2 +B1ϕ+

hϕ2

2Lcrit
, (4.26)

where B1 and B
(±)
2 are again given by (4.24). The presence of a critical value of the angular

momentum, which is crucial for the classification of the orbits, is related to the relativistic
nature of the problem (see the analysis in [111]).
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It is convenient to analyze the nature of the orbits by looking at the zeros of the potential,
which will be instructive in preparation for the next section. We have

(
du(ϕ)

dϕ

)2

=
1

L2

[
(h+ Lcritu(ϕ))

2 − L2u(ϕ)2 − 1
]

=
L2
crit − L2

L2
(u(ϕ)− u+)(u(ϕ)− u−)

u± :=
hLcrit ±

√
(h2 − 1)L2 + L2

crit

L2 − L2
crit

.

(4.27)

where du
dϕ

∣∣
u=u+

= du
dϕ

∣∣
u=u−

= 0. From this we can characterize the possible orbits.

• Elliptic bound orbits (see Fig. 4.2a) which require two positive roots u± > 0 with
d2u
dϕ2

∣∣
u=u+

< 0 and d2u
dϕ2

∣∣
u=u−

> 0, that is

Lcrit < |L| < 1√
1− h2

Lcrit 0 < |h| < 1. (4.28)

• Circular orbits (see Fig. 4.2b), which correspond to u+ = u− = u∗ with d2u
dϕ2

∣∣
u=u∗

= 0,
i.e.

L = ± 1√
1− h2

Lcrit 0 < |h| < 1, (4.29)

where the radius of such orbits is

r∗ =
1− h2

hLcrit
. (4.30)

• Hyperbolic-type unbound orbits where the probe escapes to infinity (see Fig. 4.2c),

which require just one root to be real and positive u− > 0 with d2u
dϕ2

∣∣
u=u−

< 0,

|L| > Lcrit h ≥ 1

|L| ≤ Lcrit h ≥ 1 B2 = B
(+)
2 . (4.31)

• Plunge-type orbits for the probe particle (see Fig. 4.2d), provided u± ≤ 0 for h > 1 or
u− > 0 > u+ for 0 < h < 1,

|L| ≤ Lcrit 0 < |h| < 1

|L| ≤ Lcrit h ≥ 1 B2 = B
(−)
2 . (4.32)

We observe that for |h| < 1 we always have bound orbits, i.e., the massive particle cannot
escape to time-like infinity. This is not surprising since in the limit r → ∞, from eq. (4.16)
we have h = vt, which has to be greater than 1 because of causality. For the same reason,
hyperbolic orbits are allowed only when h ≥ 1.
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Figure 4.2: Types of orbits for a massive charged particle in the
√
Schw potential.

4.2.2 Massless Probe

In the massless case, we choose e = 1. Compared to the massive case, we effectively only
need to make the replacement

α/m→ α, τ → τ ′ (4.33)

in (4.21) to get the new radial equation of motion for the massless charged particle

d2u(ϕ)

dϕ2
+ u(ϕ) =

L′
crit

(L′)2
(
h′ + L′

critu(ϕ)
)
, (4.34)

with

h′ := vt + α
C

r
L′ := r2vϕ L′

crit := −αC. (4.35)
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The constraint equation ḡµνv
µvν = 0 gives,

(
du(ϕ)

dϕ

)2

=
1

(L′)2

[(
h′ + L′

critu(ϕ)
)2 − (L′)2u(ϕ)2

]
, (4.36)

and the explicit solution will be given by (4.23), (4.25) and (4.27), but with the new constraint
equation (4.36) in place of (4.22).

It is parallel to the massive case to characterize the solutions.

• Circular orbits for

L′ = L′
crit h′ = 0, (4.37)

with the surprising feature that the radius of the orbit is not constrained.

• Hyperbolic-type unbound orbits for

|L′| > L′
crit or

|L′| ≤ L′
crit B2 = B

(+)
2 . (4.38)

• Plunge behaviour for

|L′| ≤ L′
crit B2 = B

(−)
2 . (4.39)

These type of orbits are well-represented by the pictures in Fig. 4.2a, 4.2c and 4.2d respectively.
We would like to note that here, compared to the massive case, elliptic orbits are not allowed,
and circular orbits are allowed only in the very degenerate limit h′ = 0.

4.2.3 To Schwarzschild Geodesics

With the equations (4.13) and (4.16), we are now ready to derive the corresponding conserved
quantities of a (massive or massless) probe moving on the equatorial plane in a Schwarzschild
black hole background. Applying (4.8) and (4.9) to

L
√
Schw = r2vϕ (4.40)

h
√
Schw = vt + αe

C

r
, (4.41)

we get

LSchw = r2vϕ (4.42)

hSchw =

(
1− 2GM

r

)
vt − 2GM

r
vr. (4.43)

The constraint (4.6) can be written in terms of the conserved charges as

(vr)2 = λ+ (hSchw)2 −
(
1 +

(LSchw)2

r2

)(
1− 2GM

r

)
. (4.44)

Since the dynamics is integrable, with (4.42), (4.43) and (4.44), one can fully solve the
geodesic problem in Schwarzschild. In particular, this implies that the impulse and other
observables in the probe limit are completely determined by the double copy map [112].
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4.3 Test Charge in Spinning Background

The
√
Kerr background is given in (1.57). It is more convenient to work in the spheroidal

coordinates (t, r, θ, ϕ)

x =
√
r2 + a2 sin(θ) cos(ϕ)

y =
√
r2 + a2 sin(θ) sin(ϕ)

z = r cos(θ), (4.45)

in which the flat metric is

ḡµν = diag

(
1,−r

2 + a2 cos2(θ)

r2 + a2
,−r2 − a2 cos2(θ),−(a2 + r2) sin2(θ)

)
. (4.46)

In the limit where a → 0, this recovers the standard spherical coordinates. Without loss
of generality, we will always assume a > 0. The components of the gauge field in these
coordinates are

Aa
t =

g

4π

rc̃a

r2 + a2 cos2(θ)
Aa

r =
g

4π

rc̃a

r2 + a2

Aa
ϕ = − g

4π

rc̃a

r2 + a2 cos2(θ)
a sin2(θ) Aa

θ = 0. (4.47)

For simplicity, hereafter we will focus on equatorial orbits by setting θ = π/2. We would like
to stress that the problem can be solved in full generality, but the complexity is higher for
non-equatorial orbits, exactly like for Kerr geodesics. The non-vanishing components of the
field strength are

F a
rt = −F a

tr = − g

4π

c̃a

r2
F a
rϕ = −F a

rϕ = a
g

4π

c̃a

r2
. (4.48)

In the following, we will consider only orbits that lie outside the ring singularity at x2+y2 = a2

on the equatorial plane where the spheroidal coordinates (4.47) are always well-defined.
In order to develop an intuitive image of the

√
Kerr field, we would like to show here the

structure of the time component of the potential At, projected along the x− z plane (there
is always an azimuthal symmetry). While for a > 0 at large distances from the singularity,
At has an ellipsoidal shape, closer to the singularity line of width a the potential develops a
dipole-type configuration.

4.3.1 Massive Probe

For a massive probe, Wong’s equations on the equatorial plane are

dvt

dτ
=
α

m

C

r2
vr,

dvr

dτ
− 1

r
(a2 + r2)

(
vϕ
)2

+
1

r

a2

a2 + r2
(vr)2 =

α

m

C

r4

[(
vt − avϕ

) (
a2 + r2

)]
,

dvθ

dτ
= 0,

dvϕ

dτ
+ 2

r

r2 + a2
vrvϕ = a

α

m

C

r2(r2 + a2)
vr. (4.49)
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Figure 4.3: Regions of the same color on the x − z-plane (with z pointing upwards) are
divided by lines of constant At.

As in the Coulomb potential case, there is a notion of conserved energy and angular momentum

h := vt +
α

m

C

r
(4.50)

L := (r2 + a2)vϕ + a
α

m

C

r
. (4.51)

In particular, the angular momentum now also includes contributions from the parameter
a, which is perfectly analogous to the Kerr case. At this point, we can use those conserved
charges to derive the equation of motion for u(τ) using (4.49). We find

dvr

dτ
− (Lr + a(Lcrit − rvr))(Lr + a(Lcrit + rvr))

r3(a2 + r2)

= −Lcrit

r4
[a(ah− L)+r(Lcrit + hr)]. (4.52)

The constrained equation ḡµνv
µvν = 1 gives

(vr)2 =

(
1 +

a2

r2

)
(h− V+)(h− V−)−

(
1 +

a2

r2

)

V± :=
1

r

[
−Lcrit ±

|Lr + aLcrit|√
r2 + a2

]
. (4.53)

It is worth noticing here that the leading term in 1/r on the RHS of (4.52) is proportional to
a and ah− L, which is a feature shared also by Kerr equatorial orbits [113]. In the spinless
limit a→ 0, the solution reduces to the Coulomb non-abelian potential we already considered
in the last section because

V±
a=0→ 1

r
(−Lcrit ± |L|). (4.54)
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Regarding the case where L = ah, an analytic solution for τ as a function of r exists (similarly
to Kerr black hole equatorial geodesic), but we will not display it here.

