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..............Summary of the thesis

In this thesis, we study classical radiative observables perturbatively in terms of
on-shell scattering amplitudes. In particular, we focus primarily on the two-body
problem in gauge and gravitational theories by using an effective field theory ap-
proach. The Kosower-Maybee-O’Connell (KMOC) approach, which follows from the
classical on-shell reduction of the in-in formalism by using appropriate massive particle
wavefunctions, is extended to include classical waves which are naturally described by
coherent states. Global observables like the impulse and localized observables like the
waveform and gravitational event shapes are then studied in the amplitude approach,
making contact also with asymptotic symmetries and light-ray operators defined near
null infinity. The classical factorization of radiative observables from the uncertainty
principle is proved to be equivalent to a Poisson distribution in the Fock space, and
this provides new evidence in favor of a representation of the classical S-matrix in
terms of an eikonal phase and a coherent state of gravitons.
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Chapter 1

Introduction

1.1 The S-matrix

One of the greatest achievements of high-energy theoretical physics is the surprising
ability to describe complex phenomena with a simple theory. While experiments are
the guide we trust to understand the wild nature of physics, experience has shown
that insights on future predictions of our theory can be driven by pure intellectual
developments.

The Standard Model (SM) of particle physics is a successful quantum field theory
describing fundamental particles and their interactions at a subatomic scale, which
beautifully combines together decades of effort to unify electromagnetism, weak and
strong interactions. While the predictions of such model are in agreement with most of
the up-to-date experiments carried over at high-energy colliders like LHC, this cannot
be the end of the story. In particular, the spacetime on which of all particles are
propagating has to be dynamical, as predicted by Einstein theory of General Relativity
(GR). Those theories can be combined together in an effective field theory (EFT) valid
below the Planck mass, which is the low-energy description of all fundamental forces
in our universe. Ultimately we would like to embed this effective description in a UV
complete theory like string theory, but many of the questions can be addressed by
using the EFT itself. How can we understand dark matter and dark energy? What
is the mechanism behind baryon asymmetry and neutrino oscillations? Can we solve
the hierarchy problem? Are there higher-derivative corrections to general relativity?
The answer requires new physics beyond our current knowledge.

A Lagrangian formulation exists for the SM as a gauge theory with a local SU(3)×
SU(2) × U(1) gauge group and for GR in terms of the Einstein-Hilbert Lagrangian,
which is invariant under diffeomorphism. There is a natural extension of these theories
to the most general EFT which is compatible with their symmetries: we can concretely
translate our ignorance about the full quantum gravity theory into a set of Wilson
coefficients of higher-dimensional operators in the EFT, which can be constrained also
by the internal consistency of the theory (causality, unitarity) and testable predictions
for measurable observables. While is extremely helpful to have an off-shell formulation
of the theory in terms of the quantum fields, this is highly redundant at the level of
the on-shell observables.

A unique insight into observables in a quantum gravity theory in asymptotically
flat spacetimes is offered by scattering amplitudes, which are perturbatively defined
matrix elements of the time evolution operator from the far past to the far future

S = U(+∞,−∞). (1.1)

There are several reasons why these can be considered “the most perfect microscopic
structures in the universe” [8]:
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• In quantum gravity, there are no local gauge-invariant operators which can give
physical observables because of the invariance under diffeomorphism at the semi-
classical level [9]. Therefore it is natural to study the S-matrix and other gauge-
invariant observables defined from it which are living at the boundary of an
asymptotically flat spacetime;

• In the context of AdS/CFT, the holographic principle allows to study grav-
itational physics from a boundary perspective and viceversa. The enormous
progress in understanding concrete examples of the duality made possible to
answer deep questions in high-energy physics. The S-matrix has by definition
an holographic interpretation in asymptotically flat spacetimes: indeed, the re-
cently developed celestial holography program [10] aims to recast our knowledge
of bulk physics into a set of correlators in an exotic celestial CFT;

• The type of numbers and functions which appear in scattering amplitudes have
a deep connection to mathematics: from number theory (theory of motives
and coaction principle) to positive geometries (amplituhedron, EFThedron,..),
representation theory (of the gauge groups), combinatorics and statistics (of the
particle distribution);

• Relations between different theories become manifest in compact gauge-invariant
expressions like amplitudes and related observables: the double copy is an ex-
ample of such powerful relations [11], which allows to bypass the complexity
of perturbative gravity by studying gauge theory amplitudes and can also be
extended to non-perturbative solutions;

• Classical physics, which consists of a set of classical fields, waves and particles
obeying a set of differential equations, is hidden inside the quantum S-matrix
picture. The way that the classical emerges involve a subtle ℏ → 0 limit, which
will be the one of the main topic of this thesis;

• Finally the most crucial aspects of the S-matrix: its close relation to experiment.
From subatomic scales with the high-energy scattering of beam of protons at
colliders like LHC to the astronomic scales of compact binaries objects emitting
gravitational waves, scattering amplitudes have proven to be crucial to under-
stand the physics behind them, at least in the perturbative regime.

1.2 Classical gravitational physics from the S-matrix

Theoretical waveforms play an important role in the LIGO/Virgo Collaboration’s ob-
servational program of gravitational-wave events from binary mergers [12–19]. These
waveforms provide templates that enable the detection of events against otherwise
overwhelming noise backgrounds. They also allow observers to extract the masses
and spins of the binaries’ constituents. To date, theorists have computed wave-
forms (or equivalently, spectral functions for decaying binaries) using long-established
effective-one-body (EOB) methods [20–23] and numerical-relativity approaches [24,
25]. In particular, the classical Hamiltonian for the binary has been derived with
the the ‘traditional’ Arnowitt-Deser-Misner Hamiltonian formalism [26–33], as well as
by computations in the effective-field theory approach pioneered by Goldberger and
Rothstein [34–61] and in the tradition post-Newtonian approach [62–69].

The start of the gravitational-wave observational era has spurred theorists to ex-
plore new approaches to computing classical observables for the two-body problem in



1.2. Classical gravitational physics from the S-matrix 3

gravity, in particular using quantum scattering amplitudes. The connection between
the quantum S-matrix and observables in classical General Relativity (GR) was first
explored nearly fifty years ago by Iwasaki [70]. Earlier investigations included extrac-
tion of the two-body potential from amplitudes and the study of quantum corrections
to gravity [71–77], considering gravity as an effective field theory valid below the
Planck scale [72, 78].

An important step was taken by Cheung, Solon, and Rothstein (CRS) [79], build-
ing on earlier work by Neill and Rothstein [80]. They showed how to match effective
field theories (EFTs) efficiently to scattering amplitudes above threshold in order to
extract a classical potential. The classical potential can then be used in the EOB
or other frameworks to make predictions for bound-state quantities. Bern, Cheung,
Roiban, Shen, Solon, and Zeng used [81, 82] this approach to compute the third-order
corrections (G3) to the conservative potential. This milestone computation went be-
yond what had been known from direct classical GR calculations, and provided the
first concrete fulfillment of the promise of the scattering-amplitudes class of meth-
ods. On-shell scattering amplitudes techniques, powered by locality, unitarity and
double copy [83–106], have been used to get compact analytic expressions for the
state-of-art binary dynamics for spinless pointlike bodies at 3 PM order and at 4 PM
order [79–81, 107–109]. A handful of alternative and complementary approaches have
also been developed in recent years. The relativistic eikonal expansion [110–119], the
heavy particle effective theory [120–122] and semiclassical worldline tools [123–126]
offered many insights on the binary problem, both at the conceptual and at the prac-
tical computational level. Moreover, the formalism can be extended to include both
spinning bodies [82, 127, 128] and finite size effects [129, 130] in terms of additional
higher-dimensional operators.

The dynamics of the binary in the presence of radiation is much less understood
compared to the conservative case. This is very important, for example to establish
a direct connection with the waveforms [4, 131–134]. Unitarity dictates that, even at
the classical level, observables are IR-finite only when we include both real and virtual
radiation, as stressed in [135, 136]. This is crucial to obtain a well-behaved scattering
angle at high energies [137], as was proven by a direct calculation of radiation reaction
effects [115, 116, 138–140].

There are other interesting less inclusive IR-safe observables like energy event
shapes [3]. Event shapes or weighted cross-sections describe the distribution of outgo-
ing particles and their properties such as charge or energy-momentum in a particular
direction as determined by a detector. They are important tools for analyzing jets
produced in collider experiments [141–143]. In the ’90s, Korchemsky and Sterman1

discovered that such event shapes can be equivalently described by the expectation
value of some non-local operators – line integrals of local conserved currents – in-
serted at different locations on the celestial sphere [146, 147]. While these objects are
well-known in perturbative QCD, where they are used to study hadron scattering at
high energies [148], it is only recently that Maldacena and Hofman initiated a sys-
tematic investigation of such operators in conformal field theory [149]. It is now well
understood how to extract event shapes from OPE data and symmetries in conformal
field theories (especially for N = 4 SYM) [150, 151]. Moreover, the connection be-
tween energy event shapes and the ANEC operator establishes bounds on the a and
c coefficients characterizing the conformal anomaly [149, 152, 153]. Of course, such
developments led to increased interest in CFT light-ray operators which culminated
in the systematic analysis of [154–157]. We can also study the correlation between

1See [144, 145] for earlier approaches.
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event shapes by considering more than one detector (ie., multiple insertions of the cor-
responding non-local operators). Of particular interest is the so called energy-energy
correlator, which is an infrared-finite observable that can be measured in collider ex-
periments and used to provide a measure of the QCD coupling constant. The leading
order QCD prediction for energy-energy correlators was computed in the late ’70s
[142, 143]. More recently, analytical expressions at NLO [158, 159] as well as numeri-
cal expressions at NNLO [160] have become available. In N = 4 SYM, there are even
analytic results at NNLO [161].

In the conservative case, a dictionary has been found [162, 163] which enables the
analytic continuation of observables from hyperbolic-like scattering orbits to bound
orbits, which ultimately are of direct relevance to LIGO. This is even more crucial
when radiation is included, and indeed there are promising results in this direction
for local-in-time contributions [66, 164, 165]. The amazing correspondence between
these different type of solutions is due to the fact that the differential equations at the
classical level are the same for both systems, and only the boundary conditions are
changing. This becomes clear when the solution is expressed in terms of the conserved
charges, as emphasized in [5] as well as in the original work [162, 163].

All these amplitude approaches share the need for careful analysis of the classical
limit, as done in seminal work by Kosower, Maybee and O’Connell (KMOC) [166].
In this thesis, we will make use of this formalism mainly to describe classical waves
and radiative observables in a scattering problem, extending the original approach in
several directions. In particular, the outline of the thesis is as follows.

In chapter 2, we will discuss the derivation of the KMOC formalism from the
in-in approach at zero temperature and we will extend how the formalism to include
classical waves described in terms of coherent states. In chapter 3, we will study
how localized detectors can be represented in terms of a system of light-ray operators
defined near null infinity from Einstein equations, as well as their relation with event
shapes. In chapter 4 we will study both global and local observables for radiation,
focussing on the impulse, the waveform and the gravitational energy event shapes. In
chapter 5, we will discuss how coherent states arise from many different perspectives:
soft theorems, asymptotic symmetries, the uncertainty principle and the analysis of
the particle distribution. In chapter 6, we will explicit compute some of the amplitudes
relevant for the classical radiative observables in the two-body problem from tree-level
amplitudes, showing that coherence is obeyed explicitly. In chapter 7, we finally extend
the eikonal formulation for the two-body problem to the emission of real radiation with
the use of a coherent state of gravitons. We briefly conclude in chapter 8.

Most of this thesis is based on published work, we will make that explicit here. We
have adapted some material from [6] for section 2.1 and section 2.2 of chapter 2, and for
section 4.1, section 4.3 and section 4.5 of chapter 4. Chapter 3, section 4.4 of chapter 4,
appendix B and appendix C are entirely based on [3]. Section 5.1, section 4.2 of
chapter 4, section 5.2 and section 5.3 of chapter 5, chapter 7, appendix A, appendix E,
appendix F, appendix G and appendix H are mostly based on [4]. Section 5.4 of
chapter 5, chapter 6 and appendix D come from [7]. Section 4.6 and section 5.5 are
completely original.

We will use relativistic units, retaining c = 1, even as we restore ℏ explicitly.
We will use the mostly minus convention, except otherwise stated. We define the
symmetrized (resp. antisymmetrized) product for any tensorial expression T as T(µν) =
Tµν + Tνµ (resp. T[µν] = Tµν − Tνµ).
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Chapter 2

KMOC: classical on-shell reduction
of the in-in formalism

In this chapter, we will introduce the KMOC formalism to study the classical two-body
scattering problem and we will briefly discuss how to derive it from first principles
in quantum field theory. We will start from massive point particles as in the seminal
work [166], and then we will include classical waves by introducing coherent states. At
the end, we will incorporate spin in the description in terms of spin coherent states.

2.1 Scattering of point particles

We wish to describe here massive point particle in the quantum field theory formalism.
We must distinguish units of energy and length, which we denote by [M ] and [L]
respectively. We use the standard normalization for the annihilation and creation
operators of the scalar field such that,

[a(p), a†(p′)] = (2π)32Ep δ
(3)(p− p′) . (2.1)

Accordingly, n-point scattering amplitudes continue to have dimension [M ]4−n.
We keep [M ]−1 as the dimension of single-particle states |p⟩,

|p⟩ ≡ a†(p)|0⟩ , (2.2)

with the vacuum state being dimensionless. We define n-particle plane-wave states as
simply the tensor product of normalized single-particle states. The state |p⟩ represents
a particle of momentum p and positive energy, while ⟨p| = ⟨0|a(p) is the conjugate
state.

The scattering matrix S and the transition matrix T are both dimensionless. Scat-
tering amplitudes are matrix elements of the latter between plane-wave states,

⟨p′1 · · · p′m|T |p1 · · · pn⟩ = An+m(p1, · · · , pn → p′1, · · · , p′m)δ(4)(p1 + · · · pn − p′1 − · · · − p′m) .
(2.3)

As our formalism encompasses both QED and gravity, as well as other theories with
massless force carriers, we denote the coupling by g. In electrodynamics, it corresponds
to e, while in gravity to κ =

√
32πG. It is g/

√
ℏ that is the dimensionless coupling

in electrodynamics, and similarly in gravity κ/
√
ℏ has the correct dimension of the

inverse mass. We will denote the generic amplitude with A(L)
n , where n is the number

of legs and L is the number of loops, and more in general we will use the notation
M(L)

n for the amplitudes in a gravitational theory.
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We start by taking the momenta of all particles as the primary variables; for most
massless momenta, wavenumbers are the variables of interest. We introduce a notation
for the wavenumber q̄ associated to the momentum q,

q̄ ≡ q/ℏ . (2.4)

We use the notation of ref. [166] for the on-shell phase-space measure of a massive
particle,

dΦ(p) = d̂4p δ̂(p2 −m2) θ(p0) . (2.5)

where p0 is the energy component of the four-vector and the carets indicate factors of
2π:

d̂4p ≡ d4p

(2π)4
, δ̂(·) ≡ (2π)δ(·) . (2.6)

Given our convention for normalizing single-particle states, their inner product is,

⟨p′|p⟩ = (2π)32Epδ
(3)(p− p′)

=: δΦ(p− p′). (2.7)

With this notation, we can also rewrite the normalization of creation and annihilation
operations of eq. (2.1) in a natural form,

[a(p), a†(p′)] = δΦ(p− p′) . (2.8)

We will continue to use the notation of ref. [166] for initial states involving only
massive particles: we take the initial momenta to be p1 and p2, initially separated by
a transverse impact parameter b. The latter is transverse in that p1 · b = 0 = p2 · b. In
the quantum theory, the system of massive particles is described by wave functions,
which we build out of plane waves. In the classical limit, these wave functions must
localize the two point-like particles, and must separate them clearly. We describe the
incoming particles in the far past by wave functions ψj(p), which we take to have
reasonably well-defined positions and momenta. We will review the requirements on
the wave packets, discussed in detail in sect. 4 of ref. [166], below.

We express the initial state in terms of plane waves |p1 p2⟩,

|ψin⟩ =
∫

dΦ(p1)dΦ(p2) ψA(p1)ψB(p2) e
ib·p1/ℏ|p1 p2⟩ . (2.9)

We require each wave function ψj(p) to be normalized to unity,∫
dΦ(p) |ψj(p)|2 = 1 j = A,B, (2.10)

so that our incoming state is also normalized to unity,

⟨ψin|ψin⟩ =
∫
dΦ(p1)dΦ(p2)dΦ(p

′
1)dΦ(p

′
2)e

ib·(p1−p′1)/ℏ

× ψA(p1)ψ
∗
A(p

′
1)ψB(p2)ψ

∗
B(p

′
2) δΦ(p1 − p′1) δΦ(p2 − p′2)

=

∫
dΦ(p1)dΦ(p2) |ψA(p1)|2|ψB(p2)|2

= 1 .

(2.11)
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The wavefunctions ψA(p1), ψB(p2) are defined as

ψA(p1) := Nm−1
A exp

[
− p1 · vA
ℏℓAc /ℓ2w

]
, ψB(p2) := Nm−1

B exp

[
− p2 · vB
ℏℓBc /ℓ2w

]
, (2.12)

where N is a normalization factor. The wavefunctions ψj(p) for each particle have
the property that they localise the particle’s position with an uncertainty ℓw which
is characteristic of the wavepacket1. At the same time, the wavepackets must localise
the momenta of the particles to uncertainty ∆p of order ℏ/ℓw. In the classical limit,
we require that these uncertainties are negligible compared to the distance, of order
b, between the particles

ℓw ≪ b , (2.13)

and also require that the momentum-space uncertainty is negligible compared to the
masses of the particles:

ℏ
ℓw

≪ mj ⇒ ℓjc ≪ ℓw , (2.14)

where ℓjc ≡ ℏ/mj is a measure of the Compton wavelength of the particle. More
generally, if ℓs is the distance of closest approach of the particles during scattering,
we require that

ℓjc ≪ ℓw ≪ ℓs . (2.15)

Small-angle scattering has the property that ℓs ≃ b. Therefore taking the classical
limit requires that we impose the ‘

ℓjc ≪ ℓw ≪ b for j = A,B, (2.16)

which ensure that wavefunctions such as those in eq. (5.70) effectively localize the
massive particles on their classical trajectories as ℏ → 0.

Since we will encounter these wavepackets rather frequently, it is sometimes con-
venient to write the two-particle momentum-space wavefunction as

ψb(p1, p2) ≡ ψ(p1, p2)e
ib·p1/ℏ , ψ(p1, p2) ≡ ψ1(p1)ψ2(p2) . (2.17)

We will further use the short-hand notation

dΦ(p1, p2, p3, . . .) ≡ dΦ(p1)dΦ(p2)dΦ(p3) · · · . (2.18)

for integrals over the phase space of various particles.
Now that we have an incoming state, we may write the outgoing state in terms of

the time evolution operator U(+∞,−∞), which is equal to the S matrix:

|ψout⟩ = S|ψin⟩

=

∫
dΦ(p1, p2)ψb(p1, p2)S|p1, p2⟩ .

(2.19)

Since the S matrix can be written in terms of scattering amplitudes, the outgoing
state itself can be written in terms of integrals over amplitudes and the incoming
state.

1We could choose different uncertainties ℓ
(i)
w for each particle at the expense of a slightly more

complicated notation. There is no reason for us to exploit this freedom here, so we choose the simpler
case of one common ℓw.
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In order to expand in the ℏ → 0 limit and extract the leading, classical, term for
any observable, as mentioned above we must make the powers of ℏ explicit. These arise
from two sources: powers ordinarily hidden inside electromagnetic or gravitational
couplings; and powers arising from keeping the wavenumbers of massless particles
fixed rather than their momenta. This is true both for emitted and virtual particles,
when considering quantities such as the total emitted radiation.

In order to control the ℏ expansion of scattering amplitudes, it is useful to introduce
some further notation. Let us write the amplitudes as explicit Laurent series in ℏ

A(L)
n (i→ f) = ℏ−C(n,L)

(
A(L)

n,0(i→ f) + ℏA(L)
n,1(i→ f) + · · ·

)
, (2.20)

where the quantities A(L)
n,p are ℏ-independent gauge-invariant sub-amplitudes and we

have isolated the leading power in ℏ which we call C(n,L). This expansion defines
an infinite set of objects A(L)

n,p which could in principle be reassembled into the full
amplitude. They are a kind of partial amplitude, but distinct from the usual use of
this term. We will therefore refer to them as “fragmentary amplitudes”, or simply as
“fragments.”

Since ℏ is dimensionful, it is useful to view these fragmentary amplitudes in a
slightly different way. Amplitudes are functions of Mandelstam invariants; in the
semi-classical region, we are expanding in powers of momentum transfers, such as
q2 = ℏ2q̄2 at four points, divided by Mandelstam s = (p1 + p2)

2. The semiclassical
expansion is an expansion in powers of ℏ

√
−q̄2/s. More general amplitudes involve

a richer set of momentum transfers q̄2ij ; our expansion is in powers of ℏ
√
−q̄2ij/s. We

only consider amplitudes with two incoming massive particles.
We may also view the expansion as being in (inverse) powers of the large mass

of the scattering particles [95, 105, 120, 121]. This makes contact with effective field
theory, especially heavy quark effective theory or, more generally, heavy particle ef-
fective theories as has been emphasised in references [105, 120, 121]. Our fragmentary
amplitudes correspond in this context to the standard HQET expansion in inverse
powers of heavy masses. It seems likely that a study of the properties of amplitudes
in these theories would illuminate the structure of the fragmentary amplitudes.

Notice that this expansion is analogous, but different, to a soft expansion. In the
soft expansion we take the momentum of an individual particle soft. In this transfer
expansion we take the momenta in all messenger lines to be of the same order, and
small compared to the incoming centre of mass energy. It is possible to perform the
transfer expansion and then, in a second stage, to single out some line, say an outgoing
photon, and take its momentum to be softer than all other messenger lines. This yields
the soft limit of the transfer expansion. It corresponds to the low-frequency limit in
the classical approximation. Interesting classical physics, including memory effects,
appear in this region [167–175].

For the total emitted radiation, we can define the operator

Kµ :=
∑
σ=±2

∫
dΦ(k)kµa†σ(k)aσ(k), (2.21)

where a†σ(k) (resp. aσ(k)) is the graviton creation (resp. annihilation) operators
of a definite helicity σ = ±2. In eq. (3.33) of ref. [166], there is an expression for
time-averaged radiated momentum,

Rµ ≡ ⟨kµ⟩ = ⟨ψin|S†KµS |ψin⟩ (2.22)
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Inspired by [176], we will then compute perturbatively the expectation value of

⟨0in| kµa†σ(k)aσ(k)|0in⟩ (2.23)

purely from the Schwinger-Keldysh (SK) perspective,2 where |0in⟩ is the initial gravi-
ton state at t = −∞. We will start from simplicity in pure Einstein gravity and later
we will include matter coupled with gravity, in order to take the appropriate classical
limit using the KMOC formalism.

One can express eq. (2.23) with the LSZ reduction as

⟨0in| kµa†σ(k)aσ(k)|0in⟩ = kµεαβσ (k)ερξσ (k)

×
∫

d4x

∫
d4y eik·(x−y)/ℏ□x□y⟨0in|hαβ(x)hρξ(y)|0in⟩. (2.24)

where the polarization vectors satisfy,[
εσµν(k)

]∗
= ε−σ

µν (k) . (2.25)

More generally, a†σ(k) creates a single-messenger state of momentum k and helicity σ,
while aσ(k) destroys such a state. Equivalently, the latter operator creates a conjugate
state of momentum k and helicity σ. The commutation relations are[

aσ(k), a
†
σ′(k

′)
]
= δσ,σ′δΦ(k − k′) . (2.26)

For example, a single-particle positive-helicity state is

|k+⟩ ≡ a†+(k)|0⟩ =
[
a+(k)

]†|0⟩ . (2.27)

The conjugate state is ⟨k+|.
We follow the usual amplitudes convention of representing an outgoing positive-

helicity graviton of momentum k by ε+µν(k), which also corresponds to an incoming
negative-helicity graviton of the opposite momentum. To understand the helicity flip
for an incoming state, note that we can analytically continue an incoming momentum
k to an outgoing momentum k′ = −k. The energy component k′0 of the outgoing
momentum is now negative. Thus, in an all-outgoing convention, positive-helicity
gravitons of momentum k with k0 > 0 are represented by the polarization vector
ε+µν(k), while positive-helicity gravitons of momentum k with k0 < 0 are represented
by the polarization vector ε−µν(k).