A key question is whether circular orbits exist at all. Furthermore, if so, what are the
corresponding values for the energy and the angular momentum in these cases? The condition
for the existence of circular orbits at r = r∗ (meaning that the radius is

√
r2∗ + a2) is given

by the common solution of

vr|r=r∗ = 0
dvr

dr

∣∣∣∣
r=r∗

= 0. (4.55)

With some algebra we can reduce this system of equations to

h2 = 1− Lcrit

r3∗

(
ax+ hr2∗

)
x := L− ah

(
a2 − x2

)2
= −Lcrit

r3∗

(
a2 + r2∗

) (
x2 + r2∗

)
(4ax− Lcritr∗), (4.56)

where the last equation is a quartic polynomial in x. For every a > 0 there are two distinct
real (and therefore other two complex) solutions for (4.56) (see Appendix A for a proof.).
We will call the real roots x1 and x2, and we order them as x1 > x2. The value of the energy
and the angular momentum for such circular orbits is given by (4.56), i.e., explicitly

h±1,2 =
1

2r∗

(
−Lcrit ±

√
L2
crit + 4r2∗ − 4

a

r∗
Lcritx1,2

)

L±
1,2 = x1,2 + ah±1,2, (4.57)

where only (h+1 , L
+
1 ) always satisfies the causality constraint. As we will see later, this solution

will indeed be related to stable circular orbits.
In order to study the general case, we need to analyze the nature of the roots of the

right-hand side of the constraint equation (4.53). Specifically, we have

(vr)2 =
1

r3
P(r)

P(r) :=
(
h2 − 1

)
r3 + 2hLcritr

2 (4.58)

+
(
a2
(
h2 − 1

)
+ L2

crit − L2
)
r + 2aLcrit(ah− L)

which defines a third-order polynomial P(r), to which we can apply the tools developed
in Appendix A in order to understand the nature of the roots. By computing the reduce
discriminant ∆R(P(r)) (see (A.5)), we can establish whether

• P(r) has three simple real roots (∆R(P(r)) > 0)

• P(r) has one simple real root (∆R(P(r)) < 0)

• P(r) has a double or triple root (∆R(P(r)) = 0)

and by using Descartes’ rule of signs, we can also understand the number of positive or
negative roots. We note that in the case ∆R(P(r)) = 0 there are circular orbits with radius
given by solving eq. (4.56). However, P(r) by itself is a polynomial in h of degree eight,
which is impossible to solve analytically. Therefore, we can only qualitatively analyze the
real solutions of P(r) = 0. We find that the properties of the solution depend on the values
of Lcrit and L. Specifically, we find exactly two cases:
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• Case 1) Lcrit < a: for a given value of L there are at most 4 real solutions for h, and
only two of them can be positive. We denote them as hA, hB with hA < hB when they
exist.

• Case 2) Lcrit > a: for a given value of L, there are either 2 or 4 real solutions for h.
One of these real solutions is h+1 , which is defined by (4.57).

In addition, as discussed before, h = L/a represents another critical value of the energy since
having h > L/a or h < L/a will change of the sign of the constant term in the polynomial
P(r). A detailed analysis of the orbits shows that we can have the following cases

• Elliptic orbits for3

hA < h < min{hB, 1} Lcrit < a

h+1 < h < min{L/a, 1} Lcrit > a

• Hyperbolic-type orbits for h > 1 in all cases

• Plunge behavior for h > L/a in all cases

where hA can be identified with the stable circular orbit value h+1 , and it is understood that
when two intervals overlap, we can have different types of orbits according to the boundary
conditions (like the sign of the initial velocity or also the initial radial coordinate). We have
represented the typical behavior of those solutions in Fig. 4.4a, Fig. 4.4c and Fig. 4.4d, where
we have also highlighted in red the ring singularity at r = 0 where the gauge potential has a
singular behavior.

An interesting limit is the one that correspond to marginally bound circular orbits with
h = 1 (see Fig. 4.4b): in such case, we can find a simple analytic solution for the value of the
radius and the charges

L±
∣∣∣
h=1

= a−
(√

a±
√
Lcrit

)2

r∗,±
∣∣∣
h=1

= a±
√
aLcrit, (4.59)

where r∗,− exists only when Lcrit < a. Since our main goal is to connect the conserved charges
on the gauge side with the ones on the gravity side, we leave a complete analytic analysis of
the generic orbits for massive particles in the case a > 0 for a future study.

4.3.2 Massless Probe

Using (4.33), we can derive the corresponding equations of motion for massless charged test
particle in the

√
Kerr potential. In particular, the relativistic constraint equation becomes

(vr)2 =

(
1 +

a2

r2

)
(h′ − V ′

+)(h
′ − V ′

−), (4.60)

where the potential in the massless case is

V ′
± :=

1

r

[
−L′

crit ±
|L′r + aL′

crit|√
r2 + a2

]
. (4.61)

3When Lcrit = a, hB becomes equal to L/a.
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Figure 4.4: Types of orbits for a massive charged particle in the
√
Kerr potential. The red

ring represents the singularity of the field.

The conserved quantities read

h′ := vt+α
C

r
L′
crit := −αC (4.62)

L′ :=(r2 + a2)vϕ +
αaC

r
. (4.63)

Causality requires vt > 0 and therefore the conserved energy has to satisfy h′ > −L′
crit/r.

Meanwhile, from (4.60) we know the region V ′
− < h′ < V ′

+ is forbidden otherwise the right-
hand side is negative. Since V ′

− ≤ −L′
crit/r ≤ V ′

+, the physically meaningful value of the
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energy is constrained as h′ ≥ V ′
+. Taking the time-derivative of (4.60) we can derive

dvr

dτ
=−

(
1 +

a2

r2

)[
dV ′

+

dr
(h′ − V ′

−) +
dV ′

−
dr

(h′ − V ′
+)

]
− a2

r3
(h′ − V ′

+)(h
′ − V ′

−) (4.64)

and thus the condition to have circular orbits at r = r∗ is equivalent to

h′|r=r∗ =V ′
+|r=r∗

dV ′
+

dr

∣∣∣∣
r=r∗

= 0. (4.65)

We find that a circular orbit requires the energy and angular momentum to satisfy

h′± =
a2L′

crit

r3∗

(
1±

√
1 +

r2∗
a2

)
(4.66)

L′
± = −a

3L′
crit

r3∗

(
1 +

2r2∗
a2

±
(
1 +

r2∗
a2

)3/2
)
. (4.67)

As it is easy to show, in the vicinity of the singular ring r → 0, we have

lim
r→0

V ′
+(r) =

L′

a
. (4.68)

A completed analysis for the orbits show that we can have

• Hyperbolic-type orbits for any positive value of the energy h′ > 0.

• Plunge behaviour for h′ ≥ L′/a both in the co-rotating case L′ > 0 and in the in the
counter-rotating case L′ < 0.

• Elliptic orbits for h′− < h′ < min{0, L′/a} with L′ < Lcrit. h
′
− is determined implicitly

in terms of the minimum of V ′
+.

• Stable circular orbits for (h′, L′) = (h′−, L
′
−) with L < Lcrit and unstable circular orbits

for (h′, L′) = (h′+, L
′
+) with L < −Lcrit.

where when two regions of the parameter space (h′, L′) overlap we can have different types
of orbits according to the initial boundary conditions. This behavior of the massless probe
particle is also (at least qualitatively) exemplified by the pictures in Fig. 4.4a, Fig. 4.4c,
Fig. 4.4d and Fig. 4.4b of the previous section. Unlike null geodesics on the Kerr background,
elliptic orbits are surprisingly allowed in the

√
Kerr case and there are stable circular orbits.

4.3.3 To Kerr Geodesics

We can now obtain the conserved charges for a probe particle moving in the Kerr black hole
background. In the Kerr-Schild form, we have

φ(x) =
r

a2 cos2(θ) + r2
(4.69)

kµ =

(
1,
r2 + a2 cos2(θ)

a2 + r2
, 0,−a sin2(θ)

)
. (4.70)
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The conserved quantities in the Kerr spacetime is gained from (4.8) and (4.9), i.e. from

L
√
Kerr = (r2 + a2)vϕ + aαe

C

r
(4.71)

h
√
Kerr = vt + αe

C

r
, (4.72)

we get

LKerr =(r2 + a2)vϕ − a
2GM

r

(
r2vr

a2 + r2
− avϕ + vt

)
(4.73)

hKerr =vt − 2GM

r

(
r2vr

a2 + r2
− avϕ + vt

)
. (4.74)

The null-like and time-like geodesics on the equatorial orbit can then be obtained by using
these two charges and the four-velocity normalization condition (4.6).

4.4 Comments on geodesics double copy

The color-kinematics duality offers promising ideas to tackle complex problems in the
gravitational setting, in particular regarding the two-body problem for two massive particles
in general relativity. In the extreme limit where one mass is much bigger than the other,
i.e., at leading order in the expansion in the mass ratio, the problem is equivalent to a
light particle following geodesics in the background sourced by the other heavy particle.
This setting allows solving the motion of the test particle exactly in some specific cases,
which provides a way to examine and explore the double copy idea for classical solutions.
In particular, for Schwarzschild and Kerr, their Kerr-Schild single copies correspond to a
non-Abelian 1/r Coulomb-like potential (

√
Schw) and the potential generated by a rotating

disk of charge (
√
Kerr), respectively [51].

We consider a test charged probe particle moving in the
√
Schw background and the

equatorial plane of the
√
Kerr background, respectively. In each case, we explicitly solve

Wong’s equations in terms of the conserved energy h and the angular momentum L. par-
ticularly, we focus on the situation where the color charge C = cac̃a is negative so that we
can correctly reproduce similar orbits with gravity, which are always attractive. We can
then extend the Kerr-Schild double-copy to derive a mapping between conserved charges of
a probe particle in the YM and the gravitational background. Specifically, the map (4.9)
replaces the color charge of the test particle by its momentum in the spirit of color-kinematics
duality. This allows us not only to fully recover the geodesic equations for Schwarzschild
and Kerr but also provides the bridge with the perturbative double copy prescription for
charged particles introduced by Goldberger and Ridgway to relate the gluon and the graviton
radiative field [96]. In particular, while the double copy was initially used for scattering
amplitudes and thus for unbound-like orbits, our mapping applies naturally also for bound
problems [114]. The reason is that explicit solutions of equations of motion do have a natural
analytic continuation in terms of the conserved charges [114–117].

The
√
Schw and

√
Kerr potential are of great interest on their own, in particular, to better

understand the YM dynamics in a non-perturbative setting. Indeed, stability of these types
of potentials was investigated by Mandula et al. a long time ago concerning the confinement
mechanism [118–121]. For our work, we keep the coupling constant small enough so that the
probe particle does not affect the gauge background. For the

√
Schw case we have found an
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analytical solution for any orbit, and for the
√
Kerr case, we have qualitatively discussed the

behavior of the probe particle moving in equatorial orbits. For both potentials, we have found
that massive test particles can move in elliptic, circular, hyperbolic-type, or plunge orbits
depending on the values of the conserved charges. For massless particles, the situation is
similar, but with a surprise: while elliptic orbits are not allowed, and circular orbits become
unstable in

√
Schw, there are instead elliptic and stable circular orbits for

√
Kerr. With this

exception in mind, what is striking to us is the similarity between those solutions for both
backgrounds and the time-like and null-like geodesics of Schwarzschild/Kerr [113]. This is
evident both from intermediate stage calculations and from the explicit analytic results. Note
that because of the complexity, we refrain from considering the geodesics of

√
Kerr outside of

the equatorial plane, but it will be interesting to examine our analysis of the most generic
case.

Summarizing, the probe limit contains much information on full two-body problem in
general relativity [122–124], and our results provide another indication that such data is
entirely encoded in the simpler gauge theory dynamics via the double copy map. This is
also supported by previous evidence coming from the derivation of the impulse [112] and the
multipole [56] using double copy techniques. While we have considered only the leading order
contribution in the so-called self-force expansion, it would be nice to understand whether
double copy can help shed light on the higher-order terms in the expansion in the mass ratio.
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Chapter 5

Three-body Effective Potential in
General Relativity

This chapter is based on the published article “Three-Body Effective Potential in General
Relativity at Second Post-Minkowskian Order and Resulting Post-Newtonian Contributions”
[4], written in collaboration with Prof. Dr. Jan Plefka, Dr. Florian Loebbert, and Dr.
Tianheng Wang.

In the study of gravitational-wave physics, researchers focus more on the two-body
problem as it is the major event observed by experiments. One wonders if the interactions
beyond two bodies, i.e., N -body interactions, are significant enough to be observed by future
gravitational wave detectors. For this, we need to have high precision predictions of the
motion of the N bodies, as well as the radiated gravitational wave. The next level of two
bodies is, of course, three bodies, which is the main concern of this chapter.

The motion of three bodies is intricate already in Newtonian gravity. Generic solution is
impossible due to the chaotic nature of the problem. Only a few families of special solutions
are known, for example, the figure-eight orbits of three equal-mass objects [125–127]. If one
takes into account of special relativistic effects, the problem becomes even more involving.
Moreover, in Newtonian gravity, the interaction of three bodies is merely the sum of the
two-body interactions between any pair of two of the three objects, but in general relativity,
we have genuine three-body interactions which involve all three bodies. which are absent in
the two body limit.

In post-Newtonian (PN) limit, the conservative two-body potential is known up to
4PN [128–139]. Compared to that, few is known for the three-body case in gravity. The
first correction to the Newtonian two-body interaction was derived by Einstein, Infeld and
Hoffmann as early as in 1938 [140,141]. Damour and Schäfer revisited the N -body problem
in 1987 and found the 2PN contribution to the three-body interaction [142,143]. For N ≥ 4,
even at 2PN there is no explicit expressions for the effective potential. In post-Minkowskian
(PM) expansion, there is no genuine three-body contribution at 1PM [144]. In this chapter, we
will present a formal form for the 2PM potential in (5.13), which depends on a one-loop three-
point integral (5.14). At this order, three-body interaction is sufficient to have the complete
N -body effective action. After the publication of our article [4], a novel method based on
scattering amplitude techniques is proposed to obtain the 2PM effective Hamiltonian [145].
In present, we do not know much about the three-body potential beyond 2PM.

Let us briefly explain the approach we adopt in this chapter. Since we are mainly
interested in the off-shell potential in this chapter, we will employ the effective worldline
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formalism. It starts with the same action (1.69) with WQFT introduced in section 3.1, but
we do not expand around a straight line background and consequently we do not need to
integrate out the worldline fluctuations. Instead, we will simply consider weak gravity around
Minkowskian spacetime as usual and integrate only over the exchanged gravitons. This way
can give us a non-local-in-time effective PM potential, in order to verify our calculation, we
also want to compare with known PN results. Therefore, we will perform a slow-velocity
expansion to the relativistic PM effective action. We then present a method to obtain PN
contributions from the 2PM action provided that one knows how the evaluate the critical
family of integrals (5.44).

5.1 Effective Worldline Action

The worldline action for massive spinless compact objects is provided in (1.69). Since we
are also interested in the non-relativistic limit, we do not fix the worldline reparametrization
gauge, but rather keep the einbein e(τ) explicit. In this way, it is more convenient to impose
τ = t as the physical time in taking the PN limit. In contrast to the WQFT formalism, since
we are only focused on the off-shell potential rather than physical observables, we will only
integrate out the intermediate gravitational field but keep the worldline coordinate arbitrary.
Expanding the metric in the weak field limit (1.36), and adopting de Donder gauge (1.39), we
can extract the Feynman rules from the perturbative Lagrangian. The graviton propagator
is given in (1.40), and the worldline coupled to a single graviton is

= −iκ e(τ)uµ(τ)uν(τ), (5.1)

where we use uµ(τ) to denote the four-velocity. We also need the three-graviton vertex,
which is already given in (1.41). For classical effective action, one should be careful about
the causality structure of the propagator [146]. Let us consider the Feynman propagator in
coordinate space by taking Fourier transform,

D̄ij =

∫
d4k

(2π)4
1

k2 + iε
eik·xij

=
1

4π2
i

x2ij − iε
= − 1

4π
δ(x2ij) + pv

(
i

4π2x2ij

)
, (5.2)

where xµij = xµi − xµj , and we have used the distributional identity

lim
ε→0+

1

y ± iε
= pv

(
1

y

)
∓ iπδ(y) (5.3)

in the last step. Since our main concern is the classical, conservative effective action in the
post-Minkowskian limit, we only need the classical part of the propagator

Dij = Re(D̄ij) = − 1

4π
δ(x2ij). (5.4)

We check that it still satisfies the Green’s function identity

□Dij = −δ(4)(xij). (5.5)
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An alternative expression that is easier to take the post-Newtonian limit is

δ(x2) =
δ(ct− r)

2r
+
δ(ct+ r)

2r
, (5.6)

where we have separate the time and spatial component of the 4-vector xµ, and r = |x| is the
3-dimensional spatial distance. We clearly see that the real part of Feynman propagator is
the average of the retarded and advanced propagator, i.e. the time-symmetric propagator.

5.2 Effective Potential to Second Order Post-Minkowskian

The conservative effective action Seff may then be obtained upon integrating out the graviton
fluctuations,

eiSeff = N
∫
D[hµν ]e

i
(
SEH+Sgf+

∑N
i S

(i)
pm

)
, (5.7)

where N is a normalization constant and we have included N different worldlines. In PM
expansion, it can be expressed as

Seff = Sfree + κ2S1PM + κ4S2PM +O(κ6), (5.8)

where the free particle action is

Sfree = −
N∑

i

mi

2

∫
dτi u

2
i (τi). (5.9)

Up to 2PM, the N -body potential only includes contributions from two-body and three-body
interactions. For simplicity, we will drop the upper bound of the sum N in the following. At
1PM, we only need one diagram, which is a single graviton exchange between two point masses.
The full potential at this order includes contributions from any two of the N worldlines. By
simply using the Feynman rule (5.1), we obtain

κ2S1PM =
∑

i

∑

j ̸=i i j

(5.10)

=
∑

i

∑

j ̸=i

∫
dτ̂idτ̂j

κ2mimj

32π

[
u2ij−

1

2
u2iu

2
j

]
δ(x2ij) ,

where we have defined ujk := uj · uk, and dτ̂i := eidτi is reparametrization invariant. At this
order, we do not have genuine three-body interactions. The first three-body contribution
appears at 2PM, and it arises from a Feynman diagram with a three-graviton vertex. In
coordinate space, it reads

=κ4
∫

d3τ̂

(4π)3
P (x1(τ1), x2(τ2), x3(τ3)), (5.11)
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where we have introduced the shorthand d3τ̂ = dτ̂1dτ̂2dτ̂3, as well as

8(m1m2m3)
−1P (xi(τi)) :=π

(
4u212u

2
3 − 4u12u13u23 − u21u

2
2u

2
3

)
δ(x212)δ(x

2
13)

+
(
u212u

µ
3u

ν
3 − 1

2u
2
1u

2
2u

µ
3u

ν
3 + 2u13u23u

µ
2u

ν
1

)
∂x1,µ∂x2,νI3δ

+ (cyclic). (5.12)

As we will see below, the integral I3δ plays a crucial role in obtaining the explicit form of
the potential. We leave the detailed analysis for later. Let us first work out the full S2PM.
We note that all terms proportional to ui · ∂xi have been discarded. They can be written as
derivatives with respect to the τi parameters d/dτi. In this case, we can do integration by
parts so that the τi-derivatives act only on the velocity ui and the einbein ej . The former
yield terms involving accelerations, which, by proper field redefinition of xi (or in other words,
coordinate transformation), can be pushed to the next order in PM expansion, cf. [147]. For
the ones acting on ei, we can use the equations of motion to replace the einbein, which turns
out depending only on the uj , so again the τi-derivatives give terms with accelerations. In
the end, both cases are irrelevant at second order in PM, and we will ignore terms involving
ui · ∂xi throughout this chapter.

In addition to the genuine three-body interaction (5.11), we also need to include the
two-body contributions to complete the N -body action at 2PM. One could in principle
draw a two-body diagram with one three-graviton vertex and use Feynman rules to obtain
the result, but due to the similarity between this diagram and the three-body one (5.11),
there is a simpler and faster way to do so. This is achieved by just identifying two of the
three worldlines in (5.11) and then multiplying it with a symmetry factor 1/2. Moreover,
propagators that have both ends on the same worldline vanish in dimensional regularization.
Therefore, the full 2PM N -body potential thus becomes

S2PM =
1

6

∫
d3τ̂

(4π)3

∑

i,j,k

′P (xi(τ1), xj(τ2), xk(τ3)), (5.13)

where the sum
∑′

i,j,k runs over i, j, k = 1, 2, 3, . . . , N but excludes i = j = k. The factor 1/6
is included to remove the over-counting by the sum.

As mentioned above, the integral

I3δ :=

∫
d4x0δ(x

2
01)δ(x

2
02)δ(x

2
03) =

x2

x1 x3

R1R3

R2

(5.14)

is of central interest in (5.12) for the three-body contribution to the effective potential. In this
chapter it arises as the one-loop three-point integral in coordinate space (solid black diagram).
Alternatively, it can be understood as the generalized maximal cut of the momentum space
triangle integral (green dashed diagram) expressed in terms of region momenta xj , which
maps to the dual momenta Rj via

Rµ
j := xµj+1 − xµj−1. (5.15)

Moreover, I3δ may also be obtained from a generalized cut of the four-point (box) integral in
the limit where one point is sent to infinity. The box integral is invariant under a Yangian
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algebra, an extension of its well-known conformal symmetry [148, 149]. As such, in the
region R2

j < 0, the integral is given by the minimal transcendentally solution of the Yangian
constraints found in [150] (modulo a piecewise constant):

I3δ =
C

σ
, σ2 := (R2 ·R3)

2 −R2
2R

2
3. (5.16)

Note that due to R1 +R2 +R3 = 0 this representation is not unique and one may pick any
two Ri’s to define σ2. In regions other than R2

j < 0, we need a more systematic analysis.