Notice that there is no (time) ordering in the correlator function. We now need
to make contact with a generating functional to be able to compute this expression
in perturbation theory. The idea is to introduce a new complex contour, called the
Keldysh contour, which is made of two branches called + and − running parallel to
the usual time axis (see Fig. 2.1) and to formally double the set of fields h(±)

µν involved
in the path integral. Each copy of the fields will be labelled by the index + or −
according to the branch of the contour C they belong to.

2This is also called the in-in formalism at zero temperature.
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Figure 2.1: The two branches of the Schwinger-Keldysh contour C
run from above (+) to below (-) the real time axis

Using the interaction representation for the quantum fields, we can write3

⟨0in|hαβ(x)hρξ(y)|0in⟩ =
∫

Dh(+)Dh(−) h
(−)
αβ (x)h

(+)
ρξ (y)

× e
i
ℏ
∫
R×R3 d4x

(
L(+)

GR,int[h
(+)]−L(−)

GR,int[h
(−)]

)
,

(2.28)

where {L(+)
GR,int[h

(+)],L(−)
GR,int[h

(−)]} is a set of two copies of the interaction Lagrangian
in the pure gravity theory where all the fields belong the same branch of the contour
C. At this point we can rewrite the initial expression as

⟨0in| kµa†σ(k)aσ(k)|0in⟩ = kµεαβσ (k)ερξσ (k)

×
∫

d4x

∫
d4y eik·(x−y)/ℏ□x□y⟨0in|Ph(−)

αβ (x)h
(+)
ρξ (y)ei

∫
C×R3 d4xLGR,int[h])/ℏ|0in⟩,

(2.29)

where the ordering P corresponds to

Phαβ(x)hρξ(y) =


Thαβ(x)hρξ(y) if x0, y0 ∈ C+
T̄ hαβ(x)hρξ(y) if x0, y0 ∈ C−
hαβ(x)hρξ(y) if x0 ∈ C−, y0 ∈ C+
hρξ(y)hαβ(x) if x0 ∈ C+, y0 ∈ C−.

(2.30)

The ordering P acts on the space of both copies of the fields (+) and (−), and in
eq.(2.30) we have implicitly identified each of them with one branch of the contour
around the time axis,

hαβ(x) = h
(+)
αβ (x) if x0 ∈ C+ ,

hαβ(x) = h
(−)
αβ (x) if x0 ∈ C− . (2.31)

We have therefore unified the treatment of the two time orderings in terms of the
contour C depicted in Fig. 2.1, which allows to reformulate the perturbation theory
calculation in terms of a simple path integral representation for the general in-in
expectation value. Indeed, one can write a generating functional

ZSK[j(+), j(−)] := ⟨0in|ei
∫
C×R3 d4x(LGR,int[h]+jµνhµν)/ℏ|0in⟩ (2.32)

3For simplicity, we have suppressed the spacetime indices in the path integral variables and the
boundary conditions of the path integral which should force the state to be |0in⟩ at t = −∞.
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in terms of which eq. (2.29) can be written as

⟨0in| kµa†σ(k)aσ(k)|0in⟩

= kµεαβσ (k)ερξσ (k)

∫
d4x

∫
d4y eik·(x−y)/ℏ□x□y

δZSK[j(+), j(−)]

iδjαβ,(+)(x)iδjρξ,(−)(y)

∣∣∣∣∣
j(±)=0

.

(2.33)

The generic SK propagator in the (+)/(−) basis can be written as∫
d4xeik·x/ℏ⟨0in|Ph(w)

αβ (x)h
(w′)
ρξ (0)|0in⟩ =

(
G++

αβρξ(k) G−+
αβρξ(k)

G+−
αβρξ(k) G−−

αβρξ(k)

)

=

(
i

ℏ2k̄2+iϵ
2πθ(−k̄0)δ(ℏ2k̄2)

2πθ(k̄0)δ(ℏ2k̄2) − i
ℏ2k̄2−iϵ

)
Pαβρξ,

(2.34)

where w,w′ can take values ±1, and Pαβρξ := 1
2 (ηαρηβξ + ηαξηβρ − ηαβηρξ) is the

standard numerator for the graviton propagator. It is interesting to notice that,
consistently with causality, different iϵ prescriptions are related to fields living on
different branches of the contour C. It is manifest that we can choose any basis for the
SK formulation, for example the time-ordered/anti time-ordered (also called (+)/(−))
basis as in the previous calculations or the retarded/advanced basis, and the result
will be independent of that choice.

The direct connection with the standard Feynman integral perturbative expansion
can be seen directly at the level of the generating functional. We can express the SK
generating functional in terms of the Feynman generating functional and its conjugate

ZSK[j(+), j(−)] = e

∫
d4xd4yGµνρξ,+−(x,y)□x □y

δ2

iδjµν,(+)(x)iδjρξ,(−)(y)Z[j(+)]Z∗[j(−)]. (2.35)

To make the connection with the KMOC formalism more precise, we need to add
matter coupled with gravity and to consider as our initial state |ψin⟩. Essentially all
the previous arguments go through by extending the discussion for a correlator of a
set of massive scalar and graviton fields. Then we have

⟨ψin| kµa†σ(k)aσ(k)|ψin⟩

= kµεαβσ (k)ερξσ (k)

∫
d4x

∫
d4y eik·(x−y)/ℏ□x□y⟨ψin|hαβ(x)hρξ(y)|ψin⟩, (2.36)

and when we connect this with the interaction representation,

⟨ψin|Ph(−)
αβ (x)h(+)

ρσ (y)ei
∫
C×R3 d4xLGR+matter,int[h])/ℏ|ψin⟩, (2.37)

we must take the LSZ reduction for the massive external states with the appropriate
KMOC wavefunction ψA(p1) and ψB(p2) as defined in eq. (5.70),∫

dΦ(p1)dΦ(p2)ψA(p1)ψB(p2)e
i
p1·b
ℏ

2∏
i=1

[∫
d4xi e

i
pi·xi

ℏ

(
□xi +

m2
i

ℏ2

)]
⟨...ϕ(x1)ϕ(x2)...⟩,

(2.38)

which in the limit ℏ → 0 will effectively localize the massive particles on their classical
trajectories characterized by a 4-velocity vA and vB and by an impact parameter bµ.
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The in-in formalism is a set of off-shell techniques in QFT which in principle can
be used to compute the expectation value of any quantum field or polynomial thereof,
including for example the stress tensor and its conserved charges. Here we have shown
that taking an appropriate LSZ reduction on the external legs and using appropriate
wavefunctions for the massive particles, we naturally obtain the KMOC formalism.
Under LSZ reduction, the contraction arising from time-ordered (+) or anti-time
ordered (−) correlators of fields {hµν , ϕ} in the Schwinger-Keldysh formalism maps
to S-matrix elements (with the +iϵ prescription) and their conjugates (with the −iϵ
prescription). Moreover, the contraction of fields belonging to different branches of
the contour ((+) and (−) or vice versa) gives the unitarity cut contributions. See
Fig. 2.2 for a pictorial representation of these different contributions. This helps also
to address some concerns raised in [177, 178] on getting classical observables from
scattering amplitudes with a definite iϵ prescription.

Figure 2.2: The contributions of the type (a) (resp. (b)) arise from
purely time-ordered fields (resp. anti-time ordered) and correspond,
under LSZ reduction for the external legs, to on-shell contributions
which are linear in the amplitudes. On the other hand, terms of the
type (c) mix fields on different branches of the Schwinger-Keldysh
contour, which corresponds in unitarity cut contributions between one

amplitude and its conjugate in the on-shell formalism.

This derivation gives some insight into the relation between the SK formalism and
the KMOC formalism relevant to fully on-shell calculations, like the radiated energy,
angular momentum, or more localized observables like the waveform and gravitational
event shapes (essentially by considering only the on-shell radiative contribution of the
fields arising in the large r limit). But it also extends beyond this. In particular, it
explains some recent derivations of off-shell metric configurations from “amplitudes”
with one off-shell graviton leg [179]. In that case one avoids taking the LSZ reduction
of the graviton field whose expectation value is taken. A simple example is given by
the (linearized) metric generated by on-shell matter particles coupled to gravity. For
example, this justifies the results obtained in [179] for the derivation of gravitational
shock wave configurations from the 3-point function with two massless on-shell scalars
and one off-shell graviton. The same argument can be repeated for any other on-shell
matter configuration coupled to one off-shell graviton, essentially making use of the
(linearized) stress tensor [180, 181]. Alternatively, one can work fully on-shell but in
(2, 2) signature, as shown in [106, 182, 183].
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2.2 Scattering of classical waves

We are now ready to to include initial-state massless classical waves in the formalism
of ref. [166]. A naive extension of the considerations of ref. [166] to massless particles
is clearly impossible. A particle’s Compton wavelength diverges when its mass goes
to zero, making it impossible to satisfy the required conditions (see eq. (2.16)). It
doesn’t make sense to treat messengers (photons or gravitons) as point-like particles.
Indeed, Newton and Wigner [184] and Wightman [185] proved rigorously long ago
that a strict localization of known massless particles in position space is impossible4.
A proper treatment instead relies on coherent states. We begin such a treatment by
discussing general aspects of coherent states, focusing on the electromagnetic case.
We then describe the kind of coherent states of interest to us.

We can write the electromagnetic field operator as,

Aµ(x) =
1√
ℏ

∑
σ=±1

∫
dΦ(k)

[
aσ(k)ε

σ∗
µ (k) e−ik·x/ℏ + a†σ(k)ε

σ
µ(k) e

+ik·x/ℏ] , (2.39)

We are using the same symbol (namely, aσ) for annihilation operators in both electro-
magnetism and gravity; we hope context will make clear which operator is relevant.
Using the form of the electromagnetic field in eq. (2.39), the electromagnetic field
strength operator is,

Fµν(x) = − i

ℏ3/2
∑
σ=±1

∫
dΦ(k)

[
aσ(k) k[µε

σ∗
ν] (k) e

−ik·x/ℏ − a†σ(k) k[µε
σ
ν](k) e

+ik·x/ℏ] .
(2.40)

Introduce the coherent-state operator,

Cα,σ ≡ Nα exp

[∫
dΦ(k)α(k)a†σ(k)

]
, (2.41)

where the normalization Nα will be given below. We can build coherent states of the
electromagnetic field using this operator, such as a positive-helicity one,

|α+⟩ = Cα,(+)|0⟩ . (2.42)

More generally, we could consider coherent states containing both helicities. Since
coherent-state operators for different helicities commute and every polarization vector
can be decomposed in the helicity basis, there is no loss of generality in making
a specific helicity choice for the coherent states we consider. The coherent state
operators are unitary,

(Cα,σ)
† = (Cα,σ)

−1 . (2.43)

The normalization factor Nα is determined by the condition ⟨α+|α+⟩ = 1, that is,

Nα = exp

[
−1

2

∫
dΦ(k) |α(k)|2

]
, (2.44)

as can be seen by using the Baker–Campbell–Hausdorff formula.
At this stage, the function α(k) is quite general, however in specific examples, we

may take it to be real. We will see below that it is subject to certain restrictions in
4The proof holds for vector bosons and gravitons.
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the classical limit. We will also see that its functional form will determine the physical
shape of the corresponding state, so we will call it the ‘waveshape’ function.

The coherent-state creation operator acting on the vacuum can be rewritten using
the Baker-Campbell-Hausdorff identity as a displacement operator [186, 187] yielding

Cα,σ|0⟩ = exp

[∫
dΦ(k)(α(k)a†σ(k)− α∗(k)aσ(k))

]
|0⟩ . (2.45)

Its action on creation and annihilation operators is given by,

C†
α,σaρ(k)Cα,σ = aρ(k) + δσρ α(k) ,

C†
α,σa

†
ρ(k)Cα,σ = a†ρ(k) + δσρ α

∗(k) .
(2.46)

To interpret the state, let us compute ⟨α+|Aµ(x)|α+⟩. It is useful to note,

a+(k)|α+⟩ = α(k)|α+⟩ ,
a−(k)|α+⟩ = 0 ,

⟨α+|a†+(k) = ⟨α+|α∗(k) ,

⟨α+|a†−(k) = 0 ,

(2.47)

which incidentally imply that the dimension of α(k) is the same as the dimension of
the annihilation operator: inverse mass. It is then easy to see that,

⟨α+|Aµ(x)|α+⟩ = 1√
ℏ

∫
dΦ(k)

[
α(k)ε+∗

µ (k)e−ik·x/ℏ + α∗(k)ε+µ (k)e
+ik·x/ℏ]

=

∫
dΦ(k̄)

[
ᾱ(k̄)ε+∗

µ (k̄)e−ik̄·x + ᾱ∗(k̄)ε+µ (k̄)e
+ik̄·x]

≡ Acl
µ (x) ,

(2.48)

where we define

ᾱ(k̄) ≡ ℏ3/2α(k) . (2.49)

Additional constraints on ᾱ will emerge below from the consideration of correlators in
the classical limit. Note that the polarization vector is invariant under the rescaling
from a momentum to a wavevector: εσ(k̄) = εσ(k) is independent of ℏ.

The most general solution of the classical Maxwell equation in empty space is,∑
σ=±1

Acl,σ
µ (x) =

∑
σ=±1

∫
dΦ(k̄)

[
Ãσ(k̄)ε

σ∗
µ (k̄)e−ik̄·x + Ã∗

σ(k̄)ε
σ
µ(k̄)e

+ik̄·x] , (2.50)

in terms of Fourier coefficients Ãσ(k̄), which we can identify as ᾱ(k̄). Evidently our
state |α+⟩ contributes only the terms of positive helicity (σ = +1); a more general
coherent state involving creation operators of both helicities would generate this most
general solution of the free Maxwell equations.

To further illuminate the meaning of coherent states, we may consider scattering
amplitudes in the presence of a non-trivial background field Acl(x). The scattering
matrix in the presence of this background field depends on it. We denote this depen-
dence by S(Acl). Using the properties of the coherent state operator it can be shown
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that,

C†
α,σS(A)Cα,σ = S(A+Aσ

cl) . (2.51)

Coherent states thus allow us to capture the physics of a specific background field
based on vacuum scattering amplitudes:

C†
α,σS(0)Cα,σ = S(Aσ

cl) . (2.52)

The formulation of the perturbation theory in a fixed background is particularly con-
venient when the Feynman rules — or the scattering amplitudes — in the background
are known exactly [102, 188–192].

As usual, we define the operator measuring the number of photons to be,

Nγ =
∑
σ=±1

∫
dΦ(k) a†σ(k)aσ(k) . (2.53)

A short computation shows that the expectation numberNγ of photons in our coherent
state is,

Nγ = ⟨α+|Nγ |α+⟩ =
∫

dΦ(k)|α(k)|2 = 1

ℏ

∫
dΦ(k̄)|ᾱ(k̄)|2 . (2.54)

The classical limit ℏ → 0 thus corresponds to the limit of a large number of photons,
that is a limit of large occupation number [193]. Therefore as a consequence we will
have,

Nγ ≫ 1 . (2.55)

We must choose the waveshape α such that the integral in the last line of eq. (2.54) is
not parametrically small as ℏ → 0. A simple way to do so is to choose ᾱ independent
of ℏ. Similarly, the momentum carried by the coherent state is,

k̄µγ = ⟨α+|Kµ
γ |α+⟩ =

∫
dΦ(k)|α(k)|2 kµ =

∫
dΦ(k̄)|ᾱ(k̄)|2 k̄µ . (2.56)

This quantity (“K beam”) is finite in the classical limit, as expected. We emphasize
that this coherent-state construction and its connection to classical states generalizes
in a straightforward way to any massless particle, including gravitons. In particular,
In classical GR, we define the spacetime metric to be

gµν = ηµν + κhµν . (2.57)

The constant κ is given in terms of Newton’s constant G by5

κ ≡
√
32πG . (2.58)

In a quantum description, the corresponding field operator is

hµν(x) =
1√
ℏ

∑
σ=±2

∫
dΦ(k)

[
aσ(k) ε

∗σ
µ (k)ε∗σν (k) e−ik̄·x + h.c.

]
. (2.59)

5We retain this definition even in units where ℏ ̸= 1. In that case the dimensions of the fields Aµ

and hµν are both
√

mass/length.
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Notice that we have written the polarisation tensor that conventionally appears in
the graviton operator as an explicit outer product of two polarisation vectors; this is
always possible. The linearised Riemann tensor operator follows from conventional
definitions and is given by6

Rµνρξ(x) =
κ

2

(
∂ξ∂ [µhν] ρ − ∂ρ∂ [µhν] ξ

)
= −κ

2

1√
ℏ

∑
σ=±2

∫
dΦ(k)

[
aσ(k) k̄[µε

∗σ
ν] (k) k̄[σε

∗σ
ρ] (k) e

−ik̄·x + h.c.
]
.

(2.60)

It is worth starting from the familiar case of geometric optics. This is a purely
classical approximation to wave phenomena, valid in situations where the wavelength
is negligible in comparison to other physical scales. One of our foci will be on phe-
nomena associated with scattering light from a point-like object. For problems of this
type to be well-defined, the incoming wave must be spatially separated from the in-
coming particle in the far past. Consequently, we need to understand how to describe
a localized incoming beam of light. We can choose the beam to be moving in the z
direction, localized around the origin of the x–y plane. To see how to do this, let’s
consider some examples.

The simplest option for the waveshape is,

α(k) = α⊙δ
3(k − ℏk̄⊙) , (2.61)

where k̄⊙ (“k-bar beam”) is the overall wavevector of the wave, and α⊙ (“α beam”) is
a constant which scales like

√
ℏ. Defining ᾱ⊙ = ℏ−1/2α⊙, this choice implies that,

ᾱ(k̄) = ᾱ⊙δ
3(k̄ − k̄⊙) , (2.62)

and that the classical field takes the form,

Aµ
cl(x) = 2ℜᾱ⊙ ε

∗µ
⊙ (k̄⊙)e

−ik̄⊙·x . (2.63)

It is worth pointing out here that the expectation value of the gauge potential between
coherent states is always a real quantity: a physical field which can be measured. We
can choose

k̄µ⊙ = (ω, 0, 0, ω)

εµ⊙ =
1√
2
(0, 1, i, 0) ,

(2.64)

to provide an explicit example. If we pick the normalization of ᾱ to be given by
ᾱ⊙ = A⊙/

√
2 with A⊙ real, the classical field for this example is,

Aµ
cl(x) = A⊙ (0, cosω(t− z),− sinω(t− z), 0) , (2.65)

which is a plane wave of circular polarization7 moving in the z-direction with angular
frequency ω. This wave is completely delocalized, which is a disadvantage for our
purposes: we wish to have a clean separation between the incoming wave and point-
like particle states.

6It could be worth remarking that the Riemann tensor is gauge-invariant in linearised theory.
7The wave ⟨α−|Aµ|α−⟩ is circularly polarized in the opposite sense.
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To localize the wave, we may “broaden” the delta function in eq. (2.61). Define,

δσ(k̄) ≡
1

σ
√
π
exp

[
− k̄

2

σ2

]
, (2.66)

which is normalized so that ∫ ∞

−∞
dk̄ δσ(k̄) = 1 . (2.67)

The peak width is controlled by the parameter σ. As k̄ is a wavenumber, σ has
dimensions of inverse length. We may choose our incoming wave, moving along the
z-axis, to be symmetric under a rotation about that axis. Consider the choice,

α(k) =
1

ℏ3
|k|(2π)3A⊙

√
2ℏ δσ∥(ω − kz/ℏ)δσ⊥(k

x/ℏ)δσ⊥(k
y/ℏ) ; (2.68)

or equivalently,

ᾱ(k̄) =
√
2|k̄|(2π)3A⊙ δσ∥(ω − k̄z)δσ⊥(k̄

x)δσ⊥(k̄
y) , (2.69)

with A⊙ real. We have introduced two measures of beam spread, σ∥ and σ⊥, along
and transverse to the wave direction respectively. The corresponding classical field is,

Aµ
cl(x) =

√
2A⊙ℜ

∫
d3k̄ ε∗µ⊙ (k̄)δσ∥(ω − k̄z)

× δσ⊥(k̄
x)δσ⊥(k̄

y)e−ik̄·x
∣∣∣
k̄0=

√
(k̄x)2+(k̄y)2+(k̄z)2

.
(2.70)

We emphasize that other choices of wave shape are available in the classical theory:
the only constraint is that Nγ must be large.

Let us further refine our example by taking σ∥ to be very small compared to the
other two scales, σ⊥ and ω = k̄0⊙. We are thus considering a monochromatic beam,
for which we can replace δσ∥ by a Dirac delta distribution. Doing so, we obtain,

Aµ
cl(x) =

√
2A⊙ℜ

∫
d2k̄⊥ ε

∗µ
⊙ (k̄) δσ⊥(k̄

x)δσ⊥(k̄
y) e−it

√
ω2+(k̄x)2+(k̄y)2eiωzeik̄

x xeik̄
y y .

(2.71)

We can simplify this expression with the following considerations. For the beam to
be moving in the z-direction, the photons in the beam should dominantly have their
momenta, or equivalently their wavenumbers, aligned in the z-direction. However, the
broadened distribution δσ⊥ does allow small components of momentum in the x and
y directions. These components should be subdominant. The corresponding x and y
wavenumbers are of order σ⊥ while the wavenumber in the z direction is of order ω.
Let us define the (reduced) wavelength λ̄ ≡ ω−1. We must thus require,

λ̄−1 ≫ σ⊥ . (2.72)

We can also define a transverse size of the beam,

ℓ⊥ = σ−1
⊥ , (2.73)
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along with a ‘pulse length’,

ℓ∥ = σ−1
∥ . (2.74)

We see that we must require,

λ̄≪ ℓ⊥ . (2.75)

In other words, a collimated monochromatic beam must have a transverse size which
is large in units of the beam’s wavelength. The requirement in eq. (2.75) is in some
respects analogous to the first part of the ‘Goldilocks’ condition of eq. (2.16). However,
we emphasize that eq. (2.75) arises from our desire to localize the wave in the far past.
In particular, waves violating the requirement in eq. (2.75) may still be classical.

Turning back to eq. (2.71), we may now simplify the time-dependent exponential
factor. The broadened delta distribution δσ⊥ forces,

(k̄x)2 + (k̄y)2 ≲ σ2⊥ = ℓ−2
⊥ , (2.76)

so that, √
ω2 + (k̄x)2 + (k̄y)2 ≲

√
ω2 + ℓ−2

⊥ ≃ ω +O(ℓ−2
⊥ ω−2) ≃ ω . (2.77)

For the wave’s field, we obtain, in this approximation,

Aµ
cl(x) =

√
2A⊙ℜ

{
e−iω(t−z)

∫
d2k̄⊥ ε

∗µ
⊙ (k̄) δσ⊥(k̄

x)δσ⊥(k̄
y)eik̄

x xeik̄
y y

}
=

√
2A⊙ℜ

{
e−iω(t−z) ε∗µ⊙ (k̄µ⊙)

∫
d2k̄⊥ δσ⊥(k̄

x)δσ⊥(k̄
y)eik̄

x xeik̄
y y

}
,

(2.78)

where we can replace εµ⊙(k̄) by εµ⊙(k̄
µ
⊙) because of the smallness of the transverse

components of k̄. (Recall that k̄µ⊙ = (ω, 0, 0, ω).) To continue, we may note that the
integral, ∫ ∞

−∞
dq̄ eiq̄xδσ(q̄) = e−x2σ2/4 , (2.79)

so that we finally obtain,

Aµ
cl(x) =

√
2A⊙ℜ

[
e−iω(t−z)ε∗µ⊙ (k̄µ⊙) e

−(x2+y2)/(4ℓ2⊥)
]
. (2.80)

This is indeed a wave of circular polarization along the z-axis, with finite size in the
x–y plane.