5.3 The 3δ Integral in PM expansion

We will follow Westpfahl’s way of evaluating the I3δ for the retarded propagator [151], and
generalize his approach to the case with Feynman propagator. In fact, when R2

j < 0 for all
j = 1, 2, 3 the expression (5.16) can be compared with the result of [151] to fix the constant
C(σ2 > 0, R2

j < 0) = π/4. However, for generic kinematics, one needs to carefully divide
the whole kinematic space into several regions and compute the integral in each of them
separately. Interestingly, a detailed calculation shows that the value of the integral depends
on the sign of −σ2, which may be seen as the square of the area of the parallelogram spanned
by x1, x2, x3. It characterizes the space M spanned by these three points:

1. σ2 > 0, M is 2D Minkowskian,

2. σ2 = 0, M is a 1D straight line,

3. σ2 < 0, M is 2D Euclidean.

The explicit calculation performed below yields

1. σ2 > 0, I3δ =
π
4σΘ(−R2

1R
2
2R

2
3),

2. σ2 = 0, I3δ diverges,

3. σ2 < 0, I3δ ∝
∑

i δ(R
2
j ).

Here Θ denotes the Heaviside step function defined as

Θ(x) =




1, for x > 0,
1
2 , for x = 0,
0, for x < 0.

(5.17)

We now explicitly evaluate the I3δ integral for these three cases, generalizing the computation
of Westpfahl [151] for the three-point integral with retarded propagators.

The case σ2 > 0. We choose four basis vectors Rµ
2 , R

µ
3 , ξ

µ
1 , ξ

µ
2 such that we can express the

integration vector as

xµ01 = τRµ
2 + τ̄Rµ

3 + r(cosφξµ1 + sinφξµ2 ), r ≥ 0. (5.18)

Here {ξ1, ξ2} denotes the (orthogonal) unit basis of the perpendicular complement of M:

ξi ·Rj = 0, ξi · ξj = −δij , for i, j = 1, 2. (5.19)
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In these coordinates, the integration measure reads

d4x0 =
1
2σdτdτ̄dr

2dφ, (5.20)

and the integral simplifies to

∫
d4x0
4σ2

δ
(
r2 +

R2
1R

2
2R

2
3

4σ2
)
δ

(
τ − R2

3R1 ·R2

2σ2

)
δ

(
τ̄ +

R2
2R1 ·R3

2σ2

)
. (5.21)

This straightforwardly yields

I3δ(σ
2 > 0) =

π

4σ
Θ
(
−R2

1R
2
2R

2
3

)
. (5.22)

Hence, we conclude that in the region σ2 > 0 the piecewise constant in (5.16) is given by

C(σ2 > 0) =
π

4
Θ
(
−R2

1R
2
2R

2
3

)
. (5.23)

Note that since δ(x201) is the Green’s function of the d’Alembertian, see (5.5), the above
integral I3δ satisfies

∂21I3δ = 4πδ(x212)δ(x
2
13). (5.24)

In the region σ2 > 0 this is guaranteed by the Heaviside function in (5.22); dropping the
Θ-function in (5.22) would yield a vanishing result as ∂21σ

−1 = 0.

The case σ2 < 0. In the region where σ2 < 0, we can span xµ01 as

xµ01 = tTµ + τRµ
2 + τ̄Rµ

3 + rξµ. (5.25)

Here Tµ and ξµ denote again unit vectors that are orthogonal to each other and to Rµ
2 , R

µ
3 ,

with Tµ being time-like and ξµ space-like. The volume element in this coordinate system is

d4x0 =
√

−σ2dtdrdτdτ̄, (5.26)

and the integral becomes

I3δ =

∫
d4x0 δ

(
t2 + (τRµ

2 + τ̄Rµ
3 )

2 − r2
)
δ
(
2τR2 ·R3 + (2τ̄ + 1)R2

3

)

× δ
(
2τ̄R2 ·R3 + (2τ − 1)R2

2

)

=

√
−σ2

−4σ2

∫
dtdr δ

(
t2 − r2 − R2

1R
2
2R

2
3

4σ2

)

=
1

4
√
−σ2

∫ +∞

−∞

dr√
r2 + 1

→ ∞. (5.27)

Hence, for σ2 < 0 the integral diverges.
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The case σ2 = 0. Finally, for σ2 = 0 the surface spanned by the vectors connecting x1, x2
and x3 degenerates into a line. We define the unit vector on this line as Rµ

u, and we set
Rµ

i = ωiR
µ
u. Depending on the nature of this line one finds different expressions as follows.

For the line being time-like we have

xµ01 = τRµ
u + r (ξµ1 cos θ + ξµ2 sin θ cosϕ+ ξµ3 sin θ sinϕ) ,

d4x0 = r2 sin θdτdrdθdϕ, (5.28)

and thus

I3δ =

∫
d4x0δ

(
τ2 − r2

)
δ
(
ω2
3 + 2τω3

)
δ
(
ω2
2 − 2τω2

)

=

{
∞ ω1ω2ω3 = 0,

0 otherwise.
(5.29)

For a space-like line and with T ·Ru = 0, we have

xµ01 = tTµ + τRµ
u + r (ξµ1 cos θ + ξµ2 sin θ) ,

d4x0 = rdtdτdrdθ, (5.30)

which implies

I3δ =

∫
d4x0δ

(
t2 + τ2 − r2

)
δ
(
ω2
3 + 2τω3

)
δ
(
ω2
2 − 2τω2

)

=

{
∞ ω1ω2ω3 = 0,

0 otherwise.
(5.31)

And finally for a light-like line with T ·Ru ̸= 0, we obtain

xµ01 = tTµ + τRµ
u + r (ξµ1 cos θ + ξµ2 sin θ) ,

d4x0 =
√

(T ·Ru)2 − T 2R2
urdtdτdrdθ, (5.32)

such that

I3δ =

∫
d4x0δ

(
t2 + 2tτT ·Ru − r2

)
δ (2tω3T ·Ru) δ (2tω2T ·Ru)

∼
∫

dτδ(0) = ∞. (5.33)

Hence, the result for σ2 = 0 may be summarized as

I3δ(σ
2 = 0) ∼ δ(R2

1) + δ(R2
2) + δ(R2

3). (5.34)

In total we thus conclude that the 3δ-integral can be expressed as

I3δ =





π
4σΘ(−R2

1R
2
2R

2
3), σ2 > 0,

∼ δ(R2
1) + δ(R2

2) + δ(R2
3), σ2 = 0,

∞, σ2 < 0.

(5.35)

We note that when using the result for σ2 > 0 it can be useful to expand the theta-function
according to

Θ
(
−R2

1R
2
2R

2
3

)
=+Θ

(
−R2

1

)
Θ
(
−R2

2

)
Θ
(
−R2

3

)
+Θ

(
−R2

1

)
Θ
(
+R2

2

)
Θ
(
+R2

3

)

+Θ
(
+R2

1

)
Θ
(
−R2

2

)
Θ
(
+R2

3

)
+Θ

(
+R2

1

)
Θ
(
+R2

2

)
Θ
(
−R2

3

)
. (5.36)
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5.4 Post-Newtonian Expansion

In this section, we want to provide tests of the above expression for the full 2PM effective
action against known results in the PN limit for the three-body potential. For this we first
get rid of the einbein by solving the equation of motion δS/δei = 0 for ei perturbatively up
to order κ2:

ei =
1√
u2i

+
∑

j ̸=i

∫
dτj

κ2mj

16π
√
u6iu

2
j

(
u2ij −

1

2
u2iu

2
j

)
+O(κ4). (5.37)

Plugging this solution back into (5.8) and expanding to order κ4 yields the 2PM effective
action free of the einbein.

In order to do the PN approximation, it is convenient to fix the gauge τi = ti =
coordinate time. As explained in section 1.4, we have

uµi =
(
1,

vi

c

)
, κ→ κ

c
. (5.38)

Additionally, we need to expand the derivative with respect to the coordinate

∂

∂xµi
=

(
∂

c∂ti
,
∂

∂xi

)
. (5.39)

For convenience, we also rewrite the PN expansion of the propagator for δ(x2ij) according to
(5.4) and (1.46),

δ(x2ij) =4π

∫
dDk

(2π)D
eik·rij

∞∑

α=0

(−1)α∂2αti δ(tji)

c2α(k2)α+1
(5.40)

=
δ(ti − tj)

rij
− rij

2c2
∂ti∂tjδ(ti − tj) +

r3ij
24c4

∂2ti∂
2
tjδ(ti − tj) +O(c−4).