Our approximation that σ∥ is negligible gives us a beam of infinite spatial extent
along the direction of propagation (here, the z axis). Were we to stop short of the
σ∥ → 0 limit, we would find a finite size in this direction too. The occupation number,
which is divergent for infinite extent in the z-direction, would also become finite for
nonvanishing σ∥.

The classical field in eq. (2.80) describes a beam of light that does not spread in the
transverse direction, in apparent contradiction to the non-zero transverse momenta
the integral contains. This seeming contradiction is lifted when we compute the field
of eq. (2.71) to the next order in 1/(ωℓ⊥) and t/ℓ⊥. The result for short enough times
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is,

Aµ
cl(x) =

√
2A⊙ℜ

{
exp[−iω(t− z)]

1 + i t
2ωℓ2⊥

ε∗µ⊙ (k̄µ⊙) exp

[
− (x2 + y2)

4ℓ2⊥[1 + it/(2ωℓ2⊥)]

]}
+
A⊙√
2
ℜ
{
exp[−iω(t− z)]

[
i
x

ℓ2⊥
∂k̄xε

∗µ
⊙ (k̄)

∣∣∣
k̄=k̄⊙

+ i
y

ℓ2⊥
∂k̄yε

∗µ
⊙ (k̄)

∣∣∣
k̄=k̄⊙

]
× exp

[
−(x2 + y2)

4ℓ2⊥

]}
+ · · · .

(2.81)

In the classical limit, the Compton wavelength ℓc of a point-like particle must
be unobservably small. However, there is (in general) no need for the wavelength
of massless waves to be small. On the contrary, finite-wavelength classical waves
are quotidian phenomena, and propagate along the pages of many classical-physics
textbooks.

In the scattering of two point-like particles, this requirement on ℓc would be vio-
lated if the particles approach at distances smaller than (or of order of) their Compton
wavelength, because then the underlying wave nature of the particles becomes impor-
tant. Thus we arrive at the conclusion that classical scattering of two particles obtains
only when the impact parameter b ̸= 0.

In contrast, for a wave of wavelength λ̄ interacting with a particle, we simply
require that λ̄ be much larger than the Compton wavelength ℓc of the particle. When
this is the case, the messengers comprising the wave cannot resolve the quantum
structure of the particle. For the classical point-particle approximation to be valid,
we further require that λ̄ should be large compared to the finite size ℓw of the particle’s
wave packet. We thus have the requirement,

ℓc ≪ ℓw ≪ λ̄ , (2.82)

for classical interactions of a wave with a particle of Compton wavelength ℓc. There
is no a priori constraint on the impact parameter b.

h

γγ

φ φ

φ

φ

γ γ

φ

Figure 2.3: While the t-channel graviton exchange contribution ex-
ists for a photon interacting gravitationally with a scalar, this is not

true in electromagnetic case

As exemplified in Fig. 2.3, in the electromagnetic scattering of a photon off a
charged particle, there is no t-channel contribution. Correspondingly we are primarily
interested in the b ≃ 0 case (More precisely, we are interested in b smaller than the
transverse size of the beam). We will explore this in more detail below. In contrast,
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in the gravitational scattering of a photon off a neutral particle, there are both s- and
t-channel contributions. In this case, we are interested in general b.

The interaction between our particle and our wave introduces another length scale
to consider, namely the scattering length ℓs. Let q = ℏq̄ be a characteristic momentum
exchange associated with the interaction; then the scattering length is defined to be,

ℓs =
1√
|q̄2|

. (2.83)

The value of the scattering length depends on the details of the scattering process.
In the case where two point-like particles scatter, for instance, one finds that ℓs ∼ b.
In the case at hand where a particle interacts with a wave this need not be the case.
Indeed for an s channel processes it is more natural to expect ℓs to be determined by
the off-shellness of intermediate propagators such as s−m2. For definiteness let us take
the momentum of the incoming particle to be p1 = mAvA while the incoming wave
has characteristic wavenumber k̄⊙. Then s −m2

A = 2ℏk̄⊙ · p1, so that the scattering
length should be,

ℓs ∼
1

k̄⊙ · vA
. (2.84)

This is simply of the order of the wavelength of the incoming wave.
We turn next to the construction of the incoming state. As in ref. [166] and in

eq. (2.9), we write the point particle as a superposition of plane-wave states weighted
by a wavefunction ψ(p). We can then write the messenger wave as a coherent state
of helicity σ characterized by the waveshape α(k). We start with a basis of states
constructed out of coherent states of definite helicity |ασ⟩ for the messenger and
plane-wave states for the massive particle,

|p1 ασ
2 ⟩ = |p1⟩|ασ

2 ⟩ . (2.85)

Our initial state then takes the form,

|ψw,in⟩ =
∫
dΦ(p1) ψA(p1) e

ib·p1/ℏ|p1 ασ
2 ⟩ . (2.86)

The impact parameter b now separates the particle from the center of the beam in the
far past. As in the earlier discussion, the state is normalized to unity, ⟨ψw,in|ψw,in⟩ = 1.
We will leave the ‘in’ subscript implicit in the case of wave scattering, so that we can
also avoid confusion with the incoming two-particle state for the two-body problem
denoted as |ψin⟩.

Information about the classical four-velocity of the point particle is hidden inside
ψA(p). The explicit example studied in ref. [166] made use of a linear exponential
(which slightly counter-intuitively reduces to a Gaussian in the nonrelativistic limit).
In the same way, the information about the overall momentum K⊙ of the messenger
wave is hidden inside α(k). For the wave scattering, we will make use of the co-
herent wave shape α(k) chosen in eq. (2.68) corresponding to the choice of ᾱ(k) of
eq. (2.69), independent of ℏ as desired. We will elucidate inequalities between the
various parameters defining the beam below, where relevant.
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2.3 Extension with classical spinning particles

We will comment here briefly on how to extend the previous construction to mas-
sive external particles which have a large classical angular momentum, following the
Schwinger construction [194] developed in the KMOC formalism in [128]. We can
define a set of 2s+1 harmonic oscillators for the massive little group SU(2), in terms
of which a generic spin vector can be expressed

[aa, a†b] = δab S =
ℏ
2
a†aσ

a
ba

b, (2.87)

where σa
b are the standard Pauli matrices. Using eq. (2.87), it is easy to see that the

spin vector S obeys the expected algebra

[Si, Sj ] = iℏϵijkSk . (2.88)

The arbitrariness in the choice of the quantization axis is related to the spinorial
rotation U ∈ SU(2), which is related to the vector rotation O ∈ SO(3) for the spin
vector

aa → Ua
b a

b, a†a → U b
aa

†
b = a†b(U

†)ba ⇒ Si → OijSj (2.89)

Crucially, eq. (2.88) is invariant under this transformation. A generic spin s state is
then defined as

|s, {a}⟩ ≡ |s, {a1 . . . a2s}⟩ =
1√
(2s)!

a†a1a
†
a2 . . . a

†
a2s |0⟩ ≡

(a†a)⊙2s√
(2s)!

|0⟩. (2.90)

Spin coherent states are then defined [195–197] as eigenstates of aa:

|αS⟩ := e−
1
2
α∗
aα

a
eα

aa†a |0⟩ → aa|αS⟩ = αa|αS⟩ . (2.91)

where α∗
a is the complex conjugation of the spinor-valued “spin shape” αa. The classical

limit is obtained when

αa =
ᾱS

ℏ
→ ∥α∥ ≡

√
α̃aαa ℏ→0∼ ℏ−1/2 , (2.92)

since this implies the expectation value for spin operator gives back the classical value〈
Si
〉
αS =

ℏ
2
(α∗σiα) =

1

2
(ᾱ∗σiᾱ) . (2.93)

Moreover, this implies that the uncertainty principle is obeyed in the spin space〈
SiSj

〉
αS

ℏ→0∼
〈
Si
〉
αS

〈
Sj
〉
αS , (2.94)

as we will also discuss later in section 5.3.
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Chapter 3

Event shapes and light-ray
operators

We would like to revisit here the derivation of event shapes in light of the recent devel-
opments in classical gravitational physics. In particular, we would like to understand
how the energy carried away by gravitational waves, which is collected by a detector
localized in a direction n̂, is described at the quantum level. We will see that the
corresponding operator is related to the Isaacson effective stress tensor [198, 199] by
the integration over the retarded working time of the detector, and its action can be
computed explicitly using standard techniques in the asymptotic expansion. Using
the Bondi gauge framework for asymptotically flat spacetimes, we will show that the
energy flow operator can be also written in terms of the Bondi news squared term
and this provides an extension of ANEC operator at null infinity to a shear inclusive
ANEC. With our detector interpretation, the latter naturally provides the sum of en-
ergies of all massless quanta (i.e. radiation) emitted in a direction n̂ when acting on
on-shell states. Motivated by that, we will define a new system of light-ray operators
for linearized gravity, which will naturally combine with the standard stress tensor
definition in scalar and gauge theories providing a unified treatment of all massless
particles at I±.

3.1 Introduction to event shapes in collider physics

Let’s consider the process of electron-positron annihilation in QCD: for a generic
outcome of the scattering process

e+ e− → X, (3.1)

we would like to understand the properties of the emitted particles as captured by
one (or many) physical detectors located at spatial infinity. To make contact with
the structure at null infinity, it is convenient to work with flat null coordinates for
Minkowski spacetime

ds2 = dudr − r2dzdz̄ (3.2)

so that the null boundaries are located at r → +∞ while keeping (u, z, z̄) fixed. On
this hypersurface (z, z̄) are stereographic coordinates on the celestial sphere. This set
of coordinates correspond to wrapping up the transverse spatial coordinates of the
light-sheet at infinity

ds2 = dx−dx+ − dx1dx1 − dx2dx2 (3.3)
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via the transformation

x− → u+ rzz̄ x+ → r x1 → 1

2
r(z + z̄) x2 → −1

2
ir(z − z̄). (3.4)

Instead of considering the total cross section for the process in eq. (3.1)

σtot(p1, p2) :=
∑
X

(2π)4δ4(p1 + p2 − kX)|Me+ e−→X |2, (3.5)

where p1 and p2 are the incoming momenta of e+ and e− and kX is the sum of the
outgoing momenta, we introduce a less inclusive observable by defining a weight w(X)
such that

σW (p1, p2) :=
1

σtot(p1, p2)

∑
X

(2π)4δ4(p1 + p2 − kX)w(X)|Me+ e−→X |2

=
1

σtot(p1, p2)

∑
X

⟨p1p2|S†|X⟩w(X)⟨X|S|p1p2⟩, (3.6)

which is the so-called “weighted cross section”. Different choices of the weight factors
w(X) can tell us about different properties of the distribution of outgoing particles,
like the flow of quantum number or of energy and momentum in a particular direction
on the celestial sphere.

Of particular interest is the to the choice of w(X) corresponding to the energy
flow. Given an external on-shell state |X⟩ = |k1 . . . kn⟩ of n massless particles with
kµX =

∑n
i=1 k

µ
i , we define

wẼ(X)(k1, ..., kn) :=
n∑

i=1

Eiδ
2(Ωk̂i

− Ωn̂), (3.7)

where kµi = (Ei,ki) is the 4-momentum of the individual particles and Ωk̂i
= ki

|ki| is
the solid angle in the direction of ki [150, 151]. The weighted cross section measures
the distribution of energy in the final state that flows in the direction of n̂, and as such
we can interpret wE(X) as an eigenvalue of the average null energy operator (ANEC)
at spatial infinity

Ẽ(n̂) =
∫ +∞

0
dt lim

r→+∞
r2 n̂iT0i(t, rn̂), (3.8)

where the energy momentum tensor is always understood to be normal ordered and t
is the physical working time of the detector. Looking at the energy flow operator in
eq. (3.8) it is easy to generalize it to a momentum flow operator (which is well-known
in the jet literature [200, 201])

P̃µ(n̂) =

∫ +∞

0
dt lim

r→+∞
r2 n̂iTµi(t, rn̂), (3.9)

whose action on a state gives the linear momentum flowing the particular direction n̂

wP̃j
(X)(k1, ..., kn) :=

n∑
i=1

(kj)iδ
2(Ωk̂i

− Ωn̂). (3.10)
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One can define also the expectation value of the ANEC operator at infinity, namely
the 1-point energy event shape

⟨Ẽ(n̂)⟩ := 1

σtot(p1, p2)
⟨p1p2|S†Ẽ(n̂)S|p1p2⟩, (3.11)

where it is always understood that Ẽ(n̂) acts on the set of outgoing states |X⟩ inserted
via the completeness relation, as usual in the Schwinger-Keldysh formalism.

Figure 3.1: The radiation due to the scattering of two massive ob-
jects is captured by two detectors located at spatial infinity in the

directions n̂1(z1, z̄1) and n̂2(z2, z̄2).

In the case of two (or more) detectors, as previously mentioned, we can also define
the energy-energy correlator which is related to the 2-pt Wightman function of two
ANEC operators at infinity inserted at different points on the celestial sphere

⟨Ẽ(n̂)Ẽ(n̂′)⟩ := 1

σtot(p1, p2)
⟨p1p2|S†Ẽ(n̂)Ẽ(n̂′)S|p1p2⟩. (3.12)

It is quite interesting to analyze this 2-pt correlator for the gravitational radiation in
the classical limit, where in the most general case a superposition of coherent states
represents the radiation at the quantum level.

In flat null coordinates the momentum flow operator can be written directly in
terms of the energy flow

Pµ(n̂) = nµE(n̂) = nµ
∫ +∞

−∞
du lim

r→∞
r2Tuu(u, r, zn̂, z̄n̂), (3.13)

where u is the retarded time and identify n̂ with the related coordinates on the celestial
sphere

n̂ =
(
z + z̄,−i(z − z̄), 1− |z|2

)
−→ n̂ ⇔ (zn̂, z̄n̂). (3.14)

Here, we emphasize that we use E(n̂) in place of Ẽ(n̂) for technical convenience. One
can work in Bondi gauge where the detector would register the energy flow as given by
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Ẽ(n̂) (i.e. the standard local energy factor). We will do this later on for gravitational
event shapes in section 4.4.

3.2 Light-ray operators in QFT

In this section, we define the family of light-ray operators under consideration and
make contact with their physical significance and in particular with the correspond-
ing surface charges of null-sheet symmetry generators. Light-ray operators depend
implicitly on a choice of null-sheet and we choose future null infinity.

In flat-null coordinates, our family of light-ray operators is defined by

E(n̂) =
∫ +∞

−∞
du lim

r→∞
r2Tuu(u, r, zn̂, z̄n̂),

K(n̂) =

∫ +∞

−∞
duu lim

r→∞
r2Tuu(u, r, zn̂, z̄n̂),

Nz(n̂) =

∫ +∞

−∞
du lim

r→∞
r2Tuz(u, r, zn̂, z̄n̂),

Nz̄(n̂) =

∫ +∞

−∞
du lim

r→∞
r2Tuz̄(u, r, zn̂, z̄n̂). (3.15)

We will collectively denote these operators by L(n̂) = {E(n̂),K(n̂),Nz(n̂),Nz̄(n̂)}.
This family of light-ray operators can be understood as surface densities1 for the

corresponding conserved charges of the future null boundary of Minkowski spacetime.
To see this, consider an affine transformation of the null surface generator [202]

δu = A+B u, (3.16)

where A and B are arbitrary constants. Since limr→∞ r2Tuu(u, r, z, z̄) corresponds
to the generator of null diffeomorphisms, we can integrate it to obtain either the
generator of null translation δu = A

1

2

∫ +∞

−∞
du

∫
d2z lim

r→∞
r2Tuu(u, r, z, z̄) (3.17)

or of dilatations δu = B u

1

2

∫ +∞

−∞
du

∫
d2z u lim

r→∞
r2Tuu(u, r, z, z̄), (3.18)

which is an equivalent definition of
∫
d2zK(z, z̄). The latter is called “boost mass”

Mboost in the literature and it is usually defined for null-like horizons2 using the
1There are various subtleties in such definition as we will discuss explicitly here. Technically

surface densities are defined up to boundary terms that do not change the total charge. Thus, only
the equivalence class of a light-ray operator is uniquely defined. Moreover we are interested in the
standard (hard) charge coming from contracting the stress tensor Tµν with a Killing vector ξµ, which
might differ from the isometry charge in the covariant phase space formulation.

2More generically, choosing a spatial slice of the null surface u0 = Λ(z, z̄), a canonical “boost
energy” can be defined [202]

1

2

∫
d2z

∫ +∞

Λ(z,z̄)

du (u− Λ(z, z̄)) lim
r→∞

r2Tuu(u, r, z, z̄), (3.19)

which turns out to be connected with the notion of “area operator”, providing thus a link to the
concept of generalized entropy and to the generalized second law.
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boost Killing vector of a causal wedge in Minkowski spacetime [202–204]. From an
entanglement entropy perspective in conformal field theory, it was found that the
modular hamiltonian for spacetime regions which have a future null-like horizon has
a natural local expression [205] in terms of E(n̂) and K(n̂).

It is interesting to discuss the boost mass, associated to an asymptotic boost
symmetry, from a physical perspective [206]. While for empty Minkowski spacetime
the boost mass is exactly zero, for more general non-asymptotically flat spacetimes it
might be relevant for a proper formulation of the first law of black hole thermodynam-
ics. In particular, it turns out that while the ADM mass MADM measures the total
“monopole” distribution of the matter in the spacetime, the boost mass Mboost mea-
sures the total “dipole” moment of the mass distribution at infinity [206]. Since we are
only considering QFTs on a flat Minkowski background, we will not delve deeper into
this topic. However, as we will see we will find the monopole versus dipole distinction
relevant for understanding the action of K(n̂) on on-shell states from our detector
perspective. From now on, we will call K(n̂) the boost energy (surface) density. In
the same spirit, the ANEC at infinity can be called null energy (surface) density.

Following a similar line of reasoning one finds that Nz(n̂) and Nz̄(n̂) are associated
to the local vector fields ∂z and ∂z̄, i.e. with the angular momentum flux charge

1

2

∫ +∞

−∞
du

∫
d2z lim

r→∞
r2Tuz(u, r, z, z̄) ,

1

2

∫ +∞

−∞
du

∫
d2z lim

r→∞
r2Tuz̄(u, r, z, z̄).

(3.20)

Therefore Nz(n̂) and Nz̄(n̂) can be thought as angular momentum flux (surface)
densities. More generally, this family of non-local light-ray operators appear naturally
in Einstein equations solved near null infinity and in particular in (BMS and Poincaré)
balance flux laws [207], where they represent the radiative contribution to the fluxes.

Here we interpret physically the insertion of our light-ray operators as an insertion
of a physical detector on the boundary of Minkowski spacetime. We will be interested
in how these operators act on on-shell states and we will then compute their expec-
tation values in perturbation theory, as in the standard event shapes literature.

3.3 The Spin-0 light-ray operators

Here, we consider a theory of self-interacting massless scalars with a potential Q(ϕ)
that is polynomial in the fields and without derivative interactions. We derive explicit
expressions for our family of light-ray operators in terms of the scalar creation and
annihilation operators.

The Hilbert stress tensor Tmatter
µν = − 2√

|g|
δSmatter

δgµν for our theory of scalars is simply

T scalar
µν = (∂µϕ)(∂νϕ)− ηµν

(
1

2
∂αϕ∂

αϕ−Q(ϕ)

)
. (3.21)

The scalar stress tensor components which are relevant for the light-ray operators are3

T scalar
uu (x)=(∂uϕ)(∂uϕ), T scalar

uz (x)=(∂uϕ)(∂zϕ), T scalar
uz̄ (x)=(∂uϕ)(∂z̄ϕ).

(3.22)

3One can easily work in a more general setting with derivative interactions. However, such terms
will drop off due to their scaling in 1

r
in the limit that the null-sheet is pushed out to null-infinity. In-

stead, we prefer the interaction terms drop off directly from the structure of stress tensor components
since this more closely resembles scalar light-ray operators in the bulk (see appendix C).
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The next step is to substitute the leading term in the large r expansion of the scalar
field into the expressions above. However, to do this, we need to impose some bound-
ary conditions on the field.

Since we require the energy flux across I+ to be finite, we impose the following
falloff condition for the scalar field4

ϕ(u, r, z, z̄) =
ϕ(0)(u, z, z̄)

r
+O

(
1

r

)
, lim

u→±∞
ϕ(0)(u, z, z̄) = 0. (3.23)

Far away from interactions we can safely use the free field mode expansion

ϕ(x) =

∫
dΦ(p)

[
a(p)e−ip·x + a†(p)eip·x

]
(3.24)

and evaluate the field with the large r saddle-point estimate. Physically, r is the
distance from the detector to the region where the interaction is localized and it should
be much larger than the inverse of the smallest momentum scale that appears in the
S-matrix [201]. Note that in our coordinate conventions the canonical commutators
read

[a(p), a†(q)] =
4(2π)3

ωp
δ(ωp − ωq)δ

2(zp̂ − zq̂). (3.25)

The large r limit of such a Fourier integral is controlled by the exponents of the
exponentials

f(z, w) := ip · x = i
ωpu

2
+ i

ωpr

2
|z − w|2, (3.26)

where we use

xµ =
r

2

(
1 + zz̄ +

u

r
, z + z̄,−i(z − z̄), 1− zz̄ − u

r

)
,

pµ =
ωp

2
(1 + ww̄,w + w̄,−i(w − w̄), 1− ww̄) . (3.27)

as our parametrization for the coordinates and on-shell momentum [208, 209]. The
only saddle point is at (z, z̄) = (w, w̄). Making the following change of variables
(y1, y2) =

(
1
2(z + z̄),− i

2(z − z̄)
)

brings the exponentials into Gaussian form, which
integrates to

1

2

∫
d2z e−i

ωpr

2
(z−w)(z̄−w̄) =

∫
dy1dy2 e

−i
ωpr

2
(y21+y22) =

(2π)(−i)
rω

. (3.28)

Substituting into the mode expansion for ϕ(x) yields the leading term in the large r
limit

ϕ(0)(u, n̂) =
i

(8π2)

∫ +∞

0
dω
[
a†(ω, zn̂, z̄n̂)e

iωu
2 − a(ω, zn̂, z̄n̂)e

−iωu
2

]
. (3.29)

4Soft scalar modes are beyond the scope of this work, so we do not allow the scalar field asymptotic
expansion to have a constant piece around I+

± .
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When derivatives in z (or z̄) acts on field operators expressions, one can write5

∂zϕ
(0)(u, n̂) =

i

(8π2)

∫ +∞

0
dωp

[
∂zn̂a

†(ωp, zn̂, z̄n̂)e
i
ωpu

2 − ∂zn̂a(ωp, zn̂, z̄n̂)e
−i

ωpu

2

]
(3.30)

for the saddle point estimate of ∂zϕ(0) where the derivative acts on the creation and
annihilation operators localized around (w, w̄) = (zn̂, z̄n̂).

Inserting the saddle point estimate of ϕ(x) into the definition for the scalar ANEC
operator at infinity, we find

Escalar(n̂) =

∫
dΦ(p) ωp : a†(p)a(p) : δ2(zn̂ − zp̂), (3.31)

where we have set to zero all contributions proportional to δ(ωp1 +ωp2) since the only
cases that these constraints can be satisfied correspond to ωp1 → 0± and ωp2 → 0∓,
which are unphysical. The action of Escalar(n̂) on an on-shell state |X⟩ = |p1...pn⟩
gives

Escalar(n̂)|X⟩ =
n∑

i=1

(ωi) δ
2(zn̂ − zp̂i

)|X⟩, (3.32)

which is natural for an observer located at spatial infinity who is measuring the energy
flux along the retarded time u in flat null coordinates. Note that on-shell scattering
states are eigenstates of the ANEC operator in the detector limit whose eigenvalues
are weight functions similar to eq. (3.7).

Inserting eq. (3.29) into the definition of the boost energy density flux Kscalar(n̂)
yields

Kscalar(n̂) =

∫ +∞

−∞
du (u) lim

r→∞
r2

2∏
i=1

[∫ +∞

0
dωpi

ωpi

2(8π2)r

]
× :

[
a†(ωp1n̂)a(ωp2n̂)e

−i
(ωp2−ωp1 )

2
u + a(ωp1n̂)a(ωp2n̂)e

−i
(ωp1+ωp2 )

2
u + h.c.

]
: . (3.33)

It is convenient to change variables

ω− :=
ωp1 − ωp2

2
ω+ :=

ωp1 + ωp2

2
, (3.34)

where ω+ ∈ [max{−ω−, ω−},+∞[ and ω− ∈]−∞,+∞[ is a convenient slicing of the
integration region in the new variables.6 In the new variables,7

Kscalar(n̂) =
(−i)
8

∫ +∞

−∞

dω−
(2π)3

δ(1)(ω−)

∫ +∞

max{−ω−,ω−}
dω+ ((ω+)

2 − (ω−)
2)

× :
[
a† ((ω+ + ω−)n̂) a ((ω+ − ω−)n̂)− h.c.

]
:,

(3.35)

5Technically, we take first the saddle point estimate of the quantum field so that it will localize
on its point particle expression.

6The original frequencies are given by ωp1 = (ω+ +ω−) and ωp2 = (ω+ −ω−) and the integration
measure becomes dωp1dωp2 = 2dω−dω+.

7Here we have assumed, as before, that the other contributions dropped because they are unphys-
ical.
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where we have used the following distributional identity (for n = 1)∫
du (u)neiω−u = (2π)(−i)nδ(n)(ω−). (3.36)

The derivative acting on the energy delta function might seem troubling at first sight.
To develop more intuition, we study the action of this operator on on-shell states
|X⟩ = |p1...pn⟩:

Kscalar(n̂)|X⟩ = (−i)
4

∫ +∞

−∞

dω−
(2π)3

δ(1)(ω−)

∫ +∞

max{−ω−,ω−}
dω+ ((ω+)

2 − (ω−)
2)

×
n∑

i=1

(2π)3
4

ωpi

δ ((ω+ − ω−)− ωpi) δ
2(zn̂ − zp̂i

)|p1... (ω+ + ω−)n̂︸ ︷︷ ︸
i-th

...pn⟩. (3.37)

Then one can solve the ω+ integral

Kscalar(n̂)|X⟩ = 2
n∑

i=1

δ2(zn̂ − zp̂i
)

∫ +∞

−ωpi

dω(−iδ(1)(ω)) (ωpi + ω) |p1... (ωpi + ω)n̂︸ ︷︷ ︸
i-th

...pn⟩,

(3.38)

where we have relabelled ω− as ω. It is also enlightening to compare the simplest
matrix elements of Escalar(n̂) and Kscalar(n̂)

⟨q|Escalar(n̂)|p⟩ = 4(2π)3δ2(zn̂ − zp̂)δ
2(zq̂ − zn̂)δ(ωq − ωp),

⟨q|Kscalar(n̂)|p⟩ = 2δ2(zn̂ − zp̂)

∫ +∞

−ωp

dω(−iδ(1)(ω)) (ωp + ω) ⟨q⟩(ωp + ω)n̂

= 8(2π)3δ2(zn̂ − zp̂)δ
2(zq̂ − zn̂)(−iδ(1)(ωq − ωp)). (3.39)

It is well-known that in QFT the single contraction ⟨q|p⟩ must be interpreted in a
distributional sense; in order to properly define such objects one needs to smear them
with a well-behaved function (see [210, 211] and references therein). In the S-matrix
context, one usually considers outgoing states of the form8

|ψp,out⟩ =
∫

dΦ(p̃) ψp(p̃)|p̃⟩, (3.40)

where ψp(p̃) is a suitable real momentum wavefunction localized around p. Note that
|ψp,out⟩ → |p⟩ when ψp(p̃) → (2π)3(2Ep)δ

3(p − p̃). More generally, when ψp(p̃) is
sufficiently smooth then eq. (3.39) is well defined

⟨ψq,out|Escalar(n̂)|ψp,out⟩ = 4(2π)3
∫

dΦ(p̃)

∫
dΦ(q̃) ψp(p̃)ψq(q̃)

× δ(ωq̃ − ωp̃)δ
2(zn̂ − zˆ̃p)δ

2(zˆ̃q − zn̂),

⟨ψq,out|Kscalar(n̂)|ψp,out⟩ = 8(2π)3
∫

dΦ(p̃)

∫
dΦ(q̃) ψp(p̃)ψq(q̃)

× (−iδ(1)(ωq̃ − ωp̃))δ
2(zn̂ − zˆ̃p)δ

2(zˆ̃q − zn̂).

(3.41)

Looking at eq. (3.41), the interpretation of Kscalar(n̂) is also much more clear: while
8A similar idea applies to the ingoing case.
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δ(ωq̃−ωp̃) can be considered the limit of a suitable localized function around ωq̃ = ωp̃,
it turns out that δ(1)(ωq̃ − ωp̃) is probing a dipole-like pattern around ωq̃ = ωp̃ (see
Fig. 3.2a and Fig. 3.2b respectively).

(a) Standard Gaussian shape peaked around
ωq̃ = ωp̃, which converges to δ(ωq̃−ωp̃) in the

limit of zero width.

(b) Dipole profile centered around ωq̃ = ωp̃,
which converges to δ(1)(ωq̃ − ωp̃) in the limit

of zero width.

Figure 3.2: Comparison of the expectation values of
⟨ψq,out|Escalar(n̂)|ψp,out⟩ and ⟨ψq,out|Kscalar(n̂)|ψp,out⟩ as a func-

tion of the energy ω.

The final operator we consider is Nz,scalar(n̂), which after using eq. (3.29) and
eq. (3.30) is

Nz,scalar(n̂) =
i

4(2π)3

∫
dωp ωp :

[
a† (ωp, zn̂, z̄n̂) ∂zn̂a (ωp, zn̂, z̄n̂)

− a (ωp, zn̂, z̄n̂) ∂zn̂a
† (ωp, zn̂, z̄n̂)

]
: . (3.42)

More compactly,

Nz,scalar(n̂) = i

∫
dΦ(p) δ2

(
zn̂ − zp̂

)
:

[
a†(ωpn̂)

↔
∂ zn̂a(ωpn̂)

]
:, (3.43)

where

i

2
∂z = Luz =

i

r
(∂ux

µ) (∂zx
ν)

[
pµ

∂

∂pν
− pν

∂

∂pµ

]
(3.44)

is the standard orbital angular momentum operator. A similar analysis can be re-
peated for the antiholomorphic component by flipping z ↔ z̄.

3.4 The Spin-1 light-ray operators

Having found explicit expressions for the light-ray operators for massless scalar the-
ories, we now derive similar results for the light-ray operators for massless spin-1
theories. Using the Hilbert stress tensor Tmatter

µν = − 2√
|g|

δSmatter

δgµν for pure gauge theo-

ries, one obtains

Tµν
photon = FµαF ν

α +
1

4
ηµνFαβFαβ (3.45)
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for Maxwell U(1) theory where Fµν := ∂µAν − ∂νAµ is the U(1) field strength. The
generalization to the non-abelian gauge group SU(N) is straightforward

Tµν
gluon = 2Tr(T aT b)

[
(F a)µα(F b) ν

α +
1

4
ηµν(F a)αβ(F b)αβ

]
, (3.46)

where F a
µν := ∂µA

a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν is the SU(N) field strength. Here, the

SU(N) generators are chosen to be hermitian [T a, T b] = ifabcT c and are normalized
according to Tr(T aT b) = 1

2δ
ab.

To discuss the large r limit of the stress-tensor, we need the large r limit of the
gauge field, which requires making a gauge choice, as well as, specifying boundary
conditions. We will adopt the radiation gauge [212]

Au = 0, r2∇µAa
µ(x)

∣∣
I− = 2

[
r2∂uA

a
r − ∂zA

a
z̄ − ∂z̄A

a
z

]∣∣
I− = 0 (3.47)

and we require the gauge field components to satisfy the following falloff conditions
at infinity

Az(u, r, z, z̄) = A(0)
z (u, z, z̄) +O

(
1

r

)
, Ar(u, r, z, z̄) =

1

r2
A(2)

r (u, z, z̄) +O
(

1

r3

)
,

(3.48)

which are needed to have a finite energy and angular momentum flux at I+. The
stress tensor components relevant for our family of light-ray operators in eq. (3.46)
are

Tuu =
4

r2
(∂uA

(0),a
z )(∂uA

(0),a
z̄ ), (3.49)

Tuz =
2

r2
(∂uA

(0),a
z )(2∂[zA

(0),a
z̄] + gfabcA(0),b

z A
(0),c
z̄ ) +

2

r2
(∂uA

(0),a
z )(∂uA

(2),a
r ), (3.50)

Tuz̄ =
2

r2
(∂uA

(0),a
z̄ )(2∂[z̄A

(0),a
z] + gfabcA

(0),b
z̄ A(0),c

z ) +
2

r2
(∂uA

(0),a
z̄ )(∂uA

(2),a
r ) (3.51)

up to terms of order O(1/r3).
We assume that we can work perturbatively with energies above the confinement

scale Λ > 0 and can formally talk about asymptotic gluon states. We use the following
parametrization and projection of the polarization vectors

ε+,µ(q) =
1√
2
(z̄q, 1,−i,−z̄q), ε−,µ(q) =

1√
2
(zq, 1, i,−zq),

(∂zx
µ)ε+µ (q) = 0 = (∂z̄x

µ)ε−µ (q), (∂zx
µ)ε−µ (q) = − r√

2
= (∂z̄x

µ)ε+µ (q) (3.52)

and the canonical commutation relations

[aσ(p), a
†
σ′(q)] =

4(2π)3

ωp
δσσ′δ(ωp − ωq)δ

2(zp̂ − zq̂). (3.53)

Starting with the gluon-ANEC operator at null infinity, we find

Egluon(n̂) =

∫
dΦ(p) ωp δ

2(zn̂ − zp̂)
∑
σ=±1

:
[
a†,aσ (ωpn̂)a

a
σ(ωpn̂)

]
:, (3.54)
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where the saddle point estimates for A(0),a
z and A(0),a

z̄ are

A(0),a
z (u, n̂) =

−i
(8
√
2π2)

∫ +∞

0
dωp

[
a†,a− (ωpn̂)e

i
ωpu

2 − aa+(ωpn̂)e
−i

ωpu

2

]
, (3.55)

A
(0),a
z̄ (u, n̂) =

−i
(8
√
2π2)

∫ +∞

0
dωp

[
a†,a+ (ωpn̂)e

i
ωpu

2 − aa−(ωpn̂)e
−i

ωpu

2

]
. (3.56)

Analogous to the scalar case, on-shell gluon states |X⟩ = |pσ1
1 , ..., p

σn
n ⟩ are eigenstates

of the gluon-ANEC at infinity

Egluon(n̂)|X⟩ =
n∑

i=1

(ωi) δ
2(zn̂ − zp̂i

)|X⟩. (3.57)

The gluon boost energy density operator Kgluon(n̂) follows straightforwardly

Kgluon(n̂) =
(−i)
4

∫ +∞

−∞

dω−
(2π)3

δ(1)(ω−)

∫ +∞

max{−ω−,ω−}
dω+ ((ω+)

2 − (ω−)
2)

×
∑
σ=±1

:
[
aa,†σ ((ω+ + ω−)n̂) a

a
σ ((ω+ − ω−)n̂)

]
: .

(3.58)

These operators are especially simple; the only fundamental difference between
{Egluon,Kgluon} and {Escalar,Kscalar} is the sum over helicities.

On the other hand, the spin-1 angular momentum flux operators are complicated
by boundary terms, which come from integrating by parts in u. Explicitly,∫

du lim
r→+∞

r2Tuz

=

∫
du
{
4(∂uA

(0),a
z )(∂zA

(0),a
z̄ )

}
− 2A(0),a

z (−∂uA(2),a
r + ∂zA

(0),a
z̄ + ∂z̄A

(0),a
z )

∣∣∣
I+
+

,∫
du lim

r→+∞
r2Tuz̄

=

∫
du
{
4(∂uA

(0),a
z̄ )(∂z̄A

(0),a
z )

}
− 2A

(0),a
z̄ (−∂uA(2),a

r + ∂zA
(0),a
z̄ + ∂z̄A

(0),a
z )

∣∣∣
I+
+

,

(3.59)

where we have used the leading u-equation of motion

r2DµF
µ
u

= 2∂u

[
−∂uA(2),a

r + ∂zA
(0),a
z̄ + ∂z̄A

(0),a
z

]
+ 2gfabc

[
A(0),b

z ∂uA
(0),c
z̄ +A

(0),b
z̄ ∂uA

(0),c
z

]
= 0.

(3.60)

It is worth remarking that the non-abelian contribution appears through the boundary
term in eq. (3.59); this is similar to the case when the light-sheet is placed in the bulk
as shown in appendix C. For the first contribution to the angular momentum flux
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density, we use the identity

4(∂uA
(0),a
z )(∂zA

(0),a
z̄ )

= 2(∂uA
(0),a
z )(∂zA

(0),a
z̄ )− 2(∂z∂uA

(0),a
z )A

(0),a
z̄ + 2∂z

[
(∂uA

(0),a
z )A

(0),a
z̄

]
,

(3.61)

just to isolate the contribution coming from the total derivative. Regarding the saddle
point estimates for ∂zA

(0),a
z and ∂zA

(0),a
z̄ , we have

∂zA
(0),a
z (u, n̂) =

−1

(4
√
2π2)

∫ +∞

0
dωp

{
ei

ωpu

2 Luza
†,a
− (ωp, zn̂, z̄n̂)− e−i

ωpu

2 Luza
a
+(ωp, zn̂, z̄n̂)

}
,

∂zA
(0),a
z̄ (u, n̂) =

−1

(4
√
2π2)

∫ +∞

0
dωp

{
ei

ωpu

2 Luza
†,a
+ (ωp, zn̂, z̄n̂)− e−i

ωpu

2 Luza
a
−(ωp, zn̂, z̄n̂)

}
.

(3.62)

This gives the following representation for the angular momentum flux density

• An orbital angular momentum contribution

N orb
z,gluon(n̂) = i

∫
dΦ(p) δ2(zn̂ − zp̂)

∑
σ=±1

:
[
a†,aσ (ωpn̂)

↔
∂ zn̂a

a
σ(ωpn̂)

]
: . (3.63)

• A spin type contribution

N spin
z,gluon(n̂) = −i

∫
dΦ(p) δ2(zn̂ − zp̂)

∑
σ=±1

σ : ∂zn̂

[
a†,aσ (ωpn̂)a

a
σ(ωpn̂)

]
:

= i

∫
dΦ(p) ∂zn̂δ

2(zn̂ − zp̂)
∑
σ=±1

σ :
[
a†,aσ (ωpn̂)a

a
σ(ωpn̂)

]
: .

(3.64)

This piece is expected from the spin structure of the point particle stress tensor
[213]. Indeed the covariant spin matrix reads [214] (with σ helicity)

Sµν =
σ

p0


0 0 0 0
0 0 p3 −p2
0 −p3 0 p1

0 p2 −p1 0

 =


0 0 0 0

0 0 σ(1−zz̄)
1+zz̄

iσ(z−z̄)
1+zz̄

0 −σ(1−zz̄)
1+zz̄ 0 σ(z+z̄)

1+zz̄

0 − iσ(z−z̄)
1+zz̄ −σ(z+z̄)

1+zz̄ 0


(3.65)

and the component Szz̄ = 1
r2
(∂zx

µ)(∂z̄x
ν)Sµν = iσ2 enters in the total hard

angular momentum operator as showed in appendix A of [215].

Please note that the splitting of angular momentum into an orbital and spin part is not
gauge invariant, and it is done here only for convenience in analyzing different terms.
The boundary terms in eq. (3.59) are associated with soft contributions.9 Using the
equations of motion, we can write

−2(−∂uA(2)
r + ∂zA

(0)
z̄ + ∂z̄A

(0)
z )
∣∣∣
I+
+

= 2

∫ +∞

−∞
du [A(0)

z ,
↔
∂ uA

(0)
z̄ ]. (3.66)

9Similar boundary terms were also observed in [209], although He and Mitra considered the total
angular momentum flux charge.
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This makes it clear that for pure Maxwell theory (which is conformal) this term
vanishes identically. Using the saddle point we obtain

−2(−∂uA(2),a
r +∂zA

(0),a
z̄ + ∂z̄A

(0),a
z )

∣∣∣
I+
+

= −2igfabc
∫

dΦp
∑
σ=±1

[
a†,bσ (p)acσ(p)

]
δ2(zn̂ − zp̂), (3.67)

where in the last line we recognize the gluon number density operator

ρagluon(p) := −ifabc
∑
σ=±1

[
a†,bσ (p)acσ(p)

]
, (3.68)

which contributes to the hard part of the non-abelian (large gauge) charge [1, 209].
Defining the boundary value of the field [209, 212]

Ca
z (z, z̄) := Aa

z(u = +∞, z, z̄) Ca
z̄ (z, z̄) := Aa

z̄(u = +∞, z, z̄) (3.69)

the total boundary contribution to the angular momentum flux becomes

− 2A(0),a
z (−∂uA(2),a

r + ∂zA
(0),a
z̄ + ∂z̄A

(0),a
z )

∣∣∣
I+
+

= 2gCa
z (z, z̄)

∫
dΦp ρagluon(p)δ

2(zn̂ − zp̂). (3.70)

This contribution is soft, since it contains the soft mode Ca
z (z, z̄).10 It is also contains

the hard gluon charge, which might seem strange at first. We can gain some insight by
turning on a matter source jµ, which modifies the u-equation of motion and therefore
the final density of angular momentum flux∫

du lim
r→+∞

r2Tuz =

∫
du
{
4(∂uA

(0),a
z )(∂zA

(0),a
z̄ )

}
+

∫
duA(0),a

z ja,(2)u + Ca
z q

a
H ,∫

du lim
r→+∞

r2Tuz̄ =

∫
du
{
4(∂uA

(0),a
z̄ )(∂z̄A

(0),a
z )

}
+

∫
duA

(0),a
z̄ ja,(2)u + Ca

z̄ q
a
H ,

(3.71)

where

qH(z, z̄) :=

∫ +∞

−∞
du

[
2[A(0)

z ,
↔
∂ uA

(0)
z̄ ] + j(2)u

]
(3.72)

is the density of the hard color charge. These terms were first found by Ashtekar et
al. [216, 217] in the abelian spin 1 case (coupled with a matter distribution) and they
are related to mixing of the so-called radiative modes (i.e. our A(0),a

z and A(0),a
z̄ ) and

of coulombic modes (i.e. the hard charge distribution, potential modes). A similar
expression holds for Nz̄,gluon(n̂) which can be obtained by exchanging z ↔ z̄ and
flipping all helicity terms (+) ↔ (−).

10Please notice that as in scalar case, we could have changed the boundary conditions to set
Ca

z (z, z̄) = 0 in order to allow only hard modes.
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3.5 The Spin-2 light-ray operators

It is well-known that the equivalence principle prevents a universal definition of a stress
tensor for the gravitational field. One can try to define various nontensorial objects
called “pseudotensors” which when linearized transform as Lorentz tensors. However,
all such definitions are not gauge invariant (a notable example is the Landau-Lifshitz
pseudotensor [218]). In this work, we will only consider linearized gravity, i.e. we
split the metric tensor as gµν = ηµν +hµν and assume |hµν(x)| ≪ 1. In the physically
relevant situation of gravitational waves propagating in an asymptotically flat region,
a suitable notion of a gauge-invariant stress tensor for long-wavelength modes can be
defined using the so-called Isaacson averaging procedure [198, 199]. In our conventions,
the effective stress tensor for gravitational waves is [219]

T eff,GW
µν =

κ2

32πG
⟨∂µhαβ∂νhαβ⟩, (3.73)

where ⟨·⟩ stands for the average over short-wavelength graviton modes.11 It is possible
to extend the Isaacson construction of an effective gravitational wave stress tensor to
general classical theories of gravity [220]: for example, the leading order contribution
at infinity is proportional to the Ricci mode for f(R) theories [221], conversely the
spectrum is unchanged for most higher derivative theories of gravity since higher
derivative terms usually drop off [220]. It is worth stressing that this stress-tensor
is defined canonically a la’ Noether, and therefore it represents only the physical
energy and the momentum flux gravitational wave contribution whereas the angular
momentum requires a different analysis.

Asymptotically flat geometries have the following large r asymptotic expansion
near I+ in the Bondi gauge [222, 223]

ds2 = dv2 + 2dvdr − 2r2γζζ̄dζdζ̄

− 2mB

r
dv2 − rCζζdζ

2 − rCζ̄ζ̄dζ̄
2 −DζCζζdvdζ −Dζ̄Cζ̄ζ̄dvdζ̄

− 1

r

[
4

3
Nζ −

1

4
∂ζ(CζζC

ζζ)

]
dvdζ − 1

r

[
4

3
Nζ̄ −

1

4
∂ζ̄(Cζ̄ζ̄C

ζ̄ζ̄)

]
dvdζ̄ + ... (3.74)

where the leading contribution comes from Minkowski spacetime, and subleading con-
tributions encode deviations from the flat background. The system of coordinates as

xµ =

(
v + r, r

ζ + ζ̄

(1 + ζζ̄)
,−ir ζ − ζ̄

(1 + ζζ̄)
, r

1− ζζ̄

(1 + ζζ̄)

)
(3.75)

where v = t − r is the retarded time. In this formulation mB(v, ζ, ζ̄) is the Bondi
mass aspect, Cαβ(v, ζ, ζ̄) is the shear tensor and (Nζ(v, ζ, ζ̄), Nζ̄(v, ζ, ζ̄)) is the Bondi
angular momentum aspect. Here we use the conventions of Pasterski-Strominger-
Zhiboedov [215], which differs from Barnich-Troessaert [224], Hawking-Perry-Strominger
[225] or Flanagan-Nichols [226]. Since different conventions change the definition of
the light-ray operators, this is of particular relevance here.12

Spaces that admit expansions of the form in eq. (3.74) are called Christodoulou-
Klainerman (CK) spaces in the literature [228, 229]. Physically, the shear tensor
encodes gravitational radiation analogously to Maxwell field strength13 Fvζ = ∂vAζ .