5.4.1 1PN Expansion

Let us now have a first test of the 2PM potential at order 1PN. Using the PN expansion
given in (5.38) and (5.39), we see that in P (xi) of (5.12) only the first line contributes to
leading order in c−1:

∑

i,j,k

′P (xi) = −3πm1m2m3

8

∑

i

∑

j ̸=i
k ̸=i

δ(x2ij)δ(x
2
ik) +O(c−2). (5.41)

A propagator with both ends on the same worldline is vanishing in dimensional regularization.
This allows to rewrite the sum as

∑ ′
i,j,k → ∑

i

∑
j ̸=i,k ̸=i in the above formula. The non-

relativistic expansion of the propagator (5.40) at 1PN localize the time integration. After
some rearrangements, we find the 1PN three-body effective action

S =
∑

i

∫
dt

[
−mi +

1

c2

(
miv

2
i

2
+
∑

j ̸=i

Gmimj

2rij

)
+

1

c4

(
miv

4
i

8
−
∑

j ̸=i

∑

k ̸=i

G2mimjmk

2rijrik

+
∑

j ̸=i

Gmimj

4rij

(
6v2

i −(nij ·vi)(nij ·vj)− 7vi · vj

))]
, (5.42)

where we denote nij := rij/rij as the unit vector pointing from xj to xi. This result agrees
with the well-known 1PN expression [152].
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5.4.2 Integral bootstrap

At order 1PN of the effective potential, only the first line of the three-body contribution
(5.12) is needed. Proceeding to order 2PN, we have to take into account the second line as
well. This requires to evaluate the PN expansion of the second order derivatives ∂µj ∂

ν
kI3δ of

the three-delta integral (5.14). Naively, since we have already calculated I3δ in the PM limit
(5.35), we could simply apply the derivatives to it and then perform the post-Newtonian
expansion. One thing we need to clarify is which kinematic region is relevant. As we have
seen at 1PN (5.42), the time integration is localized by the τ -delta functions, so we expect
the same to happen at 2PN. This means that the three points x1, x2, x3 in the I3δ integral
are on the same time slice of spacetime. Based on (5.16), we can easily see that we are in the
region σ2 > 0. However, as outlined in detail in appendix B, even though we consider only
σ2 > 0, the second order derivatives still produce lengthy expressions in terms of Dirac delta
functions and their derivatives which are difficult to control. Therefore, we will instead take
a different approach which is performing the non-relativistic expansion directly on the level
of the integrand of I3δ and applying the derivatives afterwards. For convenience of the reader
we briefly summarize the below strategy: First, we will show that expanding the integrand of
I3δ leads to the family of key integrals given in (5.44). We will then use the Yangian level-one
symmetry of these integrals, i.e., invariance under the differential operator (5.46), to obtain
the differential equations (5.49). Finally, we explicitly demonstrate how these equations are
solved in the form of (5.52), which results in the expressions for the dimensional-regularized
integrals that enter into the effective potential.

Using the PN expansion of the propagator (5.40), and expressing it in coordinate space
(1.47), we can write the key integral I3δ in the PN-expansion for general spatial dimension D
as

I3δ =
∞∑

α,β,γ=0

(−1)α+β+γ

(2c)2(α+β+γ)π3(D/2−1)

Γα̂Γβ̂Γγ̂

Γα+1Γβ+1Γγ+1

×
∫

dt0∂
2α
t1 δ(t01)∂

2β
t2
δ(t02)∂

2γ
t3
δ(t03)I

D
3 [α̂, β̂, γ̂]. (5.43)

Here, Γα = Γ(α) denotes the Gamma-function. We have used the shorthand α̂ = D/2−α− 1
and have introduced the following family of integrals:

ID3 [a1, a2, a3] :=

∫
dDx0

(x2
01)

a1(x2
02)

a2(x2
03)

a3
. (5.44)

Note that we are now in pure Euclidean space. These integrals represent the nontrivial
central input for the above expansion (5.43), and we will now discuss how to compute them.
Notably, in [153] the integrals ID3 [a1, a2, a3] for generic propagator powers aj and spacetime
dimension D have been expressed in terms of Appell hypergeometric functions F4, which
converges for small values of the effective ratio variables r12/r13 and r23/r13. In the present
situation, we would like to avoid making assumptions about these ratios, which would imply
a limited validity of the resulting effective potential. Moreover, note that here we are merely
interested in the special case of half-integer propagator powers aj in three dimensions, which
satisfy the condition

a1 + a2 + a3 ≤
D

2
. (5.45)

In particular, this condition implies that the integrals of interest are divergent in strictly three
dimensions, and we thus consider their ϵ-expansion aroundD = 3 in dimensional regularization.
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Importantly, these integrals are accessible via a bootstrap approach, cf. [150,154]: they feature
a non-local Yangian level-one symmetry, i.e., they are annihilated by the differential operator

P̂µ :=
i

2

3∑

k=1

k−1∑

j=1

(
Pµ
jDk+PjνL

µν
k −(j ↔ k)

)
+

3∑

j=1

sjP
µ
j , (5.46)

where we have used the following representation of the momentum, Lorentz and dilatation
generator of the conformal algebra:

Pµ
j = −i ∂µxj

,

Lµν
j = ixµj ∂

ν
xj

− ixνj ∂
µ
xj
, (5.47)

Dj = −ixjµ∂µxj
− i.

The so-called evaluation parameters sj entering the definition of the level-one generator P̂µ

in (5.46) take values [155]

{sj} =
1

2
{a2 + a3, a3 − a1,−a1 − a2}. (5.48)

Notably, in a dual momentum space, introduced via the transformation (5.15), i.e. Rj =

xj+1−xj−1, the level-one generator P̂ translates into a representation of the special conformal

generator [154]. Invariance under P̂µ implies two independent partial differential equations
(cf. [150] for the PDEs in terms of ratio variables)

A1I3 = 0, A2I3 = 0, (5.49)

with the second order differential operators

A1 =+ r12(w̄D − 2a2)∂r13 − 2r12r23∂r13∂r23 − r12r13∂
2
r13

+ r13(w̄D + 2a3)∂r12 − 2r212∂r12∂r13 − r12r13∂
2
r12 ,

(5.50)

A2 = +r12(w̄D + 2a1)∂r23 − r12r23∂
2
r23 − r23(w̄D + 2a3)∂r12 + r12r23∂

2
r12 .

Here, for the conformal weight of the integrals (5.44), we have introduced the abbreviation

wD = D − 2(a1 + a2 + a3), (5.51)

and w̄D = wD − 1. For D = 3− 2ϵ, we make the following ansatz for the ϵ-expansion of the
integral I3, which is inspired by [156]:

µ−2ϵI3−2ϵ
3 =

A

2ϵ
+B + C log

(
r12 + r13 + r23

µ

)
+O(ϵ). (5.52)

Here µ denotes some mass scale and A,B,C represent polynomials whose form is constrained
by the scaling of the integral:

X =

w3∑

j=0

w3−j∑

k=0

f
(X)
jk rj12r

k
13r

w3−j−k
23 . (5.53)

For X ∈ {A,B,C} the constant coefficients of the polynomial are denoted by f
(X)
jk . We note

that the polynomial B can always be shifted by a term proportional to C via a modification
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of the mass scale µ. The below results are thus to be understood modulo such a shift. As
the coefficients of 1/ϵ and log µ are correlated in the ϵ-expansion of (5.52), we must have
A = −C, which we also find from the bootstrap arguments.

The solution of the homogeneous differential equations (5.49) will depend on some
undetermined constants. In general, these can, for instance, be fixed by comparing a
coincident point limit of the solution with the following well-known expression for the
two-point integral, cf. e.g. [157]:

∫
dDx0

x2a101 x
2a2
02

= π
D
2

Γa1+a2−D
2
ΓD

2
−a1

ΓD
2
−a2

Γa1Γa2ΓD−a1−a2

rD−2a1−2a2
12 . (5.54)

However, for the lower propagator powers considered below, some of the arguments of the
Gamma-functions will actually be zero. It is thus useful to note that the Laplacian acting on
leg 1 of the integral generates a recursive structure on the above integrals, e.g.

∆1I3[a1, a2, a3] = 2a1(2a1 + 2−D)I3[a1 + 1, a2, a3], (5.55)

and similar for legs 2 and 3. This equation can alternatively be used to relate the undetermined
coefficients for integrals with negative propagator powers to the leading-order ‘seed’ integral
I3
[
1
2 ,

1
2 ,

1
2

]
.

In the following, we bootstrap the integrals contributing to the leading terms of the
non-relativistic expansion (5.43) using the level-one Yangian PDEs (5.50). We have compared
the expansion of the below results for small ratios r12/r13 and r23/r13 to the expressions in
terms of Appell hypergeometric functions given in [153] finding full agreement, see also [154]
for our conventions. The following integrals serve as input for the three-body effective
potential via (5.43) and (5.12).

Order c0: At leading order, only one integral I3[
1
2 ,

1
2 ,

1
2 ] contributes to the expansion (5.43).

The finite part of the ϵ-expansion around D = 3 is already known since 1970s by Ohta
et. al. [156]. Here we evaluate the integral by solving the PDEs (5.50) with the ansatz (5.52),
which yields

µ−2ϵI3
[
1
2 ,

1
2 ,

1
2

]
=
b1
2ϵ

− b2 log

(
r12 + r13 + r23

µ

)
+O(ϵ), (5.56)

where b1,b2 are integral constants. They can be fixed by taking the coincidence two-point
limit where x2 = x1 and comparing it with (5.54),

b1 = b2 = 4π. (5.57)

Note that we neglect a additional finite constant that can be shifted by changing the mass
scale µ.

Order c−2: Analogous to the above, at next-to-leading order we need to evaluate I3[
1
2 ,

1
2 ,−1

2 ].
The ϵ-expansion of the integral is again obtained by solving the PDEs (5.50),

µ−2ϵI3
[
1
2 ,

1
2 ,−1

2

]
=− c

(r212 − r213 − r223)

2ϵ
+ c
[
(r12 − r13)(r12 − r23) (5.58)

+ (r212 − r213 − r223) log
(r12 + r13 + r23

µ

)]
+O(ϵ).
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Here we can verify the relation A = −C in the ansatz (5.52). Again, the finite part is defined
modulo the polynomial in the divergent 1/ϵ contribution. The constant c can be fixed by
comparing with the two-point function as before. Alternatively, we can also fix it by applying
the Laplacian on leg 3 to the integral

∆3I3
[
1
2 ,

1
2 ,−1

2

]
=

6c

ϵ
− 4c− 12c log

(
r12 + r13 + r23

µ

)
(5.59)

and using the recursion relation (5.55),

∆3I3
[
1
2 ,

1
2 ,−1

2

]
= (2− 2ϵ)I3

[
1
2 ,

1
2 ,

1
2

]
. (5.60)

Note that due to the uncertainty of the finite part, the equation holds only up to a shift by a
constant. Comparing the right-hand sides of (5.59) and (5.60), we fine the relation between
c and the constant b1, b2,

c =
b1
6

=
b2
6

=
2π

3
. (5.61)

The result (5.58) will be employed to obtain the novel contributions to the 3PN three-body

effective potential, which scale as G2m3v4

c8r2
, see subsection 5.4.4.