11We stress that the gauge invariance of eq. (3.73) holds only under the average prescription [219].
12See also [227] where some of the relations between different conventions are spelled out in detail.
13In light-cone gauge, Av = 0.
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The Bondi news is defined to be [228]

Nζζ(v, ζ, ζ̄) = ∂vCζζ(v, ζ, ζ̄). (3.76)

In these coordinates,

Cζζ(v, ζ, ζ̄) = −κ lim
r→∞

1

r
hζζ(r, v, ζ, ζ̄), (3.77)

where κ =
√
32πG [230]. The time-time component of the Einstein equations for

eq. (3.74) gives the Bondi mass loss formula

∂vmB =
1

4

[
D2

ζN
ζζ +D2

ζ̄N
ζ̄ζ̄ −NζζN

ζζ
]
− 4πG lim

r→∞
r2Tmatter

vv . (3.78)

For CK spaces, the asymptotics of the Weyl curvature component Ψ0
2 implies the

following conditions [228]

mB(v, ζ, ζ̄)
∣∣∣
I+
−
=MADM

i (ζ, ζ̄) , mB(v, ζ, ζ̄)
∣∣∣
I+
+

=Mf (ζ, ζ̄) ,

Cζζ = −2D2
ζC(ζ, ζ̄), (3.79)

where C(ζ, ζ̄) labels inequivalent BMS vacua related to each other under action of the
supertranslation mode. After integrating over v from −∞ to +∞, we get [230, 231]

∆mB =
1

2
D2

ζ∆C
ζζ − 4πG

∫ +∞

−∞
dv
{ 1

16πG
NζζN

ζζ + lim
r→∞

r2Tmatter
vv

}
, (3.80)

where ∆Cζζ(ζ, ζ̄) = Cζζ(+∞, ζ, ζ̄)− Cζζ(−∞, ζ, ζ̄) and ∆mB =Mf (ζ, ζ̄) since
MADM

i (ζ, ζ̄) = 0 for flat Minkowski spacetime. Using supertranslation invariance,
one can choose a Bondi frame [228] where Cζζ(−∞, ζ, ζ̄) = 0 but in general the final
vacuum will be non-trivial Cζζ(+∞, ζ, ζ̄) ̸= 0. Focusing on Bondi news squared term

1

16πG
NζζN

ζζ =
κ2

16πG
lim
r→∞

1

r2
(γζζ̄)2(∂vhζζ(x))(∂vhζ̄ζ̄(x)), (3.81)

we see that it agrees with the (light-cone) time-time component of Isaacson effective
gravitational wave stress tensor at infinity T eff,GW

vv in these coordinates (albeit this
is defined with the implicit averaging over short wavelength modes). The action of
eq. (3.80) on an on-shell n-graviton state |X⟩ = |pσ1

1 ...p
σn
n ⟩ is

ẼBondi(n̂)|X⟩ =
∫ +∞

−∞
dv

1

16πG
NζζN

ζζ |X⟩ =
n∑

i=1

(Epi)δ
2(Ωn̂ − Ωp̂i

)|X⟩, (3.82)

where we used the saddle-point estimate for the free field mode expansion for the
linearized graviton mode

hµν(x) =

∫
dΦ(p)

∑
σ=±2

[
εσ,∗µν (p)aσ(p)e

−ip·x + εσµν(p)a
†
σ(p)e

ip·x
]
. (3.83)

The weight factor of the Bondi news squared term is given by the standard local factor
Ep in retarded Bondi coordinates, which is expected because here v = t − r is the
standard light-cone time.
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We can now come back to eq. (3.80) which can be solved in terms of ∆Cζζ [231]

∆Cζζ =
4

π

∫
d2ζ ′ γζ′ζ̄′

ζ̄ − ζ̄ ′

ζ − ζ ′
(1 + ζ ′ζ̄)2

(1 + ζ ′ζ̄ ′)(1 + ζζ̄)3
(
4πG Eshear-inclusive(ζ

′, ζ̄ ′) + ∆MB(ζ
′, ζ̄ ′)

)
,

(3.84)

where we have defined a suitable extension of the ANEC operator to a shear-inclusive
ANEC at infinity which includes both matter and gravity contributions

Ẽshear-inclusive(n̂) :=

∫ +∞

−∞
dv
{ 1

16πG
(Nζζ(v,n))(γ

ζζ̄)2(Nζ̄ζ̄(v,n)) + lim
r→∞

r2Tmatter
vv (r, v,n)

}
,

(3.85)

whose action on an on-shell n-particle state of different massless species
∏

α∈species |Xα⟩
is

Ẽshear-inclusive(n̂)
∏

α∈species

|Xα⟩ =
n∑

i=1

Eiδ
2(Ωn̂ − Ωp̂i

)
∏

α∈species

|Xα⟩. (3.86)

As we will prove in section 4.4, expectation values of this operator will be positive-
definite for a scattering process where we treat (perturbative) gravity as an EFT,
similarly to what happens in the massless spin 0 and spin 1 case. Originally, the
shear-inclusive ANEC operator was defined for complete achronal null geodesics (also
called null lines) to cure the violations of the averaged null energy condition appearing
for linearized graviton perturbations, see the appendix B for more details.

At the quantum level we can promote both sides of eq. (3.84) to operators and
act on an on-shell state composed of massless particles reaching null infinity (i.e.
radiation): a direct calculation shows that

∆Cζζ

∏
α∈species

|Xα⟩ =
[
16G

n∑
i=1

ζ̄ − ζ̄i
ζ − ζi

(1 + ζiζ̄)
2Ei

(1 + ζiζ̄i)(1 + ζζ̄)3

] ∏
α∈species

|Xα⟩, (3.87)

where ∆MB = 0 in flat Minkowski picture at v → ±∞. This is the leading memory
effect due to the radiation flux generated in the scattering process [232], which can be
directly related to Christodoulou memory effect [233]. Our results are consistent with
the memory being given by the (transverse traceless part of) soft factor [231, 232]

Mζζ =
1

r2
(∂ζx

µ)(∂ζx
ν)
κ

2

[
n∑

i=1

ηi
(pµ)i(pν)i
pi · n

]TT

, (3.88)

as we will show in more details in section 4.6.
The angular momentum flux, requires the Einstein equations of the subleading

terms in the Bondi gauge expansion [215]

∂vNζ =
1

4
∂ζ

[
D2

ζC
ζζ −D2

ζ̄C
ζ̄ζ̄
]
+ ∂ζmB

− 8πG

[
lim

r→+∞
r2Tmatter

vζ − 1

32πG
Dζ(CζζN

ζζ)− 1

16πG
CζζDζN

ζζ

]
. (3.89)

Like the shear-inclusive ANEC at infinity, all angular momentum flux contributions
that are quadratic in the fields combine together into a single expression for all massless
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particles

ÑPSZ
ζ,Bondi(n̂) :=

∫ +∞

−∞
dv
{

lim
r→+∞

r2Tmatter
vζ +

1

32πG
(∂ζCζζ)(γ

ζζ̄)2(∂vCζ̄ζ̄)

− 1

32πG
Cζζ(γ

ζζ̄)2(∂ζ∂vCζ̄ζ̄)−
1

16πG
∂ζ(Cζζ(γ

ζζ̄)2∂vCζ̄ζ̄)
}
, (3.90)

where the gravity contributions are expressed only in terms of the radiative data. The
saddle point estimate of the first two terms of such contributions gives the density of
orbital angular momentum flux

ÑPSZ,orb
ζ,Bondi (n̂) =

1

32πG

∫ +∞

−∞
dv
{
(∂ζCζζ)(γ

ζζ̄)2(∂vCζ̄ζ̄)− Cζζ(γ
ζζ̄)2(∂ζ∂vCζ̄ζ̄)

}
= −1

2

∫
dΦ(p)

δ2(ζn̂ − ζp̂)

γζζ̄

∑
σ=±2

:
[
a†σ(Epn̂)i

↔
∂ ζn̂aσ(Epn̂)

]
: . (3.91)

The remaining term gives the spin contribution

ÑPSZ,spin
ζ,Bondi (n̂) = − i

2

∫
dΦ(p)

[
δ2(ζn̂ − ζp̂)

γζζ̄

] ∑
σ=±2

σ : ∂ζn̂

[
a†σ(Epn̂)aσ(Epn̂)

]
:

=
i

2

∫
dΦ(p) ∂ζn̂

[
δ2(ζn̂ − ζp̂)

γζζ̄

] ∑
σ=±2

σ :
[
a†σ(Epn̂)aσ(Epn̂)

]
: . (3.92)

Other conventions like Hawking-Perry-Strominger (HPS) differ from eq. (3.90) in total
derivative terms in ζ or ζ̄ of CζζN

ζζ and Cζ̄ζ̄N
ζ̄ζ̄ , which look like contact/spin terms

under a saddle-point analysis similar to the one discuss before. While we are not
attempting any kind of rigorous analysis of all these terms in different conventions
here, our expectation is that the PSZ convention is the most natural14 choice which
gives the expected spin term of the graviton. This was explored further in [207], where
the most general expression of the total angular momentum flux was analyzed and
it was shown that eq. (3.90) corresponds to the simplest case α = β = 0 in their
notation.

To make contact with the system of coordinates used in the rest of the chapter,
we re-write the corresponding expressions in flat null coordinates15

EGR(n̂) :=
1

8πG

∫ +∞

−∞
du (∂uCzz)(∂uCz̄z̄), KGR(n̂) :=

1

8πG

∫ +∞

−∞
duu(∂uCzz)(∂uCz̄z̄),

NPSZ
z,GR(n̂) :=

1

16πG

∫ +∞

−∞
du [(∂zCzz)(∂uCz̄z̄)− Czz(∂z∂uCz̄z̄)− 2∂z(Czz∂uCz̄z̄)] ,

(3.93)

14Probably also because it makes direct contact with the Weyl tensor component Ψ0
1.

15These expressions can be derived in other ways. For example, EGR(n̂) and KGR(n̂) can be
deduced from the saddle point estimate of the Isaacson effective stress tensor in flat null coordinates.
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whose saddle point estimate gives

EGR(n̂) =

∫
dΦ(p) ωp δ

2(zn̂ − zp̂)
∑
σ=±2

:
[
a†σ(ωpn̂)aσ(ωpn̂)

]
:,

KGR(n̂) =
(−i)
4

∫ +∞

−∞

dω−
(2π)3

δ(1)(ω−)

∫ +∞

max{−ω−,ω−}
dω+ ((ω+)

2 − (ω−)
2)

×
∑
σ=±2

:
[
a†σ ((ω+ + ω−)n̂) aσ ((ω+ − ω−)n̂)

]
:,

NPSZ,orb
z,GR (n̂) = i

∫
dΦ(p) δ2(zn̂ − zp̂)

∑
σ=±2

:
[
a†σ(ωpn̂)

↔
∂ zn̂aσ(ωpn̂)

]
:,

NPSZ,spin
z,GR (n̂) = −i

∫
dΦ(p) δ2(zn̂ − zp̂)

∑
σ=±2

σ : ∂zn̂

[
a†σ(ωpn̂)aσ(ωpn̂)

]
:

= i

∫
dΦ(p) ∂zn̂δ

2(zn̂ − zp̂)
∑
σ=±2

σ :
[
a†σ(ωpn̂)aσ(ωpn̂)

]
: . (3.94)

Note that the spin operator above differs from the spin-1 counterpart by a factor of 2
since the graviton has helicities σ = ±2.

3.6 On-shell detector algebra of hard light-ray operators

Light-ray operators constructed from the components of the stress tensor are natu-
rally related to the global Poincaré charges by turning the line integral in the light-ray
definition into an integral over all of space. These light-ray operators were recently
studied in the context of unitary CFTs by Cordova and Shao [234] and shown, via
symmetry arguments, to form a closed algebra. While it is not immediately clear
that the same light-ray operators will form a closed algebra in a generic QFT, the
underlying universality of the stress tensor algebra [235] hints at this possibility. The
stress tensor algebra was also reconsidered more recently [236, 237] to derive a “uni-
versal” effective light-cone algebra for CFTs in d > 2. Moreover, there is an intriguing
relation with the BMS algebra [222, 223] – and its extended version [10, 224, 238–240]
– with light-ray operators [234] which is still worth exploring for light-ray placed at
null infinity. We will then compute in our approach the associated algebra of light-ray
operators in 3+1-dimensional QFTs for massless particles of integer spin and compare
with [234].

In general, computing the commutator algebra of composite (non-local16) oper-
ators is quite subtle unless completely fixed by symmetries. For example, with the
Schwinger action principle [241–243] we can compute the structure of all commutators
of the (covariantly conserved) stress tensor but the commutators of stress tensor com-
ponents with spatial-spatial indices; such commutators are model-dependent [235].
Since our family of light-ray operators contain either the time-time components or
mixed time-spatial components of the stress tensor, it is conceivable that our light-ray
operators satisfy a universal algebra [234, 236, 237]

[L1(n̂1), L2(n̂2)] =
∑
L3

CL1L2L3(n̂1, n̂2)L3(n̂2). (3.95)

16The fact that our operators are non-local does not guarantee the convergence of the OPE of such
operators in the first place. This problem can be solved in CFT [155], but it is not clear how to
generalize it to a general quantum field theory.
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To make contact with physical detectors at infinity, we study the light ray algebra by
taking the difference between the expectation value of Wightman two-point functions:

⟨[L(n̂1), L
′(n̂2)]⟩ := ⟨ψL|L(n̂1)L

′(n̂2)|ψR⟩ − ⟨ψL|L′(n̂2)L(n̂1)|ψR⟩. (3.96)

Without loss of generality, we can set the |ψ⟩ above to be a single particle state. In the
following calculations we will assume that canonical commutation relations are valid,
motivated by the fact we will compute the algebra on a flat section of null infinity
thanks to the choice of flat null coordinates.

3.6.1 Spin 0

The simplest commutator is Pµ
scalar(n̂1) and Escalar(n̂2):

⟨q|[Pµ
scalar(n̂1), Escalar(n̂2)]|p⟩ = 0. (3.97)

The vanishing of this commutator -at all order in perturbation theory- is physically
interpreted as the statement that measurements of energy and momentum in two
localized directions n̂1 and n̂2 are compatible at the quantum mechanical level.

The commutator [Kscalar(n̂1), Escalar(n̂2)] is slightly more non-trivial. Using

⟨q|[Kscalar(n̂1), Escalar(n̂2)]|p⟩
=
(
δ2(zn̂2

− zp̂)ωp − δ2(zn̂2
− zq̂)ωq

)
⟨q|Kscalar (n̂1) |p⟩, (3.98)

one obtains17

⟨q|[Kscalar(n̂1), Escalar(n̂2)]|p⟩ =
= 8(2π)3i (ωq − ωp) δ

(1) (ωq − ωp)︸ ︷︷ ︸
−δ(ωq−ωp)

δ2(zn̂1
− zn̂2

)δ2(zn̂2
− zp̂)δ

2(zn̂1
− zq̂)

= −8(2π)3iδ (ωq − ωp) δ
2(zn̂1

− zn̂2
)δ2(zn̂2

− zp̂)δ
2(zn̂1

− zq̂)

= −2iδ2(zn̂1
− zn̂2

)

[(
ωpδ

2(zn̂2
− zp̂)

)(
(2π)34

δ (ωq − ωp)

ωp
δ2(zn̂1

− zq̂)

)]
= −2iδ2(zn̂1

− zn̂2
)⟨q|Escalar(n̂2)|p⟩, (3.99)

which implies

[Kscalar(n̂1), Escalar(n̂2)] = −2iδ2(zn̂1
− zn̂2

)Escalar(n̂2). (3.100)

Moreover, it is straightforward to check that

[Escalar(n̂1), Escalar(n̂2)] = 0,

[Kscalar(n̂1),Kscalar(n̂2)] = 0. (3.101)

Moving onto the commutators involving the angular momentum flux density operator
we need to introduce some smearing in the transverse directions (z, z̄) to be able to

17The following steps can be made rigorous by smearing the states with appropriate smooth wave-
functions, as explained earlier.
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regularize the expressions, as in [157, 234]. With this technique we find that

⟨q|[Nz,scalar(n̂1), Escalar(n̂2)]|p⟩
= (ωpδ

2(zp̂ − zn̂2
)− ωqδ

2(zq̂ − zn̂2
))⟨q|Nz,scalar(n̂1)|p⟩

= −2iδ2(zn̂1
− zn̂2

)⟨q|∂zEscalar(n̂2)|p⟩+ 2i∂zδ
2(zn̂1

− zn̂2
)⟨q|Escalar(n̂2)|p⟩. (3.102)

Similarly,

⟨q|[Nz,scalar(n̂1),Kscalar(n̂2)]|p⟩
= −2iδ2(zn̂1

− zn̂2
)⟨q|∂zKscalar(n̂2)|p⟩+ 2i∂zδ

2(zn̂1
− zn̂2

)⟨q|Kscalar(n̂2)|p⟩.
(3.103)

The last commutator [Nz,scalar(n̂1),Nz̄,scalar(n̂2)] gives

⟨q|[Nz,scalar(n̂1),Nz̄,scalar(n̂2)]|p⟩
= +2i∂zδ

2(zn̂1
− zn̂2

)⟨q|Nz̄,scalar(n̂2)|p⟩ − 2i∂z̄δ
2(zn̂1

− zn̂2
)⟨q|Nz,scalar(n̂2)|p⟩

− 2iδ2(zn̂1
− zn̂2

)⟨q|∂zNz̄,scalar(n̂2)|p⟩. (3.104)

This concludes the calculation of the scalar light-ray algebra. It is worth stressing
that in this case our boundary conditions at infinity naturally select only the hard
modes.

3.6.2 Spin 1

The spin 1 abelian case (i.e. Maxwell theory) does not differ much from the spin 0 case
except for the presence of the helicity term. The additional helicity term commutes
with

Ephoton(n̂) =

∫
dΦ(p)ωpδ

2(zn̂ − zp̂)
∑
σ=±1

:
[
a†σ(ωpn̂)aσ(ωpn̂)

]
:,

Kphoton(n̂) =
(−i)
4

∫ +∞

−∞

dω−
(2π)3

δ(1)(ω−)

∫ +∞

max{−ω−,ω−}
dω+ ((ω+)

2 − (ω−)
2)

× :
∑
σ=±1

[
a†σ ((ω+ + ω−)n̂) aσ ((ω+ − ω−)n̂)

]
:, (3.105)

because it is proportional to the number operator which counts the difference between
the number of helicity plus and helicity minus photons

N spin
z,photon(n̂)|p

σ⟩ = i∂zn̂δ
2(zn̂ − zp̂)(δ+,σ − δ−,σ)|pσ⟩. (3.106)

The commutation relation of N orb
z with N orb

z̄ is exactly the same as the scalar case

[N orb
z,photon(n̂1),N orb

z̄,photon(n̂2)]

= +2i∂zδ
2(zn̂1

− zn̂2
)N orb

z̄,photon(n̂2)− 2i∂z̄δ
2(zn̂1

− zn̂2
)N orb

z,photon(n̂2)

− 2iδ2(zn̂1
− zn̂2

)∂zN orb
z̄,photon(n̂2). (3.107)
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This is obvious from the fact that the N orb
z,photon is simply the sum of two copies of

N orb
z,scalar

N orb
z,photon(n̂) = i

∫
dΦ(p) δ2(zn̂ − zp̂)

∑
σ=±1

:
[
a†σ(ωpn̂)

↔
∂ zn̂aσ(ωpn̂)

]
: . (3.108)

Moreover it is clear that N spin
z,photon(n̂1) commutes with N spin

z̄,photon(n̂2)

[N spin
z,photon(n̂1),N spin

z̄,photon(n̂2)
]
= 0. (3.109)

The remaining orbital-spin commutators take the form

[N orb
z,photon(n̂1),N spin

z̄,photon(n̂2)
]
= +2i∂zδ

2(zn̂1
− zn̂2

)N spin
z̄,photon(n̂2),

[N spin
z,photon(n̂1),N orb

z̄,photon(n̂2)
]
= −2i∂z̄δ

2(zn̂1
− zn̂2

)N spin
z,photon(n̂2)

+ 2iδ2(zn̂1
− zn̂2

)∂z̄N spin
z,photon(n̂2). (3.110)

The above commutators are quite a bit more subtle than the others encountered so
far and we do find an ambiguity in their derivation.18 However, any problems with
the orbital-spin commutator disappear in the integrated charges since N spin

z/z̄ are total
derivatives of z or z̄.

If we turn on matter contributions, we find an additional (hard) interaction term
which is mixing Coulombic and radiative data∫

duA(0),a
z ja,(2)u , (3.111)

which clearly breaks the algebra because it does not conserve the particle number.
Regarding the soft non-abelian contribution which comes from the boundary term,

we stress that as in the spin 0 case we are only interested in the hard contributions
and therefore ignore the soft terms in our analysis, which requires a more delicate
study of the soft non-abelian sector and its quantization as done by He and Mitra
in [209]. We expect such terms to be related with the gluon soft theorem [212], and
therefore to be relevant for the light-ray algebra of pure Yang-Mills in the soft sector:
the non-commutativity of soft gluon limits for different helicities might give a non-
trivial extension of Cordova-Shao algebra. We leave this very interesting problem for
a future study.

3.6.3 Spin 2

Here similar comments to the ones made on the spin 1 abelian case apply, except for
the fact that we have some freedom in the choice of the Bondi angular momentum
aspect and therefore of the density of the angular momentum flux as discussed before.

18Since the Nz/z̄ do not contain integrals over the transverse directions, one must smear them with
a test function. A more rigorous analysis would involve studying Wightman functions in position
space with a careful prescription for sending the operator positions to the same light-sheet (see [244],
for example) in addition to smearing with test functions.
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The final algebra is

[EGR(n̂1), EGR(n̂2)] = 0,

[KGR(n̂1),KGR(n̂2)] = 0,

[KGR(n̂1), EGR(n̂2)] = −2iδ2(zn̂1
− zn̂2

)EGR(n̂2),

[NPSZ
z,GR(n̂1), EGR(n̂2)] = −2iδ2(zn̂1

− zn̂2
)∂zEGR(n̂2) + 2i∂zδ

2(zn̂1
− zn̂2

)EGR(n̂2),

[NPSZ
z,GR(n̂1),KGR(n̂2)] = −2iδ2(zn̂1

− zn̂2
)∂zKGR(n̂2) + 2i∂zδ

2(zn̂1
− zn̂2

)KGR(n̂2),

[NPSZ
z,GR(n̂1),NPSZ

z̄,GR(n̂2)] = +2i∂zδ
2(zn̂1

− zn̂2
)NPSZ

z̄,GR(n̂2)− 2i∂z̄δ
2(zn̂1

− zn̂2
)NPSZ

z,GR(n̂2)

− 2iδ2(zn̂1
− zn̂2

)∂zNPSZ
z̄,GR(n̂2). (3.112)

and therefore with our definitions the algebra of light-ray operators for the graviton
case is consistent with complexified Cordova-Shao algebra. In particular, there are
no contributions which are mixing coulombic and radiative data as expected [245].
Moreover, the convention adopted by Pasterski-Strominger-Zhiboedov [215] seems to
be the most natural for the system of light-ray operators since it provides the standard
helicity term which we would expect from a spin 2 point particle stress tensor.

3.6.4 Comparison with complexified Cordova-Shao algebra

It is straightforward to check that the commutators

[E(n̂1), E(n̂2)] = 0,

[K(n̂1),K(n̂2)] = 0,

[K(n̂1), E(n̂2)] = −2iδ2(zn̂1
− zn̂2

)E(n̂2) (3.113)

agree exactly with [234] since Tuu = T−−.19 However, in order to compare the other
commutators, we need to compare how the components of the stress tensor at null
infinity in our cooordinates differ from those in the standard light-cone components

Tuz =
x+

2
(T−1 − iT−2) + (x1 − ix2)T−−, (3.114)

Tuz̄ =
x+

2
(T−1 + iT−2) + (x1 + ix2)T−−. (3.115)

Therefore, we see that a full detailed comparison with the (complexified) Cordova
Shao algebra for the angular momentum flux requires understanding the following
operator

lim
x+→+∞

(x+)3
[
1

2
(T−1 ± iT−2) +

x1 ± ix2

x+
T−−

]
, (3.116)

19It is worth remembering here that δ2(Ωn̂1 − Ωn̂2) = 2δ2(zn̂1 − zn̂2).
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where there is an explicit mixing with the original contribution of the complexified
version of NA at infinity. In general we have (r = x+)

lim
r→+∞

r2Tuu = lim
x+→+∞

(x+)2T−−,

lim
r→+∞

r2Tuz = lim
x+→+∞

(x+)3
[
1

2
(T−1 − iT−2) +

x1 − ix2

x+
T−−

]
,

lim
r→+∞

r2Tuz̄ = lim
x+→+∞

(x+)3
[
1

2
(T−1 + iT−2) +

x1 + ix2

x+
T−−

]
, (3.117)

which makes it clear how the operators are mixing with each other. Nevertheless, the
commutators

[Nz(n̂1), E(n̂2)] = −2iδ2(zn̂1
− zn̂2

)∂zE(n̂2) + 2i∂zδ
2(zn̂1

− zn̂2
)E(n̂2),

[Nz(n̂1),K(n̂2)] = −2iδ2(zn̂1
− zn̂2

)∂zK(n̂2) + 2i∂zδ
2(zn̂1

− zn̂2
)K(n̂2) (3.118)

match the complexified Cordova-Shao algebra. The only commutation relation which
is new and differ from their result is [Nz(n̂1),Nz̄(n̂2)]

20, due to mixing in eq. (3.117).