Order c−4: We would like to demonstrate that the above bootstrap approach can be easily
applied to higher orders. For that, let us consider order c−4 of the non-relativistic expansion
(5.43). We see that two integrals I3[−1

2 ,−1
2 ,

1
2 ] and I3[

1
2 ,

1
2 ,−3

2 ] are relevant. However, the
contributions to the 4PN effective potential which need these integrals are too lengthy to fit
in this thesis, so we will not evaluate them. Solving the partial differential equations (5.50)
with the ansatz (5.52), we find that the polynomials read

A
[
−1

2 ,−1
2 ,

1
2

]
= d1

(
−1

3
r412 + (r213 − r223)

2 − 2

3
r212(r

2
13 + r223)

)
, (5.62)

B[−1
2 ,−1

2 ,
1
2 ] =d1

(
r12 (r13 − r23)

2 (r13 + r23)−
r412
9

− 1

3
r312 (r13 + r23)

+ r13r23 (r13 − r23)
2 − 1

9
r212
(
5r213 − 3r13r23 + 5r223

))
,

(5.63)

as well as

A[12 ,
1
2 ,−3

2 ] = d2

(
2r212

(
r213 + r223

)
− r412 − r413 − r423 − 2

3r
2
13r

2
23

)
, (5.64)

B[12 ,
1
2 ,−3

2 ] =d2

(4r412
3

− r13r
3
23 +

4

9
r213r

2
23 − r313r23 − r312 (r13 + r23)

− r212
(
2r213 − r23r13 + 2r223

)
+
r12
3

(
5r313 + 3r23r

2
13 + 3r223r13 + 5r323

) )
.

(5.65)

Again, the overall constants d1, d2 are fixed by matching to the coefficients for the integral
(5.58) via the recursion (5.55), which yields,

d1 = − π

10
, d2 = −3π

10
. (5.66)

Note again that the polynomials B[−1
2 ,−1

2 ,
1
2 ], B[12 ,

1
2 ,−3

2 ] are only defined up to a shift by
the corresponding A due to the arbitrariness of the mass scale µ. This is sufficient to generate
the 4PN order G2 contributions to the three-body potential.
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5.4.3 2PN Expansion and the Two Body Limit

With the integral (5.56), we can now move on to compute order 2PN of the effective potential
following the same way as the 1PN order in 5.4.1. Since the potential in (5.13) includes
both the two-body and the genuine three-body interactions, it is convenient to treat them
separately. For this purpose, let us decompose the sum as

∑

i,j,k

′ →
∑

i

∑

j ̸=i

∑

k ̸=i,j

+

(∑

i

∑

j

∣∣∣
k=i

+ (cyclic)

)
, (5.67)

where the first term on the right-hand side accounts for the three-body interaction and the
remaining terms are the two-body interactions. We will compute the summands for different
indices i ̸= j ̸= k. The two-body case can be obtained by simply identifying two of the
three indices. However, there are two difficulties in this process. The first one is that some
denominators will be vanishing in this limit, such as 1/rij |j=i, which will lead to divergence
expressions. To tackle this problem, we propose to regularize the divergences as

1

rij

∣∣∣∣
j=i

→ 0. (5.68)

This is consistent with the fact that propagators with both ends on the same worldline should
be neglected in dimensional regularization. The other difficulty is that the unit vector nij |j=i

is indefinite in the two-body limit. To solve this, we develop the following mapping from
three-body to two-body interactions. Firstly, terms of odd order in nij |j=i are vanishing due
to the anti-symmetry in the indices. Secondly, for terms quadratic in nij |j=i, we adopt the
prescription:

nij ·vα nij ·vβ |j=i → vα · vβ . (5.69)

This means that practically, if the identification of indices yields a term that is quadratic
in nij |j=i and includes a factor on the left-hand side of (5.69), we replace this factor by the
right-hand side. This mapping is justified by the perspective of dimensional analysis and
symmetry considerations, and more importantly, it reproduces the correct potential at 2PN
as given in the literature. Further more, at 3PN order that will be discussed in the next
subsection 5.4.4, we will encounter terms that are quartic in nij |j=i. For that, we also present
the mapping rule here

nij ·vα nij ·vβ nij ·vρ nij ·vσ|j=i → vα ·vβ vρ ·vσ + vα ·vρ vσ ·vβ + vα ·vσ vβ ·vρ. (5.70)

To obtain the effective potential, we need apply the double derivative to the integral
(5.4.4). We note that the ϵ divergences naturally drop out as expected. This property is
conjectured to be true to all orders in the PN expansion. At higher orders, the polynomial
of the divergent part will be of higher degrees, but we also have more derivatives in the
PN expansion (5.43) to cancel the 1/ϵ term. We explicitly verify it in the 3PN calculation
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of 5.4.4. From (5.12), we can easily compute the 2PN effective action,

S2PN =
∑

i

∫
dt

c6

{
miv

6
i

16
+
∑

j ̸=i

Gmimj

16rij

[
3(nij ·vi)

2(nij ·vj)
2−6nij ·vi nij ·vj v

2
ij−2 (nij ·vj)

2 v2
i

+3v2
i v

2
j+2 (vi ·vj)

2−20v2
i vi ·vj+14v4

i

]
+
∑

j ̸=i

G2mim
2
j

2r2ij

[
33 (nij · vij)

2−17v2
ij

]

+
∑

j ̸=i

∑

k ̸=i

G2mimjmk

8

[
1

rijrik

(
4(nij · vj)

2 + 18v2
i − 16v2

j − 32vi · vj + 32vj · vk

)

+
1

r2ij

(
14nik ·vk nij ·vk − 12nij ·vi nik ·vk + nij ·nik (nik ·vk)

2 − nij ·nik v
2
k

) ]

+
∑

j ̸=i

∑

k ̸=i,j

G2mimjmk

[
2(nij−njk)·vij

(rij + rik + rjk)2
(
4 (nij + nik)·vij + (nik + njk)·vik

)

+
9 (nij ·vij)

2 − 9v2
ij + 2 (nij ·vik)

2 − 2v2
ik

rij (rij + rik + rjk)

]}
+G3 × [static term] , (5.71)

where we have defined vij := vi −vj . Note that we have implicitly pushed terms that involve
accelerations to higher orders in PM expansion via a field redefinition of x. Up to the static
term proportional to G3, which we do not have accessed to since it is in the next order in PM,
we have checked that our result against the literature [142,158]. And we find full agreement
after adding a total derivative term. This also serves as a test for the integral I3

[
1
2 ,

1
2 ,

1
2

]

(5.56) that we compute from solving the level-one Yangian PDEs.

5.4.4 Contribution to 3PN

In this subsection, we compute the novel contribution to the 3PN N -body effective potential
from the 2PM order, which scales as G2v4 and includes both the two-body and genuine
three-body terms. In addition to that, we also have the G1v6 terms that stems from the
1PM potential (5.10). Due to the complexity of the final result, the full 3PN action can be
formally expressed as

S3PN =
∑

i

∫
dt

c8

{
5

128
miv

8
i + L3PN

(A) + L3PN
(B) + L3PN

(C) + L3PN
(D)

}
+O(G3). (5.72)

Analogous to the 2PN potential (5.71), here we do not have the terms at order G3, which
require two yet unknown four-point integrals at one and two loops. Further more, to have the
complete 3PN N -body effective action, the G4 contributions should also be included, which
are out of scope of this section. For the terms from 1PM and 2PM, we have classified them in
(5.72) based on the power of G and the structure of summations. The terms linear in G are
from the PN expansion of the 1PM action and is collected in L3PN

(A) , which explicitly reads

L3PN
(A) =

∑

j ̸=i

Gmimj

32rij

[
3nij ·vi (nij · vj)

2
(
2v2

inij ·vj + 6v2
i nij ·vi − 5vi · vjnij ·vi

)
(5.73)

+ nij ·vi nij ·vj

(
10 (vi ·vj)

2 + 8v2
i vi ·vj − 5v2

i v
2
j − 14v4

i

)

+ 2 (nij ·vj)
2 v2

i

(
5vi ·vj − 3v2

i

)
− 6v2

i v
2
j (nij ·vi)

2 + 16v4
i v

2
j + 2 (vi ·vj)

3

+ 12v2
i (vi ·vj)

2 − 19v2
i v

2
j vi ·vj − 34v4

i vi ·vj + 22v6
i −5 (nij ·vi)

3 (nij ·vj)
3
]
.
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As before, we added a total derivative as given in (C.1) in appendix C to reduce the expression
to the above form, and implicitly a field redefinition is adopted to push accelerations to next
order in G. For terms quadratic in G, we separate them to L3PN

(B) , L
3PN
(C) and L3PN

(D) according

to the structure of summations. The two-body interactions of the second line of (5.12) gives
rise to L3PN

(B) , which reads

L3PN
(B) =

∑

j ̸=i

G2mim
2
j

4r2ij

[ (
−200vi ·vj+167v2

i +66v2
j

)
(nij ·vi)

2 − 98 (vi ·vj)
2 (5.74)

− 2
(
99v2

i + 64v2
j − 130vi ·vj

)
nij ·vj nij ·vi + 96v2

j + 96v2
j vi ·vj

− 44 (nij ·vi − nij ·vj)
2
(
2 (nij ·vi)

2 + (nij ·vj)
2
)
+ v2

i

(
134vi ·vj − 49v2

j

)

+
(
65v2

i − 128vi ·vj

)
(nij ·vj)

2 − 51v4
i − 32v4

j

]
.

Furthermore, we collect all the contributions from the first line of (5.12) as well as from
field redefinitions and total derivatives that are used to remove accelerations in L3PN

(C) . Note

that the contribution from the first line of (5.12) can be explicitly written in the form before
taking derivatives

L3PN
(first line) =

∑

j ̸=i

∑

k ̸=i

G2mimjmk

{
1

8 rijrik

[
2v2

j

(
32vi ·vk + 16vj ·vk − 7v2

j − 9v2
k

)
(5.75)

+ v2
i

(
v2
i − 20v2

j + 16vj ·vk

)
+ 32vi ·vj (vi ·vj − vi ·vk − 2vj ·vk)

]

+
(
v2
i − 3v2

j − 3v2
k + 8vj ·vk

)
(vk ·∂xk

)2
rik
2 rij

− (vk ·∂xk
)2(vj ·∂xj )

2 rijrik
4

− (vk ·∂xk
)4

r3ik
12 rij

}
.

After evaluating the derivatives, L3PN
(C) is expressed as

L3PN
(C) =

∑

j ̸=i

∑

k ̸=i

G2mimjmk

16

{
1

rijrik

[
2 (nij ·vj)

2 (16vi ·vj−18v2
i −32vj ·vk+12v2

j−(nik ·vk)
2
)

+ 64vi ·vj

(
2 (nik ·vk)

2 + vi ·vk − 2vj ·vk − v2
j

)
+ 16v2

j

(
8vj ·vk−2v2

j−2v2
k−(nik ·vk)

2
)

+ 16v2
i

(
3v2

j + 2vj ·vk − 10vi ·vj

)
− 6 (nij ·vj)

4 + 96 (vi ·vj)
2 + 49v4

i

]

+
1

3 r2ij

[
20 (nik ·vk)

3 (nij ·vi − nij ·vk)− 3nij ·nik

(
(nik ·vk)

2 − v2
k

) (
3 (nij ·vj)

2 + 8vi ·vj

+ (nik ·vk)
2 + 2nik ·vi nik ·vk + 6vi ·vk − 5v2

i − 4v2
j − 4v2

k

)

+ 6
(
(nik ·vk)

2 − v2
k

) (
3nij ·vj nik ·vi − 3nij ·vj nik ·vj − 3nik ·vi nij ·vk + 4nij ·vi nik ·vj

− nij ·vi nik ·vi

)
+ 6nik ·vk

[
nij ·vk

(
19v2

i + 28v2
j−56vi ·vj−2vi ·vk−21 (nij ·vj)

2
)

+ 2nij ·vi

(
11v2

i − 12v2
j − 23vi ·vk + 28vj ·vk + 9 (nij ·vj)

2
)

+ 6nij ·vj

(
6vi ·vj + 7vi ·vk−6v2

i −7vj ·vk

) ]

+ 18v2
k nik ·vk (5nij ·vk − 4nij ·vi)

]}
. (5.76)
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The term L3PN
(D) contributing to (5.72) stems from the genuine three-body interactions from

the second line of (5.12). Formally, it can be written as derivative operators acting on the
integrals I3[

1
2 ,

1
2 ,

1
2 ] and I3[

1
2 ,

1
2 ,−1

2 ],

L3PN
(D) =

∑

j ̸=i

∑

k ̸=i,j

G2mimjmk

4π

{[
(6v2

i +v2
k−8vi ·vj)(vki ·∂xi)(vkj ·∂xj )

+ (8v2
ik−4v2

k)(vji ·∂xi)(vij ·∂xj )
]
I3[

1
2 ,

1
2 ,

1
2 ] (5.77)

+ (vk ·∂xk
)2
[
(vki ·∂xi)(vkj ·∂xj )+2(vik ·∂xk

)(vij ·∂xj )

+ 4(vji ·∂xi)(vij ·∂xj ) + 8(vjk ·∂xk
)(vkj ·∂xj )

]
I3[

1
2 ,

1
2 ,−1

2 ]
}
.

To take into account the permutation of particles, we denote the external points as i, j, k,
so the integrals I3 depends on them rather than the labels 1, 2, 3 as in subsection 5.4.2.
The expressions of the integrals I3[

1
2 ,

1
2 ,

1
2 ] and I3[

1
2 ,

1
2 ,−1

2 ] as given in (5.56) and (5.58),
respectively. For convenience we display them here again:

µ−2ϵI3[
1
2 ,

1
2 ,

1
2 ] =

2π

ϵ
− 4π log

(
rij + rik + rjk

µ

)
+O(ϵ), (5.78)

µ−2ϵI3[
1
2 ,

1
2 ,−1

2 ] = −2π

3

[r2ij − r2ik − r2jk
2ϵ

− (rij − rik)(rij − rjk)

− (r2ij − r2ik − r2jk) log

(
rij + rik + rjk

µ

)]
+O(ϵ). (5.79)

By taking the coincidence limit where two of the three bodies are identified, we can reproduce
the two-body contributions (5.74) with the prescriptions presented in (5.68), (5.69) and
(5.70). The result is independent on the dimensional regularization as the 1/ϵ-poles and the
mass scale µ drop out after taking the derivatives in (5.77). This is necessary for physical
quantities and serves as a test of our calculation. We check that it is true at least up to 4PN
order. Due to the complexity, we present the expression for L3PN

(D) after taking the derivatives
in appendix C.

We thus have all the contributions of order G2 given in (5.72) to the 3PN effective
potential. In principal, we could follow the same procedure to compute contributions that
scale as G2v2n to higher PN order from 2PM. The two integrals we need at next order of the
expansion are already given in subsection 5.4.2. However, as we have seen in this subsection,
the final expression at 3PN, especially the genuine three-body contributions (C), is already
very complicated. Therefore, we refrain from explicitly calculating higher-order contributions
of the PN expansion.

5.5 Comments on the three-body problem

The integrals ID3 [a1, a2, a3] (5.44) with half-integer propagator powers a1, a2, a3 are critical
in the computation of three-body PN potentials. There are various way to evaluate them.
For example, in this chapter, we show a bootstrap approach based on the Yangian level-one
symmetry in subsection 5.4.2. Another way is the Mellin-Barnes methods, which yield a result
expressed in terms of Appell hypergeometric series F4 that is valid for generic propagator
powers [153]. However, this formula is inapplicable to the case we consider in this chapter
because the F4 functions converge only if r12 + r13 < r23, which is outside of the physical

80



5.5. COMMENTS ON THE THREE-BODY PROBLEM

region in Euclidean space. Alternatively, one can use the so-called method of regions, in
which the integrals are computed as a series expansion in the limit where two of the three
bodies are close to each other [145]. Given its important role in obtaining the PN potential,
it would be great to have a generic closed form for ID3 with arbitrary half-integer propagator
powers. Yet, to the best of our knowledge, no such formula is known in the literature. We
leave that for future researches.

For N -body potential at higher order in PM, we will need similar Feynman integrals at
higher loops. For example, the two-loop integrals with a internal massless propagator will
show up at 3PM

∫
dDxid

Dxj

(x2
i1)

a1(x2
i2)

a2(x2
ij)

b(x2
j3)

a3(x2
j4)

a4
, (5.80)

where a1, a2, a3, a4, b are positive half integers. Computation of these integrals is the main
obstacle in obtaining higher order PM and PN results. The leading contribution with
a1 = a2 = a3 = a4 = b = 1/2 gives the static terms in (5.71) which completes the 2PN
effective potential. Generically, at nPM we need a family of (n− 1)-loop integrals with n− 2
internal propagators. Evaluating these integrals is challenging, but modern Feynman integral
techniques such as the ones we introduce for the three-body 1-loop ones could provide novel
perspective to attack the problem.
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Chapter 6

Summary and Outlook

The color-kinematics duality and the double copy relation present a novel insight on con-
nections of various classes of theories, revealing aspects that are obscure by looking at the
Lagrangian or the Hamiltonian. They are well-studied for scattering amplitudes and have
been used to translate results between gauge and gravity theories. It is well-known that the
duality relation applies to many other classes of theories and beyond scattering amplitudes.
Therefore, it is promising to consider some extensions of the pure YM/gravity double copy
that can be applied to high precision prediction in gravitational physics.

In this thesis, we study several approaches of incorporating massive particles into the
gauge/gravity story, which model the dynamics of heavy (charged) astronomical objects such
as black holes in the corresponding backgrounds. Chapter 2 examines the quantum aspects by
considering the double copy of tree-level scattering amplitudes of massive scalar fields coupled
to Yang-Mills theory. We conclude that the emerging theory accounts for heavy spinless
particles coupled to the N = 0 supergravity in a minimal way, with additional short-range
self-interactions. In chapter 3, we move to the pure classical setup by using worldlines to
describe massive matters. We propose a double copy prescription for the eikonal phase in
bi-adjoint, YM, and dilaton-gravity background, and check it explicitly up to next-to-leading
order in the coupling constants. Chapter 4 considers the probe limit of the two-body problem,
which has the privilege of being able to solve the equations of motion non-perturbatively.
As an extension of the classical Kerr-Schild double copy, a mapping relation between the
conserved charges in YM and gravity background is discovered (4.9). Aside from the double
copy relation, in chapter 5, we also obtain the three-body potential in general relativity
directly from an effective worldline formalism. We formally present the 2PM integrand and
provide a way to extract PN contributions by explicitly calculating the G2v4 terms.

Based on these projects, there are many interesting directions to explore. For example,
we could incorporate spin effects into many of the aforementioned projects, so that they
can be applied to some astronomical objects such as Kerr black holes or neutron stars. In
perturbative double copy in chapter 2 and 3, it is desirable to have a systematic way to
remove the dilaton and the two-form in the resulting gravitational theory in order to describe
real-world physics. Moreover, the double copy of the conserved quantities of geodesic motions
is built upon the non-perturbative Kerr-Schild relation, which is distinct from the scattering
amplitudes story. Understanding the how these seemly different methods related to each
other will deepen our understanding on the duality between color and kinematics. Besides,
we would also like to push our calculation of the N -body effective potential to higher orders
in PM and PN expansions.
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Surprisingly, the color-kinematics duality extends to theories that have no obvious
connection to gauge or gravity theories. They are connected by the double copy relations
and form a “web of theories” [39, 40]. This striking fact implies that there are nontrivial
constraints shared by these consistent theories. Understanding these properties may help to
unravel the true nature of the double copy.

Many attempts have been made to generalize the notion of double copy beyond quantum
scattering amplitudes, but it is not yet clear how far this extension can reach. In 4-dimensional
Einstein gravity, classical solutions that display double copy structures have been extended to
Petrov type D. However, since metrics are dependent on the choice of gauge, an appropriate
coordinate system is required to expose the structure, and this is highly non-trivial. Similar
properties of classical solutions are also found in more general setups, such as in three
dimension and in (A)dS spacetime. It would be very interesting to see how general this
classical double copy structure can be.

Verifying the color-kinematics duality at higher loops is also very important. Although
there are many progress in this direction, and we have the Kerr-Schild double copy that
works as an non-perturbative example, it still remains a challenge to have an all-order proof.
One possible way to do so is to expose the double copy structure already at the level of
Lagrangian, using techniques such as double field theory. However, because of the gauge
dependence and the off-shell nature, it is tricky to find a way to express a Lagrangian that
features factorization of the Lorentz indices. One might need to construct it order-by-order,
and even need to introduce auxiliary field to localize the interaction terms.