20Their prediction is

[Nz(n̂1),Nz̄(n̂2)] = +2i∂zδ
2(zn̂1 − zn̂2)Nz̄(n̂2) + 2i∂z̄δ

2(zn̂1 − zn̂2)Nz(n̂2)− 2iδ2(zn̂1 − zn̂2)∂zNz̄(n̂2).
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Chapter 4

Classical radiative observables in
the two-body problem

In this chapter, we will discuss several classical radiative observables arising from the
scattering of waves and point particles. We will start by studying global observables –
like the impulse – and we will derive the light deflection in the geometric optics limit
for Thomson scattering. We will then consider the field strength for the outgoing
radiation field in the two-body problem and we will impose the uncertainty principle
to its expectation value to make contact with the classical prediction. An infinity
of amplitude relations will follow from it, and we will discuss the consequences for
classical radiative observables. At that point, we will focus on localized observables
like the waveform and gravitational event shapes and we will perform some explicit
calculation in scalar QED and gravity. A new general relation between energy event
shapes and the amplitude of the waveform will then be derived. Finally, we will
discuss the choice of the BMS frame at the amplitude level and the connection to
disconnected amplitude contributions with the emission of zero-energy gravitons.

4.1 Global observables: impulse in wave scattering

Let us investigate the general structure of the impulse, ⟨∆pµ1 ⟩, on a massive parti-
cle during a scattering event with a classical wave. Using the KMOC formalism as
discussed in chapter 2, we get from the definition of the impulse

⟨∆pµ1 ⟩ = ⟨ψw|S†Pµ
1S|ψw⟩ − ⟨ψw|Pµ

1 |ψw⟩
= ⟨ψw| i[Pµ

1 , T ] |ψw⟩+ ⟨ψw|T †[Pµ
1 , T ] |ψw⟩

= Iµw(1) + Iµw(2) ,

with the initial state

|ψw⟩ =
∫
dΦ(p1) ψA(p1) e

ib·p1/ℏ|p1 ασ
2 ⟩ . (4.1)
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We remark here that there is an equivalent formulation in terms of the background
field,

⟨∆pµ1 ⟩ =
∫

dΦ(p1)dΦ(p
′
1)ψA(p1)ψ

∗
A(p

′
1)e

−ib·(p′1−p1)/ℏ⟨p′1|C
†
α,(σ)i[P

µ
1 , T ]Cα,(σ)|p1⟩

+

∫
dΦ(p1)dΦ(p

′
1)ψA(p1)ψ

∗
A(p

′
1)e

−ib·(p′1−p1)/ℏ⟨p′1|C
†
α,(σ)T

†[Pµ
1 , T ]Cα,(σ)|p1⟩

=

∫
dΦ(p1)dΦ(p

′
1)ψA(p1)ψ

∗
A(p

′
1)e

−ib·(p′1−p1)/ℏ⟨p′1|i[P
µ
1 , T (A

(σ)
cl )]|p1⟩

+

∫
dΦ(p1)dΦ(p

′
1)ψA(p1)ψ

∗
A(p

′
1)e

−ib·(p′1−p1)/ℏ⟨p′1|T †(A
(σ)
cl )[Pµ

1 , T (A
(σ)
cl )]|p1⟩ ,

(4.2)

where the scattering matrix computed from the backgroundA(σ)
cl is denoted by T (A(σ)

cl ),
and we have used the relation C†

α,(σ)Cα,(σ) = 1. While we will focus on the formulation
in eq. (4.1), it is intriguing to notice the linear term of the impulse Iµw(1) is closely
related to the two-point function of the massive scalar field in the coherent state
background. As a consequence, we should expect a resummation of all higher-order
results.

Returning to (4.1), we note that — just as in the scattering of two massive particles
— only the first term contributes at leading order in the generic coupling g. This
contribution arises at O(g2); the second term only contributes starting at O(g4). Let
us focus on the Iµw(1) term, and write out the details of the wavefunction in eq. (2.86),

Iµw(1) =

∫
dΦ(p1)dΦ(p

′
1) e

−ib·(p′1−p1)/ℏψA(p1)ψ
∗
A(p

′
1)i(p

′
1 − p1)

µ⟨p′1 ασ
2 |T |p1 ασ

2 ⟩ .

(4.3)

The matrix elements of coherent states are not of definite order in perturbation
theory. In order to isolate the contributions at each order, one would ordinarily
introduce a complete set of states of definite particle number on each side of the T
matrix,

Iµw(1) =
∑
X,X′

∑
σ̃,σ̃′=±1

∫
dΦ(p1)dΦ(p

′
1)dΦ(r1)dΦ(r

′
1)dΦ(k2)dΦ(k

′
2)

× e−ib·(p′1−p1)/ℏψA(p1)ψ
∗
A(p

′
1) i(p

′
1 − p1)

µ

× ⟨p′1 ασ
2 |r′1 k′σ̃

′
2 X ′⟩⟨r′1 k′σ̃

′
2 X ′|T |r1 kσ̃2 X⟩⟨r1 kσ̃2 X|p1 ασ

2 ⟩ .
(4.4)

The sums over X and X ′ are over different numbers of messengers, including
none, and include the phase-space integrals over their momenta. Charge conservation
implies that each intermediate state must contain one net massive-particle number;
we drop additional particle–antiparticle pairs as their effects will disappear in the
classical limit, and we denote the massive-particle momenta by r1 and r′1. Moreover,
in order to satisfy on-shell conditions of the T matrix element, each intermediate state
must contain at least one messenger, whose momenta are denoted by k2 and k′2.

The leading order contribution to Iµw(1) is the simplest. One may be tempted to
believe that it arises from terms with X = X ′ = ∅, but this is not quite right: that
would omit disconnected parts of the S-matrix. In the situation at hand, a great many
photons are present in the initial state; the dominant contribution to the interaction
occurs when most photons pass directly from the initial to the final state. Thus
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rather than taking X = X ′ = ∅, we instead need to sum over additional messengers
in the coherent states. These sums over non-interacting messengers, contributing
disconnected S-matrix terms, are necessary to recover the correct normalization.

One can carry out these sums explicitly, but it is convenient instead to introduce
an alternate representation for the T matrix in terms of creation and annihilation op-
erators. As the incoming state |ψw⟩ given in eq. (2.86) contains one massive particle
and an arbitrary number of photons (or messengers more generally), we must con-
sider terms with a pair of massive-particle annihilation and creation operators, and
an arbitrary nonzero number of messenger annihilation and creation operators (not
necessarily paired). That representation has the form,

T =
∑

σ̃,σ̃′=±1

∫
dΦ(r̃1, r̃

′
1, k̃2, k̃

′
2) ⟨r̃′1, k̃′σ̃

′
2 |T |r̃1, k̃σ̃2 ⟩ a

†
σ̃′(k̃

′
2)a

†(r̃′1) a(r̃1)aσ̃(k̃2) + · · · ,

(4.5)

where the ellipsis indicates higher order terms in the coupling g as well as amplitudes
which do not contribute in the classical limit. We will summarily drop all these
terms in the following, retaining only the explicit O(g2) term. The measure here is a
shorthand,

dΦ(r̃1, r̃
′
1, k̃2, k̃

′
2) = dΦ(r̃1)dΦ(r̃

′
1)dΦ(k̃2)dΦ(k̃

′
2) . (4.6)

The advantage of the representation in eq. (4.5) is that the creation and annihilation
operators act simply on coherent states, yielding factors of α(k2) and α∗(k′2), and
taking care of the normalization for us. Each term within this representation contains
an ordinary (connected) amplitude with a definite number of external messengers.

The required matrix element for the integrand term in eq. (4.5) can be computed
easily,

⟨p′1 ασ
2 |T |p1 ασ

2 ⟩ = ⟨r̃′1 k̃′σ̃
′

2 |T |r̃1 k̃σ̃2 ⟩ ⟨p′1 ασ
2 |a

†
σ̃′(k̃

′
2)a

†(p̃′) aσ̃(k̃2)a(p̃)|p1 ασ
2 ⟩

= δ3(r̃1 − p1) δ
3(r̃′1 − p′1) δσ̃,σδσ̃′,σα2(k̃2)α

∗
2(k̃

′
2) ⟨r̃′1 k̃′σ̃

′
2 |T |r̃1 k̃σ̃2 ⟩ ,

(4.7)

where we neglected all the terms in the ellipsis of eq. (4.5). Notice that we encountered
the matrix element ⟨ασ

2 |ασ
2 ⟩ = 1: this conveniently takes care of all the disconnected

diagrams. The remaining matrix element introduces the desired scattering amplitude,

⟨r̃′1 k̃′σ
′

2 |T |r̃1 k̃σ̃2 ⟩ = A4(r̃1, k̃
σ̃
2 → r̃′1, k

′σ̃′
2 ) δ4(r̃1 + k̃2 − r̃′1 − k̃′2) . (4.8)

As usual, the superscripts on the messenger momenta denote the corresponding physi-
cal helicity. To write it in the usual amplitudes convention, A(0 → p1, p2, . . .), we must
cross the momenta to the other side. This flips the helicity of incoming messengers.

Using the results of eq. (4.7) and eq. (4.8) in eq. (4.3) and carrying out the sums
over σ̃, σ̃′, we obtain,

Iµw(1) =

∫
dΦ(p1)dΦ(p

′
1)dΦ(k2)dΦ(k

′
2) ψA(p1)ψ

∗
A(p

′
1)α2(k2)α

∗
2(k

′
2)

× e−ib·(p′1−p1)/ℏ i(p′1 − p1)
µ

×A4(p1, k
σ
2 → p′1, k

′σ
2 ) δ4(p1 + k2 − p′1 − k′2) ,

(4.9)

where we have dropped the tildes on k2 and k′2.
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If we make the usual change of variables to the momentum mismatches q1,2,

q1 = p′1 − p1 ,

q2 = k′2 − k2 ;
(4.10)

use the delta function to integrate over q2; and drop the subscript on q1, we find,

Iµw(1) =

∫
dΦ(p1)dΦ(k2)d̂

4q δ(2q · p1 + q2)δ(2q · k2 − q2)Θ(p01 + q0)Θ(k02 − q0)

× ψA(p1)ψ
∗
A(p1 + q)α∗

2(k2 − q)α2(k2)

× e−ib·q/ℏ iqµA4(p1, k
σ
2 → p1 + q, (k2 − q)σ) .

(4.11)

The analysis of the classical limit as far as the ψA(p1)ψ
∗
A(p1+q) factor is concerned

is the same as in [166]. It requires us to take the wavenumber mismatch as our
integration variable in lieu of the momentum mismatch. At leading order, we do
not have to worry about terms singular in ℏ, so the evaluation as far as the massive
particle is concerned will take,

δ(2q · p1 + q2) → ℏ−1δ(2q̄ · p1) , (4.12)
ψA(p1 + q) → ψA(p1) . (4.13)

Using the definition of fragments we gave in eq. (2.20) we find for the classical limit,

Iµ,clw(1) = g2
〈〈∫

dΦ(k̄2)d̂
4q̄ δ(2q̄ · p1)δ(2q̄ · k̄2 − q̄2)Θ(k̄02 − q̄0) ᾱ∗

2(k̄2 − q̄)ᾱ2(k̄2)

× e−ib·q̄ iq̄µA(0)
4,0(p1, ℏk̄

σ
2 → p1 + ℏq̄, ℏ(k̄2 − q̄)σ)

〉〉
.

(4.14)

As in [166], the double-angle brackets indicate an average over the wave function of
the point-like particle. Classically, this is a function of the momentum p1 with a very
sharp peak at p1 = mAvA where vA is the classical (proper) velocity and mA is the
particle’s mass.

We can now apply this general result in a variety of specific cases. We shall describe
two examples in detail: Thomson scattering of a charge by a wave, with b ≃ 0, and
gravitational scattering of light by a mass in the geometric-optics limit.

4.1.1 Impulse in Thomson scattering

Our first application is to Thomson scattering, of a particle of charge Qe and mass
m, by a collimated beam of light. We take the light beam to have positive helicity,
corresponding to the coherent state |α+⟩. We need the four-point tree Compton
amplitude in scalar QED,

A(0)
4 (p1, k

σ
2 → p′1, k

′σ′
2 ) = 2Q2 ε∗σ(k2) · εσ′(k′2)

= 2Q2 ε−σ(k2) · εσ′(k′2) ,
(4.15)

where we have chosen the gauge,

εσ(k) · p1 = 0 , (4.16)
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Figure 4.1: Impulse in scattering of a massive object off a coherent
state background.

for both photons. Alternatively, in spinor variables, we have a gauge-invariant expres-
sion for the helicity amplitude, namely

A(0)
4,0(p1, k

+
2 → p′1, k

′+
2 ) = −Q

2

2

⟨k2|p1|k′2]2

k2 · p1 k′2 · p1
. (4.17)

This form of the amplitude is manifestly gauge independent, but it depends explicitly
on spinors |k′2⟩ and |k2] associated with photon momenta. As usual, in the classical
limit we prefer to work with photon wavenumbers. We therefore introduce rescaled
spinors,

|k̄′2⟩ ≡ ℏ−1/2 |k′2⟩ ,
|k̄2] ≡ ℏ−1/2 |k2] ,

(4.18)

which are directly associated with the photon wavenumbers. The amplitude then has
the expression,

A(0)
4,0(p1, k

+
2 → p′1, k

′+
2 ) = −Q

2

2

⟨k̄2|p1|k̄′2]2

k̄2 · p1 k̄′2 · p1
. (4.19)

Choosing b = 0, and for a more symmetric presentation, writing k = k2 and
k′ = k2 − q, the impulse in eq. (4.14) takes the form,

⟨∆pµ⟩ = Q2e2

2

∫
dΦ(k̄)dΦ(k̄′) δ(2p · (k̄ − k̄′)) ᾱ∗(k̄′)ᾱ(k̄) i(k̄′ − k̄)µ

⟨k̄|p|k̄′]2

(k̄ · p)2
. (4.20)

This expression may be compared with the classical electromagnetic result, obtained
by iterating the classical Lorentz force twice. Thus we see in an explicit example
that a vanishing impact parameter is perfectly acceptable in the classical scattering
of waves off matter, in contrast to the situation for two massive particles scattering.

It is interesting that the Compton amplitude appears at tree level in the classical
physics of wave scattering off massive particles. This amplitude is also relevant [246]
for purely massive particle scattering, though at one loop order. While the amplitude
is very simple for spinless particles, it is considerably more complicated [247] for
particles with large spins. Currently we do not have a clear understanding of the
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appropriate Compton amplitude for the Kerr black hole, or of what principle we could
use to determine it. This is an important area for further research. This work suggests
one angle of attack: information about the classical part of the Compton amplitude
could be extracted by a purely classical analysis of the impulse on a massive spinning
object in scattering off a messenger wave. This is one topic under independent study
in [181].

4.1.2 Light deflection in gravitational scattering

A second interesting application of the formulas derived in the previous section is to
the gravitational deflection of light by a massive object. We may access this observable
by computing the change in momentum of a narrow (small ℓ⊥) beam of light passing
with non-zero impact parameter b past a massive point-like particle. At leading order,
there is no radiation of momentum, so the change in momentum of the wave is simply
the negative of the change in momentum of the massive point source: our starting
point is once again eq. (4.14).

Before we discuss the details of the calculation, it is worth dwelling for a moment on
our setup. Eddington’s famous observations demonstrated that starlight is deflected
by the sun in accordance with General Relativity. Near the sun, light emitted by a
distant star is essentially a spherical wave, and so the incoming wave is extremely
delocalized. In contrast, we have chosen to study a collimated, narrow beam of light.
Nevertheless, the difference between our setup and Eddington’s case is immaterial.
We work in the situation where the wavelength λ̄ of the light is very small compared
to the impact parameter: this is the domain of geometric optics, and also applies
to Eddington’s case. It is in the context of geometric optics that the bending is
well-defined; the geometric bending does not depend on the details of the wave.

For our purposes the setup of a narrow beam in the far past is just a simpler place
to start. The reason is that we can then determine the bending of light by computing
the impulse on the beam: this impulse is directly the change in direction of the wave.
By contrast the impulse on starlight due to the sun involves integrating over the whole
incoming spherical wavefront: this is not related in a simple manner to the bending
of light.

In the geometric-optics regime, we need the wavelength of the light λ̄ to be small.
At the same time we must suppress all quantum effects, so we choose λ̄ to be large
compared to the Compton wavelength ℓc of our point source. To keep our beam
collimated, eq. (2.75) requires that ℓ⊥ ≫ λ̄. The requirement that our beam is narrow
is ℓ⊥ ≪ b. Thus there is a series of inequalities:

ℓc ≪ λ̄≪ ℓ⊥ ≪ ℓs ∼ b . (4.21)

Note that the scattering length ℓs is expected to be of order of the impact parameter
in this case, as we are considering a t channel process. For simplicity, we consider a
monochromatic beam with σ∥ → 0. The final length scale to consider is the size ℓw
of the point-particle’s wave packet. As usual we require ℓc ≪ ℓw ≪ ℓs. Once these
conditions are met, there will be little overlap between the beam and the wave packet,
so we do not anticipate that the values of the ratios λ̄/ℓw or ℓ⊥/ℓw will be important.

The impulse given in eq. (4.14) simplifies due to the constraints of eq. (4.21).
Note that the quantity |q̄ · k̄2| ≫ |q̄2| in the second delta function, as k̄2 ∼ 1/λ̄
while q̄ ∼ 1/ℓs. The wavenumber q̄ is then dominantly in the plane of scattering. In
this plane, the coherent waveshape ᾱ2 is of width 1/ℓ⊥ so that we may approximate
ᾱ∗
2(k̄2 − q̄) ≃ ᾱ∗

2(k̄2). For the same reason, the explicit theta function in the impulse
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simplifies: Θ(k̄02 − q̄0) = 1. Taking into account the sign demanded by momentum
balance, the impulse on the wave is,

⟨∆pµ2 ⟩ = −g2
〈〈∫

dΦ(k̄2)d̂
4q̄ δ(2q̄ · p1)δ(2q̄ · k̄2) |ᾱ2(k̄2)|2

× e−ib·q̄ iq̄µA(0)
4,0(p1, ℏk̄

σ
2 → p1 + ℏq̄, ℏ(k̄2 − q̄)σ)

〉〉
.

(4.22)
The integral over k̄2 is now in a great many respects analogous to the integral over

the massive particle wave function which is hidden in our double-angle brackets. In
the geometric optics limit, ᾱ2(k̄2) is a steeply-peaked function of the wave number
peaked at k̄2 = k̄⊙; in view of eq. (2.54), its normalization is related to the number of
photons in the beam. The amplitude, meanwhile, is a smooth function in this region.
The k̄2 integral then has the structure,∫

dΦ(k̄2) δ(2q̄ · k̄2) |ᾱ2(k̄2)|2 f(k̄2) ≃ f(k̄⊙)

∫
dΦ(k̄2) δ(2q̄ · k̄2) |ᾱ2(k̄2)|2 , (4.23)

where f is a slowly-varying function. We thus encounter the convolution of a delta
function and the sharply-peaked |α2(k)|2. The result of the convolution is a broadened
delta function centered at k̄2 = k̄⊙. Neglecting the width (of order σ⊥) of this function
we have, ∫

dΦ(k̄2) δ(2q̄ · k̄2) |ᾱ2(k̄2)|2 f(k̄2) ≃ f(k̄⊙)Nγℏ δ(2q̄ · k̄⊙) . (4.24)

Notice the appearance of the number of photons Nγ in the beam: this normalization
constant emerges from the integral over |α2(k)|2. The classical geometric optics ap-
proximation does not have access to this number of photons, and correspondingly it
will cancel in our expression for the deflection angle below. Certain other physical
quantities do involve this number of photons: for example, the total momentum of
the beam is,

Kµ
⊙ =

∫
dΦ(k̄)|ᾱ(k̄)|2 k̄µ ≃ Nγℏk̄µ⊙ . (4.25)

Returning to the impulse on the beam, use of eq. (4.24) leads to the expression,

⟨∆pµgeom⟩ = −Nγℏ g2
〈〈∫

d̂4q̄ δ(2q̄ · p1)δ(2q̄ · k̄⊙)

× e−ib·q̄ iq̄µA(0)
4,0(p1, ℏk̄

σ
⊙ → p1 + ℏq̄, ℏ(k̄⊙ − q̄)σ)

〉〉
.

(4.26)
The subscript reminds us that the approximation is valid in the geometric-optics limit.

At leading order, we only need the four-point tree-level amplitude. As there are
no contributions singular in ℏ at this order, we can simply retain only the terms that
survive in the classical limit:

A(0)
4,0(p1, k

σ
2 → p′1, k

′σ
2 ) =

p1 · k2 p1 · k′2
q2

ε∗σ(k2) · εσ(k′2) + · · · ,

=
p1 · k̄2 p1 · k̄′2

q̄2
ε∗σ(k̄2) · εσ(k̄′2) + · · · ,

(4.27)

where we have chosen the gauge p1 · εσ(k) = 0 for each polarization vector, and the
ellipsis indicates terms which are suppressed by powers of ℏ.

This amplitude simplifies further in the geometric-optics limit. The inequalities in
eq. (4.21) require in particular that the wave number q̄ ∼ 1/b≪ k̄2. We may therefore
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replace the scalar product p·k̄′2 with p·k̄2 in eq. (4.27), up to terms which are neglected
in the geometric-optics limit. At the same time, we may replace the polarization vector
εσ(k̄′2) with εσ(k̄2) to the same order of approximation. The amplitude is then simply,

A(0)
4,0(p1, k

σ
2 → p′1, k

′σ
2 ) = −(p1 · k̄2)2

q̄2
+ · · · (4.28)

We note that the geometric-optics limit of the amplitude for the scattering of a photon
off a massive scalar is helicity-independent. Up to constant factors, it reduces to the
amplitude between one massless and one massive scalar1. This is as expected from the
equivalence principle: if the classical limit weren’t universal, the impulse and hence
the scattering angle would have helicity-dependent contributions.

In order to the evaluate the impulse, we insert the geometric-optics amplitude of
eq. (4.28) into the expression in eq. (4.26)) for the impulse in the geometric-optics
limit. We obtain,

⟨∆pµgeom⟩ = iκ2Nγℏ (p1 · k̄⊙)2
∫

d̂4q̄ δ(2q̄ · p1)δ(2q̄ · k̄⊙) e−ib·q̄ q̄
µ

q̄2

= iκ2 (p1 ·K⊙)
2

∫
d̂4q̄ δ(2q̄ · p1)δ(2q̄ ·K⊙) e

−ib·q̄ q̄
µ

q̄2
.

(4.29)

Here, we have replaced the general coupling g by the appropriate gravitational cou-
pling κ, and the wavenumber k̄⊙ by the total beam momentum K⊙. The second line
of the last equation is strikingly similar to the impulse in a scattering process between
two massive classical objects. Indeed, the integral remaining in eq. (4.29) is essentially
the same as the integral appearing in the leading order impulse in [166]. It can easily
be performed by taking the light beam in the z direction, Kµ

⊙ = (E, 0, 0, E). The
result is,

⟨∆pµgeom⟩ = −κ2 p1 ·K⊙

8π b2
bµ . (4.30)

The impact parameter bµ is directed from the massive particle towards the wave, so
the sign above indicates that the interaction is attractive.

The scattering angle θ is then determined geometrically in terms of the impulse:
at leading order we have

sin θ =
|b ·∆p|
|b|E

, (4.31)

once we have fixed a frame. We have taken the absolute value to drop the sign of the
angle, understanding that the bending is towards the scatterer. Working in the rest
frame of the massive scalar, and using κ2 = 32πG, we reproduce the well-known value
for the gravitational bending of light,

θ =
4GmA

|b|
+ · · · . (4.32)

As a final comment, it is satisfying that the impulse we have obtained in eq. (4.29)
is essentially the same as the impulse on massive point particles as discussed in [166].
This occurred as the inequalities in eq. (4.21) greatly simplified the impulse. These
inequalities themselves are very similar to the Goldilocks conditions in eq. (2.16)
for classical point-like particles. The fact that the dynamics of massive particles is

1See the beautiful and pedagogical discussion in [248] for more details.
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so similar to the behavior of waves in the geometric-optics regime was a celebrated
aspect of nineteenth and early twentieth century physics, known as the Hamiltonian
analogy. This analogy was highlighted by Schrödinger [249] and others as an important
consideration in the early days of quantum mechanics.