It is also essential to understand the algebra that governs the kinematic BCJ numerators.
This is firstly understood for the self-dual sector of YM theory, where the algebra is identified
with the area-preserving diffeomorphisms [159]. Recent progress has found a way to generate
all tree-level BCJ numerators, either from a heavy-mass effective theory [160] or from the
equations of motion for field strengths and currents [161]. The kinematic numerators is
related to a quasi-shuffle Hopf algebra. Further research of the properties of this algebra is
desirable.

It is still promising to apply QFT methods to computation in gravitational-wave physics.
Gravitational scattering amplitudes at tree-level are obtained via double copy to construct
higher loop contribution to PM amplitudes [45,162]. However, it is desirable to attain loop
amplitudes directly from the double copy. This requires to remove the additional dilaton
field, which is not yet clear.
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Appendix A

Circular orbits for the spinning YM
potential

The goal of this section is to recap some basic notions of some linear algebra that are useful to
understand the nature of the roots of a third and fourth order degree univariate polynomial,
which are useful to solve the geodesic equations. For the polynomial

λ1x
4 + λ2x

3 + λ3x
2 + λ4x+ λ5 = 0, (A.1)

the explicit roots are given by

x1,2 = − λ2
4λ1

− S ± 1

2

√
−4S2 − 2p+

q

S

x3,4 = − λ2
4λ1

+ S ± 1

2

√
−4S2 − 2p− q

S
, (A.2)

where we have defined

p :=
8λ1λ3 − 3λ22

8λ21

q :=
λ32 − 4λ1λ2λ3 + 8λ21λ4

8λ31

S :=
1

2

√
−2

3
p+

1

3λ1

(
Q+

∆0

Q

)

Q :=
3

√
∆1 +

√
∆2

1 − 4∆3
0

2

∆0 := λ23 − 3λ2λ4 + 12λ1λ5

∆1 := 2λ33 − 9λ2λ3λ4 + 27λ22λ5 + 27λ1λ
2
4 − 72λ1λ3λ5. (A.3)

It turns out that if the discriminant [163]

∆ :=
1

27

(
4∆3

0 −∆2
1

)
< 0, (A.4)

then the equation (A.1) has two distinct real roots and two complex (conjugate) roots. In
the particular case λ1 = 0, we can use the reduced discriminant ∆R

∆R := λ23λ
2
4 − 4λ2λ

3
4 − 4λ33λ5 + 18λ2λ3λ4λ5 − 27λ22λ

2
5 (A.5)
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which is positive when the third order degree polynomial has three real roots and negative
when it has one real and two complex conjugate roots. We can apply these tools to find how
many real solutions we have for the x variable in the case of circular orbits in

√
Kerr. Using

from the polynomial equation (4.56) where

λ1 := mu

λ2 := 4aLcritmu
2
(
a2u2 + 1

)

λ3 := −L2
critmu

(
a2u2 + 1

)
− 2a2mu

λ4 := 4aLcritm
(
a2u2 + 1

)

λ5 := a4mu− L2
critm

(
a2u2 + 1

)

u
. (A.6)

we find that

∆ =−16m6
(
a2u2 + 1

)4(
2a2Lcritu

2
(
2a2+L2

crit

)
+L3

crit

)2

×
{
L2
critu

2
[
27a4u4 + L2

crita
2u4 + 36a2u2 + L2

critu
2 + 8

]
+ 16

}
(A.7)

is always manifestly negative.
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Appendix B

Derivatives of the 3δ Integral in PM
expansion

In this appendix we explicitly evaluate the expressions for the second order derivatives of
the triple-delta integral I3δ for σ2 > 0, cf. (5.35). These enter into the three-body effective
potential via (5.12). A priori we find four terms

∂µ1 ∂
ν
2 I3δ(σ

2 > 0) =
(
∂µ1 ∂

ν
2

π

4σ

)
Θ
(
−R2

1R
2
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2
3

)
+
(
∂µ1

π

4σ

)
∂ν2Θ

(
−R2

1R
2
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2
3

)

+
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∂ν2

π

4σ
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∂µ1Θ
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2
2R

2
3

)
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π

4σ
∂µ1 ∂

ν
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(
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1R
2
2R

2
3

)
, (B.1)

which evaluate to

Θ
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1R
2
2R

2
3
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+
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− 4Rµ
2R

ν
3
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1 −R2

2

δ(R2
3)sgn(R

2
1R

2
2) +Rµ

3R
ν
3

R2
1 +R2

2

σ2
δ(R2

3)sgn(R
2
1R

2
2)

]
.

Here the last line also enters into (B.1) with the labels 1 and 2 interchanged. Note the
appearance of the derivative of the delta function in the first line of (B.3) that one could
resolve using

δ′(R2
3) = −δ(R

2
3)

R2
3

. (B.5)

Putting these terms together, eqn. (B.1) then becomes (ordered by the number of delta
functions)

∂µ1 ∂
ν
2 I3δ =

πΘ(−R2
1R

2
2R

2
3)

4σ5

[
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2
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ν
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2R
ν
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)
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. (B.6)

Performing the PN expansion starting from this expression seems (also conceptually) much
harder than working on the level of the integrand of I3δ in (5.12). The latter is demonstrated
in subsection 5.4.2.
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Appendix C

Details on 3PN of the three-body
potential

In the computation of the 3PN potential, we added the following total derivative to remove
the dependence on the derivative of accelerations and possible spurious poles for rij → ∞:

Ltd =
∑

j ̸=i

Gmimj

48 c8
d

dt

[
rij(21ai·vj−18ai·vi)

(
(nij ·vj)

2+v2
j

)
+rij nij·ainij·vj

(
(nij ·vj)

2−3v2
j

) ]
.

(C.1)
Due to its length, here we display only an excerpt of the genuine three-body contribution
to the 3PN effective potential from the third line of (5.12). The full result is given in an
ancillary file. The expression below is organized according to the rational functions of the
spatial distances, where each function is multiplied by a sum of numerator structures that
scale as v4. Note that some numerator structures begin with the same terms but they do not
agree. Evaluating the derivatives in (5.77) yields the expression
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[128] T. Damour, P. Jaranowski and G. Schäfer, Nonlocal-in-time action for the fourth
post-Newtonian conservative dynamics of two-body systems, Phys. Rev. D 89 (2014)
064058 [1401.4548].
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[131] L. Bernard, L. Blanchet, A. Bohé, G. Faye and S. Marsat, Energy and periastron
advance of compact binaries on circular orbits at the fourth post-Newtonian order,
Phys. Rev. D 95 (2017) 044026 [1610.07934].

[132] S. Foffa, P. Mastrolia, R. Sturani and C. Sturm, Effective field theory approach to the
gravitational two-body dynamics, at fourth post-Newtonian order and quintic in the
Newton constant, Phys. Rev. D 95 (2017) 104009 [1612.00482].

98

https://doi.org/10.1007/JHEP02(2020)120
https://arxiv.org/abs/1911.09130
https://doi.org/10.1007/JHEP04(2022)154
https://arxiv.org/abs/2112.03976
https://doi.org/10.1016/0370-2693(77)90096-X
https://doi.org/10.1016/0370-2693(77)90096-X
https://doi.org/10.1103/PhysRevD.18.3809
https://doi.org/10.1016/0370-2693(77)90853-X
https://doi.org/10.1103/PhysRevD.20.474
https://doi.org/10.1103/PhysRevD.20.474
https://doi.org/10.1103/PhysRevD.94.104015
https://arxiv.org/abs/1609.00354
https://doi.org/10.1103/PhysRevD.103.024030
https://arxiv.org/abs/2010.08568
https://doi.org/10.1007/JHEP06(2020)144
https://arxiv.org/abs/2003.08351
https://doi.org/10.1103/PhysRevLett.70.3675
https://doi.org/10.1103/PhysRevD.89.064058
https://doi.org/10.1103/PhysRevD.89.064058
https://arxiv.org/abs/1401.4548
https://doi.org/10.1103/PhysRevD.93.084037
https://doi.org/10.1103/PhysRevD.93.084037
https://arxiv.org/abs/1512.02876
https://doi.org/10.1103/PhysRevD.93.084014
https://doi.org/10.1103/PhysRevD.93.084014
https://arxiv.org/abs/1601.01283
https://doi.org/10.1103/PhysRevD.95.044026
https://arxiv.org/abs/1610.07934
https://doi.org/10.1103/PhysRevD.95.104009
https://arxiv.org/abs/1612.00482


BIBLIOGRAPHY

[133] R.A. Porto and I.Z. Rothstein, Apparent ambiguities in the post-Newtonian expansion
for binary systems, Phys. Rev. D 96 (2017) 024062 [1703.06433].

[134] T. Marchand, L. Bernard, L. Blanchet and G. Faye, Ambiguity-Free Completion of the
Equations of Motion of Compact Binary Systems at the Fourth Post-Newtonian Order,
Phys. Rev. D 97 (2018) 044023 [1707.09289].

[135] T. Damour and P. Jaranowski, Four-loop static contribution to the gravitational
interaction potential of two point masses, Phys. Rev. D 95 (2017) 084005
[1701.02645].

[136] S. Foffa and R. Sturani, Conservative dynamics of binary systems to fourth
Post-Newtonian order in the EFT approach I: Regularized Lagrangian, Phys. Rev. D
100 (2019) 024047 [1903.05113].

[137] S. Foffa, R.A. Porto, I. Rothstein and R. Sturani, Conservative dynamics of binary
systems to fourth Post-Newtonian order in the EFT approach II: Renormalized
Lagrangian, Phys. Rev. D 100 (2019) 024048 [1903.05118].

[138] J. Blümlein, A. Maier, P. Marquard and G. Schäfer, Fourth post-Newtonian
Hamiltonian dynamics of two-body systems from an effective field theory approach,
Nucl. Phys. B 955 (2020) 115041 [2003.01692].

[139] C.R. Galley, A.K. Leibovich, R.A. Porto and A. Ross, Tail effect in gravitational
radiation reaction: Time nonlocality and renormalization group evolution, Phys. Rev.
D 93 (2016) 124010 [1511.07379].

[140] A. Einstein, L. Infeld and B. Hoffmann, The Gravitational equations and the problem
of motion, Annals Math. 39 (1938) 65.

[141] A.S. Eddington and G.L. Clark, The problem of n bodies in general relativity theory,
Proceedings of the Royal Society of London. Series A. Mathematical and Physical
Sciences 166 (1938) 465.
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