4.2 Zero-variance principle for classical observables

In classical electrodynamics, a key role is played by the field strength Fµν(x). This
object is a complete gauge-invariant characterisation of the field; once it is known,
quantities such as the energy-momentum radiated to infinity and the field angular
momentum are easily determined. In a quantum description, the field becomes an
operator Fµν(x). In a semiclassical situation, the expectation value of this operator
on a state |ψin⟩ should equal the classical field, up to negligible quantum corrections:

⟨ψin|Fµν(x)|ψin⟩ = Fµν(x) +O(ℏ) . (4.33)

Note that we have schematically indicated the presence of small, order ℏ, quantum
corrections. More precisely, these corrections must be suppressed by dimensionless
ratios involving Planck’s constant; the precise ratios depend on the actual physical
context.

Since in the quantum theory a single-valued field is replaced by the expectation
value of an operator, we must address the quintessentially quantum mechanical issue
of uncertainty. The uncertainty can be characterised by the variance

⟨ψin|Fµν(x)Fρξ(y)|ψin⟩ − ⟨ψin|Fµν(x)|ψin⟩⟨ψin|Fρξ(y)|ψin⟩ . (4.34)

In the domain of validity of the classical approximation, this variance must be negli-
gible.

Precisely the same remarks hold in a quantum mechanical approach to GR. The
curvature tensor Rµνρξ(x) in the classical theory is replaced by the expectation value
of the curvature operator Rµνρξ(x). The variance

⟨ψin|Rµνρξ(x)Rαβγδ(y)|ψin⟩ − ⟨ψin|Rµνρξ(x)|ψin⟩⟨ψin|Rαβγδ(y)|ψin⟩ (4.35)

must be negligible.
This section is devoted to an investigation of this condition of negligible uncer-

tainty. Working in the KMOC formalism at lowest order in perturbation theory, we
will see that the expectations ⟨ψin|Fµν(x)Fρξ(y)|ψin⟩ and ⟨ψin|Rµνρξ(x)Rαβγδ(y)|ψin⟩
are determined by tree-level six -point amplitudes while ⟨ψin|Fµν(x)|ψin⟩ and
⟨ψin|Rµνρξ(x)|ψin⟩ are determined by five-point tree amplitudes. We must then face
the question of how it can be that the variance is negligible.

4.2.1 Field strength expectations

We begin by reviewing the evaluation of single field-strength observables in KMOC.
We will discuss the electromagnetic case in some detail. The gravitational case is
completely analogous to the electromagnetic case, so we only quote key results.
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Let us now consider the leading-order field strength in our situation. In the far
past, we have

⟨ψin|Fµν(x)|ψin⟩ =
1√
ℏ

∑
σ=±1

∫
dΦ(k)

[
⟨ψin| − iaσ(k)|ψin⟩ k̄[µε

∗σ
ν] (k) e

−ik̄·x + h.c.
]

= 0 .
(4.36)

The expectation value vanishes because there are no photons in the initial state:
aσ(k)|ψin⟩ = 0. Classically, the interpretation is that the initial state contains no
incoming radiation. Notice that the expectation value is not sensitive to the Coulomb
fields of the incoming particles; instead, we are computing the asymptotic value of the
field at infinity, namely the coefficient of the 1/distance piece of the field strength.

In the far future, the expectation value is

⟨ψin|S†Fµν(x)S|ψin⟩

=
1√
ℏ

∑
σ=±1

∫
dΦ(k)

[
−i⟨ψin|S†aσ(k)S|ψin⟩ k̄[µε

∗σ
ν] (k) e

−ik̄·x + h.c.
]
.

(4.37)
This no longer vanishes. We may evaluate it at lowest perturbative order by writing
the S matrix in terms of the transition matrix T as S = 1+ iT . The matrix elements
of T on momentum eigenstates are the scattering amplitudes, which we may organ-
ise (as usual in perturbation theory) in terms of the coupling e or κ depending on
whether we are interested in electrodynamics or gravity. Generically we will denote
the perturbative coupling as g. Thus we have

⟨ψin|S†aσ(k)S|ψin⟩ = i⟨ψin|(aσ(k)T − T †aσ(k))|ψin⟩+ ⟨ψin|T †aσ(k)T |ψin⟩
= i⟨ψin|aσ(k)T |ψin⟩+ ⟨ψin|T †aσ(k)T |ψin⟩
≃ i⟨ψin|aσ(k)T |ψin⟩ .

(4.38)

In the middle line above, we used the fact that aσ(k)|ψin⟩ = 0; in the last line we
neglected the term involving two T matrices which does not contribute at lowest order
by counting powers of g.

Further expanding the state using eq. (2.19), and taking advantage of the short-
hand notation of eq. (2.17) and eq. (2.18), we may write

⟨ψin|S†Fµν(x)S|ψin⟩ = 2ℜ 1√
ℏ

∑
σ=±1

∫
dΦ(p′1, p

′
2, p1, p2, k)ψ

∗
b (p

′
1, p

′
2)ψb(p1, p2)

× ⟨kσ p′1 p′2|T |p1 p2⟩ k̄[µε
∗σ
ν] (k) e

−ik̄·x .

(4.39)
The matrix element ⟨kσ p′1 p′2|T |p1 p2⟩ is, at lowest order, a five-point tree amplitude
so it is proportional to g3. This is consistent with a classical analysis of the outgoing
radiation field.

In GR, the equivalent expression is

⟨ψin|S†Rµνρξ(x)S|ψin⟩ = 2ℜ −i√
ℏ
κ

2

∑
σ=±2

∫
dΦ(p′1, p

′
2, p1, p2, k)ψ

∗
b (p

′
1, p

′
2)ψb(p1, p2)

× ⟨kσ, p′1, p′2|T |p1, p2⟩ k̄[µε
∗σ
ν] (k) k̄[ξε

∗σ
ρ] (k) e

−ik̄·x .

(4.40)
It will be useful for us to simplify these expressions further, following again the
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p1 p2

p1 + q1 p2 + q2k

Figure 4.2: The kinematic configuration we choose for the five-point
amplitude which determines the leading-order radiation field.

discussion of reference [166] at leading order. The matrix element ⟨kσp′1p′2|T |p1p2⟩
is the amplitude times a momentum-conserving delta function; our expectation value
instructs us to integrate over all momenta in the amplitude. We may relabel these
external momenta as shown in Fig. 4.2. The measure can then be written as

dΦ(p′1, p
′
2, p1, p2, k) = dΦ(p1, p2, k)d̂

4q1d̂
4q2δ̂(2p1 · q1 + q21)δ̂(2p2 · q2 + q22) . (4.41)

In this form, the overall momentum-conserving delta function reads δ̂4(q1 + q2 + k).
Now, in the classical regime the photon momentum is of order ℏ, as are the momentum
mismatches q1 and q2. The q2i terms in the delta functions above are therefore small
shifts compared to the width (or order 1/ℓw) of the wavefunctions in the expectation
values. As the observable has the structure of a convolution of the sharply-peaked
wavefunctions multiplied by delta functions and otherwise smooth functions, we may
neglect the q2i shifts2. Similarly, the wavefunctions themselves are

ψ∗
b (p1 + q1, p2 + q2)ψb(p1, p2) = ψ∗(p1 + q1, p2 + q2)ψ(p1, p2)e

−iq1·b/ℏ . (4.42)

We may neglect the qi shifts in the wavefunctions ψ∗
i (pi + qi) because the momenta

qi are negligible compared to the width of the wavefunctions. Thus the field strength
becomes

⟨ψin|S†Fµν(x)S|ψin⟩ = 2ℜ 1√
ℏ

∑
σ=±1

∫
dΦ(p1, p2, k)|ψ(p1, p2)|2 d̂4q1d̂4q2

× δ̂σw(2p1 · q1)δ̂σw(2p2 · q2) k̄[µε
∗σ
ν] (k) e

−i(k̄·x+q̄1·b)

× A(0)
5 (p1, p2 → p1 + q1, p2 + q2, k

σ) δ̂4(k + q1 + q2) .

(4.43)

The notation δ̂σw(x) indicates that the delta functions have been “broadened” so that
their width is of order σw ∼ ℏ/ℓw. In our point-particle treatment, we neglect this
scale in the rest of this work. The amplitude A(0)

5 (p1, p2 → p1 + q1, p2 + q2, k
σ) is a

five-point, tree amplitude.
The integral in eq. (4.43) still depends on the wavefunctions of the particles. But

now the role of the wavefunctions is transparent: they are steeply-peaked functions of
the momenta p1 and p2 which allows us to simply replace these variables of integration
with the incoming classical momenta mAvA and mBvB. We thus write the field

2Usually care must be taken with these delta functions at higher order. Here we work at leading
order, so the situation is simple.
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expectation value as

⟨ψin|S†Fµν(x)S|ψin⟩ = 2ℜℏ7/2
∑
σ=±1

〈〈∫
dΦ(k̄) d̂4q̄1d̂

4q̄2 δ̂(2p1 · q̄1)δ̂(2p2 · q̄2)

× A(0)
5 (p1, p2 → p1 + q1, p2 + q2, k

σ) δ̂4(k̄ + q̄1 + q̄2) k̄[µε
∗σ
ν] e

−i(k̄·x+q̄1·b)
〉〉
.

(4.44)
The double-angle brackets are shorthand notation that instructs us to evaluate the
momenta at their classical values, and remind us to take care of q2 shifts in the delta
functions. Recalling that k, q1 and q2 are all of order ℏ, we have scaled out all the ℏ
dependence except that of the scattering amplitude itself. Similarly, in gravity, one
finds

⟨ψin|S†Rµνρξ(x)S|ψin⟩ = −2ℜℏ7/2 iκ
2

∑
σ=±2

〈〈∫
dΦ(k̄) d̂4q̄1d̂

4q̄2 δ̂(2p1 · q̄1)δ̂(2p2 · q̄2)

×M(0)
5 (p1, p2 → p1 + q1, p2 + q2, k

σ)δ̂4(k̄ + q̄1 + q̄2) k̄[µε
∗σ
ν] (k) k̄[ξε

∗σ
ρ] (k) e

−i(k̄·x+q̄1·b)
〉〉
.

(4.45)
For these expressions to make sense classically, it better be that the overall ℏ depen-
dence of the amplitudes cancels that of the observable. Indeed we may write

A(0)
5 (p1, p2 → p1 + q1, p2 + q2, k

σ) = ℏ−7/2A(0)
5,0(p1, p2 → p1 + q1, p2 + q2, k

σ) +O(ℏ)

M(0)
5 (p1, p2 → p1 + q1, p2 + q2, k

σ) = ℏ−7/2M(0)
5,0(p1, p2 → p1 + q1, p2 + q2, k

σ) +O(ℏ) ,
(4.46)

where the quantities A(0)
5,0 and M(0)

5,0 are independent of ℏ, as was noticed in [166]. We
will return to this structure below.

The physical interpretation of these expectation values is that they compute the
radiative part of the field at large distances. To see this explicitly, the k̄ integral
needs to be performed taking advantage of the large distance between the point of
measurement x and the particles. The integration will be discussed in detail in section
4.3. The question of central interest to us in this section, however, is to compute the
uncertainty in the field strength; to do so, we turn to computing the expectation of
two field strengths.

4.2.2 Expectation of two field strengths

It will be quite straightforward for us to compute expectations of products of operators
using precisely the methods of the previous subsection. In electrodynamics, we need
to compute

⟨ψin|S†Fµν(x)Fρδ(y)S|ψin⟩

= −1

ℏ
∑

σ,σ′=±1

∫
dΦ(k′, k)⟨ψin|S†

[
−iaσ(k) k̄[µε

∗σ
ν] (k) e

−ik̄·x + h.c.
]

×
[
−iaσ′(k′) k̄′[ρε

∗σ′

δ] (k′) e−ik̄′·y + h.c.
]
S|ψin⟩ .
(4.47)
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p1 p2

p1 + q1 p2 + q2kk′

Figure 4.3: The kinematic configuration we choose for the six-point
amplitude appearing at leading-order expectation of a pair of field

strength operators.

Working at lowest order, and taking advantage of the fact that aσ(k)|ψin⟩ = 0, the
expectation simplifies to

⟨ψin|S†Fµν(x)Fρδ(y)S|ψin⟩

= −2

ℏ
ℜ

∑
σ,σ′=±1

∫
dΦ(k′, k)⟨ψin|aσ(k)aσ′(k′)iT |ψin⟩k̄[µε

∗σ
ν] (k)k̄

′
[ρε

∗σ′

δ] (k′) e−i(k̄·x+k̄′·y) ,

(4.48)
up to a purely quantum single-photon effect [4]. Expanding the wavefunctions, we
encounter the matrix element ⟨p′1p′2|aσ(k)aσ′(k′)T |p1p2⟩: a six-point tree amplitude.
The classical limit is determined precisely as in the previous section with the result

⟨ψin|S†Fµν(x)Fρξ(y)S|ψin⟩ = −2ℏ5ℜ
∑

σ,σ′=±1

〈〈∫
dΦ(k̄′, k̄) d̂4q̄1d̂

4q̄2 δ̂(2p1 · q̄1)δ̂(2p2 · q̄2)

× iA(0)
6 δ̂4(k̄ + k̄′ + q̄1 + q̄2) k̄[µε

∗σ
ν] (k)k̄

′
[ρε

∗σ′

ξ] (k′) e−i(k̄·x+k̄′·y+q̄1·b)
〉〉
.

(4.49)
The amplitude is shown in Fig. 4.3.

Similarly, in gravity, we find

⟨ψin|S†Rµνρξ(x)Rαβγδ(y)S|ψin⟩

= −2ℏ5ℜ
(
−iκ

2

)2 ∑
σ,σ′=±2

〈〈∫
dΦ(k̄′, k̄) d̂4q̄1d̂

4q̄2 δ̂(2p1 · q̄1)δ̂(2p2 · q̄2)M(0)
6

× δ̂4(k̄ + k̄′ + q̄1 + q̄2) k̄[µε
∗σ
ν] (k)k̄[ρε

∗σ
ξ] (k) k̄

′
[αε

∗σ′

β] (k
′)k̄′[γε

∗σ′

δ] (k′) e−i(k̄·x+k̄′·y+q̄1·b)
〉〉
.

(4.50)
In both cases, the expectation of two field strengths is given to leading order in g by
a tree-level six-point amplitude.

4.2.3 Negligible variance?

We have now seen explicitly that the expectation of a single field strength is deter-
mined by a five-point amplitude, while the expectation of two field strengths is a
six-point tree amplitude at lowest order in the coupling g. But for the uncertainty in
the field strength to be negligible, we need the variance to be negligible. How can this
happen?
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Figure 4.4: A sample Feynman diagram contributing to the six-
point tree amplitude, indicating powers of ℏ assigned by naive power

counting to the propagators and vertices.

Let us count powers of the coupling in the electromagnetic variance. The product
of two field-strength expectations is

⟨ψin|Fµν(x)|ψin⟩⟨ψin|Fρξ(y)|ψin⟩ ∼ (A(0)
5 )2 ∼ (g3)2 . (4.51)

while the expectation of two field strengths is

⟨ψin|Fµν(x)Fρδ(y)|ψin⟩ ∼ A(0)
6 ∼ g4 . (4.52)

Thus the situation seems to very bad: the variance is dominated by the expectation
of two field-strength operators! For the classical limit to emerge as expected, we need
the six-point tree amplitude to be suppressed somehow.

One possibility is that it is suppressed by powers of ℏ, but naively that is not
the case. Consider, for example, the 6-point Feynman diagram shown in Fig. 4.4.
We can count the powers of ℏ associated to the diagram as follows. Each vertex
contributes a factor ℏ−

1
2 ; this is because the dimensionless coupling is e/

√
ℏ or κ/

√
ℏ.

Each messenger propagator contributes a factor ℏ−2 because messenger momenta are
of order ℏ. Meanwhile each massive propagator contributes a factor ℏ−1; this arises
since the momenta flowing through these propagators are a sum of a massive on-shell
momentum p and a messenger momentum k, so that the propagator denominator is
(p+k)2−m2 ≃ 2ℏ p · k̄. We conclude that the six-point tree amplitude contains terms
of order ℏ−6. Referring back to eq. (4.49) or eq. (4.50) for the expectation of two
field strengths, we see that the observables contribute a total of ℏ+5. Based on this
counting, the observable seems to scale as ℏ−1, which would be a serious obstruction
to the emergence of a classical limit. Evidently there is more to understand here: the
powers of ℏ don’t make sense.

It is a familiar story that power counting Feynman diagrams can be misleading:
upon combining diagrams to evaluate an amplitude, there can be cancellations. In
fact this already happens in the case of the five-point tree; there, naive power count-
ing suggests that the amplitude scales as ℏ−9/2 but in fact the leading term in the
amplitude is of order ℏ−7/2 [95]3. The question, then, of the fate of the six-point tree
amplitude in the expectation value of two field strengths becomes a question of the
overall ℏ scaling of six-point tree amplitudes in QED and gravity. We will shortly
demonstrate explicitly that the QED amplitude in fact scale as ℏ−4; the gravitational

3In reference [95], the analysis of the five-point tree amplitude was performed in gravity using the
large mass expansion, which is equivalent to expanding in small ℏ.
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case will be discussed in section 6.2.5. Two powers of ℏ cancel; consequently the
contribution of the six-point tree to the variance is entirely at the quantum level.

It is amusing that at next-to-leading order in the perturbative coupling g, namely
order g6, the expectation value of two field strengths is sensitive to one-loop six-point
amplitudes and to products of two tree five-point amplitudes4. These products of tree-
level five-point amplitudes can be viewed as the cut of a six-point one-loop amplitude.
It is easy to check that these scale as ℏ−5, so in this sense they are enhanced relative
to the six-point tree amplitude. This is as desired for negligible uncertainty:

⟨ψin|Fµν(x)|ψin⟩⟨ψin|Fρδ(y)|ψin⟩ ∼ (A(0)
5 )2 ∼ (g3)2 ;

⟨ψin|Fµν(x)Fρξ(y)|ψin⟩ ∼ A(1)
6 ∼ (A(0)

5 )2 ∼ (g3)2 .
(4.53)

4.2.4 Mixed variances

Our discussion so far reveals that scattering amplitudes, viewed as Laurent series in
ℏ, obey certain properties which permit the emergence of a classical limit through
negligible uncertainty. This Laurent expansion can also be viewed as an expansion
in small momentum transfers divided by the centre-of-mass energy

√
s. In fact, the

emergence of the classical limit imposes an infinite set of these relationships, which
we will call “transfer relations” on scattering amplitudes. In this subsection we will
describe the origin of these relations, and explicitly demonstrate a non-trivial example
at one loop and five points.

To see where these relationships are coming from, recall that the double field-
strength expectation (4.49) depends on a six-point amplitude. We have seen that
the dominant term is actually the six-point one-loop amplitude, occurring at next-
to-leading order in the expansion in g. At this order an additional term contributes
to the double field-strength expectation; this term is the product of two five-point
amplitudes. Now, negligible uncertainty demands that the complete double field-
strength expectation must be the product of two single field-strength expectations.
At leading order in the coupling, and leading non-trivial order in ℏ, we conclude that
there must exist a relationship between the leading-in-ℏ six-point one-loop amplitude
and the product of two five-point trees.

Further examples of relationships between amplitudes can be obtained by consid-
ering expectations of three (or more) field strengths, leading to relationships between
seven- (or higher-) point loop amplitudes and products of three (or more) five-point
amplitudes.

Yet more relationships occur by considering expectations of products of operators
including field strengths and momenta. For example, consider the variance

Vµνρ ≡ ⟨ψin|S†Fνρ(x)SPµ|ψin⟩ − ⟨ψin|S†Fνρ(x)S|ψ⟩in⟨ψin|Pµ|ψin⟩ . (4.54)

This is the variance in a measurement of the initial momentum and the future field
strength; it must be negligible in the classical regime. In a quantum-first approach,
however, this variance will not vanish. Indeed it need not be real:

V ∗
µνρ = ⟨ψin|PµS

†Fνρ(x)S|ψin⟩ − ⟨ψin|S†Fνρ(x)S|ψ⟩in⟨ψin|Pµ|ψin⟩ ≠ Vµνρ. (4.55)

4We learned from G. Veneziano that the use of a cut 6-point function to compute observables
which are quadratic in the fields (such as number or energy densities in inclusive cross-sections)
goes back to Mueller’s generalized optical theorem from the seventies (see e.g. [250] and references
therein).
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We can derive an interesting constraint on the five-point one-loop amplitude by de-
manding that imaginary part of this variance vanishes in the classical approximation.
We therefore define

Oµνρ = i(V ∗
µνρ − Vµνρ)

= i⟨ψin|PµS
†Fνρ(x)S − S†Fνρ(x)SPµ|ψin⟩ .

(4.56)

Expanding the states as usual, we easily find

Oµνρ =

∫
dΦ(p′1, p

′
2, p1, p2)ψ

∗
b (p

′
1, p

′
2)ψb(p1, p2)i(p

′
1µ − p1µ)

× ⟨p′1p′2|i(Fνρ(x)T − T †Fνρ(x)) + T †Fνρ(x)T |p1p2⟩ .
(4.57)

The factor i(p′1µ − p1µ) is important here: working at leading perturbative order, this
factor is of order ℏ. It is also worth noting that we may write the expectation of the
field strength itself as

⟨ψin|Fνρ|ψin⟩ =
∫

dΦ(p′1, p
′
2, p1, p2)ψ

∗
b (p

′
1, p

′
2)ψb(p1, p2)

× ⟨p′1p′2|i(Fνρ(x)T − T †Fνρ(x)) + T †Fνρ(x)T |p1p2⟩ .
(4.58)

Thus the i(p′1µ − p1µ) ∼ ℏ factor in the variance is the key distinction between the
variance, which vanishes classically, and the field strength which of course should not
vanish classically. As we have already seen that the field strength is related to five-
point amplitudes, it is now clear that the condition of vanishing Oµνρ will become a
condition on five-point amplitudes.

It is useful to break the variance Oµνρ up into two structures:

O(1)
µνρ =

∫
dΦ(p′1, p

′
2, p1, p2)ψ

∗
b (p

′
1, p

′
2)ψb(p1, p2)i(p

′
1µ − p1µ)

× ⟨p′1p′2|i(Fνρ(x)T − T †Fνρ(x))|p1p2⟩ ,
(4.59)

and
O(2)

µνρ =

∫
dΦ(p′1, p

′
2, p1, p2)ψ

∗
b (p

′
1, p

′
2)ψb(p1, p2)i(p

′
1µ − p1µ)

× ⟨p′1p′2|T †Fνρ(x)T |p1p2⟩ .
(4.60)

Both of these objects are real, which is convenient in terms of keeping the expressions
simple.

We may simplify these structures using the explicit expression for the field strength
given in eq. (2.40). For O(1) we find

O(1)
µνρ = 2ℜ 1√

ℏ

∑
σ=±1

∫
dΦ(p′1, p

′
2, p1, p2, k)ψ

∗
b (p

′
1, p

′
2)ψb(p1, p2)×

× i(p′1µ − p1µ)⟨kσp′1p′2|T |p1p2⟩ k̄[νε
∗σ
ρ] (k) e

−ik̄·x ,

(4.61)
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which should be compared to eq. (4.39). Again we see that the crucial new ingredient
is a factor i(p′1µ − p1µ). In the classical regime, we may write this term as

O(1)
µνρ = 2ℜℏ9/2

∑
σ=±1

〈〈∫
dΦ(k̄) d̂4q̄1d̂

4q̄2 δ̂(2p1 · q̄1)δ̂(2p2 · q̄2)

× iq̄µA5(p1, p2 → p1 + q1, p2 + q2, k
σ) δ̂4(k̄ + q̄1 + q̄2) k̄[νε

∗σ
ρ] (k) e

−i(k̄·x+q̄1·b)
〉〉
.

(4.62)
Referring back once more to eq. (4.44), the additional ℏ suppression is now manifest.

Following eq. (2.20), at five-points we may write

A(0)
5 (i→ f) = ℏ−7/2

(
A(0)

5,0(i→ f) + ℏA(0)
5,1(i→ f) + · · ·

)
,

A(1)
5 (i→ f) = ℏ−9/2

(
A(1)

5,0(i→ f) + ℏA(1)
5,1(i→ f) + · · ·

)
.

(4.63)

where we have scaled out the dominant (inverse) power of ℏ. Now at classical order
(ℏ0) the tree level amplitude A(0)

5 does not appear in O(1)
µνρ on account of the explicit

factor ℏ9/2 in eq. (4.62). The leading in g, non-trivial, classical contribution arises
from the fragment A(1)

5,0. We conclude then that

O(1)
µνρ = 2ℜ

∑
σ=±1

〈〈∫
dΦ(k̄) d̂4q̄1d̂

4q̄2 δ̂(2p1 · q̄1)δ̂(2p2 · q̄2)×

× iq̄µA(1)
5,0(p1, p2 → p1 + q1, p2 + q2, k

σ) δ̂4(k̄ + q̄1 + q̄2) k̄[νε
∗σ
ρ] (k) e

−i(k̄·x+q̄1·b)
〉〉
.

(4.64)
The relevant fragmentary amplitude is the leading-in-ℏ five-point one-loop amplitude,
sometimes known as the “superclassical” part of the one-loop amplitude. Of course in
this context this fragment of the amplitude is contributing precisely at classical order.

Now the full Oµνρ should vanish at classical order. Since O(1)
µνρ ̸= 0, it must be

that the second structure O(2)
µνρ cancels the contribution of eq. (4.64). We find that

O(2)
µνρ = 2ℜ

∑
σ=±1

〈〈∫
dΦ(k̄) d̂4q̄1d̂

4q̄2d̂
4w̄1d̂

4w̄2 δ̂(2p1 · q̄1)δ̂(2p2 · q̄2)δ̂(2p1 · w̄1)δ̂(2p2 · w̄2)

× q̄µ δ̂
4(k̄ + q̄1 + q̄2)δ̂

4(q̄1 + q̄2 − w̄1 − w̄2) k̄[νε
∗σ
ρ] (k) e

−i(k̄·x+q̄1·b)

×A(0)
5,0(p1, p2 → p1 + w1, p2 + w2, k

σ)A(0)
4,0(p1 + w1, p2 + w2 → p1 + q1, p2 + q2)

〉〉
.

(4.65)
Comparing eq. (4.64) and eq. (4.65), the condition for vanishing O is

iA(1)
5,0(p1p2 → p1 + q1, p2 + q2, k

σ)

= −
∫

d̂4w̄1d̂
4w̄2 δ̂(2p1 · w̄1)δ̂(2p2 · w̄2)δ̂

4(q̄1 + q̄2 − w̄1 − w̄2)

×A(0)
5,0(p1, p2 → p1 + w1, p2 + w2, k

σ)A(0)
4,0(p1 + w1, p2 + w2 → p1 + q1, p2 + q2) .

(4.66)
Thus the dominant part of the five-point one-loop amplitude is given by the tree
five-point and tree four-point amplitudes; as we checked explicitly in appendix G.

Clearly this explicit example is one among an infinite set of relationships. Vari-
ances involving one field strength operator and two momenta will lead to relationships



62 Chapter 4. Classical radiative observables in the two-body problem

among two-loop five-point amplitudes and the product of one five-point tree and two
four-point trees. We can continue, in principle, as far as we wish generating similar
relations. These negligible uncertainty relations generalise the well-known relations
between multiloop four-point amplitudes required for eikonal exponentiation. Indeed
consideration of expectations such as

⟨ψin|S†Pµ1Pµ2 · · ·PµnS|ψin⟩ ≃ ⟨ψin|S†Pµ1 |ψin⟩⟨ψin|S†Pµ2 |ψin⟩ · · · ⟨ψin|S†Pµn |ψin⟩ ,
(4.67)

shows that there must be a relationship between the n− 1 loop four-point amplitude
and the product of n tree amplitudes.

Thus we find a remarkable abundance of relationships between multiloop, mul-
tileg amplitudes, considered as Laurent series in ℏ, forced on us by the absence of
uncertainty in the classical regime. These are a direct consequences of the radiative
generalisation of the eikonal exponentiation we discussed in section 7.1.3.

As well as finding explicit relations between different fragmentary amplitudes,
we can use similar ideas to determine the ℏ scaling associated with fragments in
the transfer expansion. The kinds of multiple cancellations of ℏ powers we saw at
six points must continue to occur at higher points. The reason again follows from
considering expectations of products of more than two field-strength operators.

The arguments are based simply on counting powers of coupling and ℏ. We know
that for the single expectation, at leading order, we have

⟨Fµν⟩ ∼ g3. (4.68)

This means that we must also have ⟨Fn⟩ ∼ (g3)n. Now we perform the KMOC
analysis of ⟨Fn⟩. Following the steps of the calculation earlier in section 4.2.2 we find,
schematically, that

⟨Fn⟩ ∼ ℏ3n/2+2

∫
A4+n. (4.69)

These relations allow us to deduce two things. Firstly the relevant fragment of the
complete amplitude A4+n must scale as ℏ−3n/2−2. Secondly this fragment must have
3n powers of the coupling g — this corresponds to having n− 1 loops. From this we
can also infer the scaling of all other loop and tree amplitudes, in the classical limit,
since each loop contributes an extra factor of ℏ−1. In particular the tree scaling will
be

A4+n,0 ∼ ℏ−n/2−3. (4.70)

This is consistent with the scaling we computed above for six points (n = 2), and
we have also checked explicitly at seven points. It is interesting to see how these two
very simple power counting arguments have completely constrained the ℏ scaling of
all 2 → 2 + n amplitudes.

4.3 Localized observables I: waveform and Newman-Penrose
scalars

In the section 4.1, we built on [166] to analyze what we may call global observables,
requiring an array of detectors covering the celestial sphere at infinity in order to
measure the quantity. This is most manifest for the total radiated momentum, defined
by eq. (3.33) of [166],

Rµ ≡ ⟨kµ⟩ = ⟨ψin|S†KµS |ψin⟩ = ⟨ψin|T †KµT |ψin⟩ . (4.71)
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Even in electromagnetic scattering, achieving 4π coverage would make this a chal-
lenging measurement. In the gravitational context, where we would be looking to
detect emission from scattering of distant black holes, such a measurement would be
hopelessly impractical. Instead, we turn to what we may call local observables, which
can be measured with a localized detector, albeit still sitting somewhere on the celes-
tial sphere, say at x. The paradigm for such a measurement is that of the waveform
W (t, n̂;x) of radiation emitted during a scattering event in direction n̂ from an event
at the coordinate origin. (That is, we adopt the convention that −n̂ points back from
the observer towards the scattering event.) We will focus on electromagnetic radia-
tion here, but much of the formalism will carry over to the gravitational case. Let us
keep in mind that we will be interested in several detectors, all nearby x, though with
separations that are completely negligible compared to the distance from the origin.

Local observables have a general structure which, as we will see, is determined by
some source (the scattering event) and the propagation of messengers over very large
distances. In fact it is convenient to break up our discussion of these observables along
these lines. Here we will discuss this overall structure in more detail, with a focus
on the crucial aspect of propagation. In the following sections, we will then extract
general expressions for local observables from quantum field theory, and connect to
the Newman-Penrose formalism. Then we will examine global observables in cases
where a classical wave scatters off a massive particle before turning to the physically
important case where two massive particles scatter and radiate.

It will be easier to discuss and manipulate the Fourier transform of the waveform
with respect to time. We will refer to this as the spectral waveform f(ω, n̂;x):

f(ω, n̂;x) =

∫ +∞

−∞
dt W (t, n̂;x) eiωt . (4.72)

Given a result for the spectral waveform, we can of course recover the time-dependent
waveform via an inverse Fourier transform. Because we are interested in radiation
produced by long-range forces, the idealized waveforms for the scattering processes
we will consider stretch infinitely far back and forward in time. The idealization is
implicit in the infinite limits for the integral in eq. (4.72). In an actual measurement,
however, the waveform would be below the noise floor of the detector for all times
before a ‘signal start time’ preceding the moment of closest approach, and likewise
for all times after a ‘signal end time’ following that moment. We can then take the
theoretical waveforms to be approximations to actual ones cut off at the start and end
times. Label the interval between the two by ∆ts.

Let us imagine that the point of closest approach during the scattering event is
at the coordinate origin, (t,x) = (0,0). When a massless wave scatters off a point
particle, the wave may overlap the particle; we take a suitable event of maximum
overlap as the origin. We can treat the scattering as occurring in a box of temporal
length ∆ts, and of spatial size ∆xs. Radiation is emitted inside the box during the
scattering event, and then spreads out. We will take an (idealized) measurement
of the radiation in some direction n̂, at a much later time and at a point very far
away in that direction. The details of the scattering — the particles’ interaction and
spins — will determine the radiation emitted inside the box. Modifying those details
could radically change the emission. Those details, however, will have no effect on the
propagation of the radiation out to the distant measuring apparatus. Only the spin
of the radiated field can have any effect. We thus expect the form of the result to be
a Green’s function convoluted with a source. More precisely, given that we have only
outgoing radiation, we expect a retarded Green’s function Gret. We can then expand
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the Green’s function in the large-distance limit to obtain the connection between the
observable and the emitted radiation inside the box.

The details of the scattering inside the box around (0,0) define a current for our
radiation. In a real-world context, we are interested in electromagnetic or gravitational
radiation, but we can equally well treat the case of (massless) scalar radiation as well.
The details of the scattering inside the box give rise to a wavenumber-space field-
strength current, J̃µ(k̄), where the notation µ denotes a number of indices appropriate
to the radiated messenger: none for a scalar, two for a photon, and four for a graviton,

J̃(k̄) : scalar ,
J̃µν(k̄) : electromagnetism ,

J̃µνρσ(k̄) : gravity .
(4.73)

In a slight abuse of language, we will refer to these quantities simply as currents. They
will satisfy appropriate conservation conditions. We will later obtain an expression
for such a current in terms of scattering amplitudes.

Given this current, the usual position-space current can of course be obtained by
taking a Fourier transform,

Jµ(x) =

∫
d̂4k̄ J̃µ(k̄) e

−ik̄·x . (4.74)

Clearly we can also write J̃µ(k̄) in terms of Jµ(x) via an inverse transform,

J̃µ(k̄) =

∫
d4x Jµ(x) e

ik̄·x . (4.75)

Both of these forms of the current will be helpful for us below.
We obtain an x-dependent radiation observable in the general form,

Rµ(x) = i

∫
dΦ(k̄)

[
J̃µ(k̄) e

−ik̄·x − J̃∗
µ(k̄) e

+ik̄·x] , (4.76)

that is, as an integral of the source J̃µ(k̄) over the on-shell massless phase space for the
radiated messenger. Examples will include expectations of hermitian operators, such
as the field-strength operator in electromagnetism, or the Riemann tensor in gravity.

The hermiticity properties of our radiation observables is manifest in eq. (4.76).
But notice that the observables are defined as integrals over positive frequencies k̄0 ≥
0. Yet in writing the innocuous-seeming Fourier transform in eq. (4.74), we have
assumed knowledge of the current for both positive and negative frequency. So we
must fill a gap: what do we mean by the current for negative frequency? In fact, the
reality condition provides the necessary information. Our currents are real in position
space, and we may note that,

Jµ(x) =

∫
d̂4k̄ θ(k̄0)

[
J̃µ(k̄) e

−ik̄·x + J̃µ(−k̄)eik̄·x
]
. (4.77)

The reality condition then leads to the relation,

J̃µ(−k̄) = J̃∗
µ(k̄) . (4.78)

We use this relation to define the current for negative frequency.
A key simplification arises because the source event, occurring in our box, is
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sourced in a comparatively localized region compared to the very large propaga-
tion distance of the outgoing radiation. To access this simplification, we follow a
well-trodden path by rewriting our radiation observables as integrals over the spatial
extent of the source. Thus, we express the observable of eq. (4.76) in terms of the
spatial current Jµ(x), yielding

Rµ(x) = i

∫
dΦ(k̄) d4y Jµ(y)

[
e−ik̄·(x−y) − e+ik̄·(x−y)

]
. (4.79)

Next, we interchange orders of integration. Judicious forethought reveals the combi-
nation of phase space integrals to be a difference of retarded and advanced Green’s
functions,

Rµ(x) =

∫
d4y Jµ(y)

[
Gret(x− y)−Gadv(x− y)

]
. (4.80)

In the far future, where the observer measures the wavetrain emitted from the scat-
tering event, Gadv will vanish. Put in an explicit form for Gret, and switch back to the
wavenumber-space current in order to make the complete dependence of the integrand
on x and y manifest. The result is,

Rµ(x) =

∫
d̂ωd̂3k̄ d4y J̃µ(k̄) e

−ik̄·y δ(x
0 − y0 − |x− y|)
4π|x− y|

=

∫
d̂ωd̂3k̄ d3y J̃µ(k̄)

e−iωx0
e+iω|x−y| e+ik̄·y

4π|x− y|
.

(4.81)

Notice that the integral is now over all wavenumbers. We have split the four-
dimensional momentum integration into integrals over spatial and frequency com-
ponents for later convenience.

From the earlier discussion, we know that Jµ(y) is concentrated around y ≃ 0,
whereas x is far away (x≫ y). Accordingly we can expand the integrand there, using,

|x− y| ∼
[
x2 − 2x · y

]1/2
∼ |x|

(
1− n̂ · y

|x|

)
.

(4.82)

We must be careful in performing this expansion: while it is sufficient to retain the
leading term in the denominator, we must retain formally subleading terms that con-
tribute to nontrivial phases. Even in those exponents, we can of course still drop
terms beyond the subleading, as they give rise to no nontrivial phases.

Substituting the expansion in eq. (4.82) into eq. (4.81), we obtain,

Rµ(x) =

∫
d̂ωd̂3k̄ d3y J̃µ(k̄)

e−iωx0
e+iω|x|e−iωn̂·y e+ik̄·y

4π|x|
; (4.83)

performing in turn the y and k integrals, we finally obtain,

Rµ(x) =
(2π)3

4π|x|

∫
d̂ωd̂3k̄ J̃µ(k̄) e

−iωx0
e+iω|x| δ3(k̄ − ωn̂)

=
1

4π|x|

∫
d̂ω J̃µ(ω, ωn̂) e

−iω(x0−|x|) .

(4.84)
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We can thus identify the waveform with the coefficient of the leading-power term
|x|−1,

Wµ(t, n̂;x) =
1

4π

∫
d̂ω J̃µ(ω, ωn̂) e

−iω(x0−|x|) . (4.85)

In this equation, t represents the observer’s clock time. We could take it to be x0,
or x0 − |x|, or some other convenient time. We must nonetheless retain the separate
dependence on x0 and |x|, because these quantities will differ between the cluster
of nearby observers in which we are interested. That is, the absolute phase of the
waveform at any given observer’s location is not measurable and is therefore irrelevant,
but the relative phases between nearby observers are measurable.

Choosing t = x0 − |x|, the corresponding spectral waveform is then simply,

fµ(ω, n̂) =
1

4π
J̃µ(ω, ωn̂) . (4.86)

More precisely, eq. (4.86) is the waveform for positive frequencies. For negative fre-
quencies, the waveform follows from eq. (4.78),

fµ(ω, n̂) =
1

4π
J̃∗
µ(−ω,−ωn̂) ; (4.87)

notice that −ω is now positive. In both cases, once we know the current J̃µ(k̄), we
can immediately write down the spectral waveform.

As we have seen, the waveform is directly related to the current J̃µ(k̄) generated by
the scattering event. We must choose a specific local radiation observable to determine
this current using its definition, eq. (4.76). In this section we will study examples in
both electrodynamics and gravity.

Let us begin with a simple case: the field-strength tensor in electrodynamics. We
choose an observer at x, in the far future of the event, equipped to measure the
expectation value of the electric and magnetic field at the point x. The observable is
therefore,

Fµν = ⟨ψin|S†Fµν(x)S|ψin⟩ , (4.88)

where (as usual) |ψin⟩ is the incoming state in the far past. In principle, we can also
use |ψw⟩ as our incoming state to study the scattered radiation field in a Thomson
scattering process, but in the following we will restrict ourselves to the two-body
problem.

Inserting the expression for the field-strength tensor of eq. (2.40) into this expec-
tation value, and converting to integrals over wavenumbers, we learn that,

⟨F out
µν (x)⟩ = −iℏ3/2

∑
σ=±1

∫
dΦ(k̄)

[
⟨ψin|S†aσ(k)S|ψin⟩ k̄µ[µε

∗,σ
ν] (k̄) e

−ik̄·x

− ⟨ψin|S†a†σ(k)S|ψin⟩ k̄µ[µε
σ
ν](k̄) e

+ik̄·x] , (4.89)

where we have again dropped the ‘in’ subscript, leaving it implicit in the rest of our
discussion.

We now see the virtue of our definition of the general class of radiation observables
in eq. (4.76). Evidently the expectation value ⟨F out

µν (x)⟩ is of precisely this form, and
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we can read off the current J̃µν(k̄) as

J̃µν(k̄) = −ℏ3/2
∑
σ=±1

⟨ψin|S†aσ(k)S|ψin⟩ k̄[µε∗σν] (k̄) . (4.90)

The discussion of the previous section therefore applies, and we see from eq. (4.86)
that the corresponding spectral waveform is,

fµν(ω, n̂) = − 1

4π
ℏ3/2

∑
σ=±1

⟨ψin|S†aσ(k)S|ψin⟩ k̄µ[µε
∗σ
ν] (k̄)

∣∣∣
k̄=(ω,ωn̂)

, (4.91)

for positive frequency (ω > 0). For negative frequency (ω < 0) the waveform is,

fµν(ω, n̂) = − 1

4π
ℏ3/2

∑
σ=±1

⟨ψin|S†a†σ(k)S|ψin⟩ k̄µ[µε
σ
ν](k̄)

∣∣∣
k̄=−(ω,ωn̂)

. (4.92)

This result holds to all orders in perturbation theory.
It is straightforward to extend this result to gravity. We work in Einstein grav-

ity, and assume that the spacetime is asymptotically Minkowskian. In this case our
observer at x is very far from the source of gravitational waves, and is equipped
to measure the expectation value of the local spacetime curvature ⟨Rout

µνρσ(x)⟩. The
corresponding spectral waveform is nothing but the double copy of eq. (4.91),

fµνρξ(ω, n̂) =
iκ

4π
ℏ3/2

∑
σ=±2

⟨ψin|S†aσ(k)S|ψin⟩ k̄µ[µε
∗,σ
ν] (k̄) k̄

µ
[ρε

∗,σ
ξ] (k̄)

∣∣∣
k̄=(ω,ωn̂)

,

(4.93)
for ω > 0. In this equation, the operator aσ(k) annihilates perturbative gravitational
states. We have included a factor κ/2 so that the Riemann tensor has the conventional
normalization. Noting that the metric perturbation falls off as inverse distance, it
follows that non-linear terms in the Riemann tensor produce corrections which fall off
faster than inverse distance. Consequently, we have neglected them. Notice that all
possible traces of eq. (4.93) vanish, consistent with the fact that the Riemann tensor
in vacuum equals the Weyl tensor. The waveform for negative frequency is,

fµνρξ(ω, n̂) = − iκ

4π
ℏ3/2

∑
σ=±2

⟨ψin|S†a†σ(k)S|ψin⟩ k̄µ[µε
σ
ν](k̄) k̄

µ
[ρε

σ
ξ](k̄)

∣∣∣
k̄=−(ω,ωn̂)

.

(4.94)
The Lorentz indices on these observables reflects the tensor structure of electrody-

namics and gravity. In both cases, however, there are only two possible polarizations
of the outgoing radiation. It is helpful to project the waveform onto one of these
polarizations. Classically, a convenient way to do so is to use the Newman–Penrose
(NP) [251] formalism, which is intimately connected to the spinor-helicity method of
scattering amplitudes [106, 181, 252]. We can adopt the same idea in the present
context. For us, a simple route to the NP formalism is to pick a complex basis of
vectors which is aligned with our setup. We choose the vectors5

Lµ = k̄µ/ω = (1, n̂)µ, Nµ = ζµ, Mµ = ε+
µ, M∗µ = ε−

µ . (4.95)

The null vector ζµ is simply a gauge choice, satisfying ζ ·ε±(k) = 0 and L·N = L·ζ = 1.
Furthermore note that M ·M∗ = −1. The scaling of the NP vector L ensures that it

5We use capital letters to denote the elements of our NP basis rather than the more traditional
lower case symbols in order to distinguish the vectors from loop momenta, masses, etc.
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does not depend on frequency ω, and is dimensionless. Indeed the polarization vectors
ε±(k) do not depend on the scaling of k̄ so they are also independent of frequency.
These vectors therefore make sense as a spacetime basis, not merely as a basis in
Fourier space.

It is easy to check that the only non-zero components of fµν in the NP basis
are fµνM∗µNν and fµνM

µNν . These are the leading radiative NP scalar, tradition-
ally [253] denoted Φ0

2, and its conjugate. We can write these NP scalars as Fourier
transforms:

Φ0
2(t, n̂) =

∫
d̂ω e−iωt Φ̃0

2(ω, n̂) . (4.96)

Notice that we commuted the NP basis vectors through the frequency integration
sign. This is permissible as the basis vectors are independent of frequency. For
positive frequency ω, we find,

Φ̃0
2(ω, n̂) = − ω

4π
ℏ3/2⟨ψin|S†a−(k)S|ψin⟩

∣∣∣
k̄=(ω,ωn̂)

, (4.97)

while for negative frequency, the corresponding expression reads,

Φ̃0
2(ω, n̂) = +

ω

4π
ℏ3/2⟨ψin|S†a†+(k)S|ψin⟩

∣∣∣
k̄=−(ω,ωn̂)

. (4.98)

Combining these results, we find that the time-domain NP scalar is,

Φ0
2(t, n̂) = −ℏ3/2

4π

∫
d̂ωΘ(ω)ω

[
e−iωt⟨ψin|S†a−(k)S|ψin⟩

+ e+iωt⟨ψin|S†a†+(−k)S|ψin⟩
]∣∣∣

k̄=(ω,ωn̂)
.

(4.99)

In gravity, the corresponding radiative NP scalar is defined by

Ψ4(x) = −NµM
∗
νNρM

∗
ξ ⟨Wµνρξ(x)⟩ , (4.100)

where Wµνρξ(x) is the Weyl tensor, equal to the Riemann tensor in our case. Ex-
panded at large distances, the leading term in the NP scalar is Ψ0

4:

Ψ4(x) =
1

|x|
Ψ0

4 + · · · . (4.101)

This object is directly relevant to gravitational waveforms [24, 25, 254]. We find that
the spectral version of the NP scalar is,

Ψ̃0
4(ω, n̂) = −iκ ω

2

8π
ℏ3/2⟨ψin|S†a−−(k)S|ψin⟩

∣∣∣
k̄=(ω,ωn̂)

, (4.102)

for positive ω. Let us emphasize once again that these results hold to all orders of
perturbation theory.

NP scalars are particularly well-suited for comparison with helicity amplitudes
in quantum field theory. However, they may be slightly less familiar than the more
elementary field strengths; field strengths also have the virtue of being hermitian
quantities. Therefore, we will also study the expectation of the radiative field-strength
tensor in perturbation theory. This entails rewriting the scattering matrix in terms of
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the transition matrix T , S = 1 + iT ,

⟨F out
µν (x)⟩ = ⟨ψin|(1− iT †)Fµν(x)(1 + iT )|ψin⟩

= ⟨ψin|Fµν(x)|ψin⟩+ 2ℜi⟨ψin|Fµν(x)T |ψin⟩+ ⟨ψin|T †Fµν(x)T |ψin⟩ .
(4.103)

As we will see in section 4.6, there can be disconnected contributions to such radiative
observables which start at order O(g) as shown in [178]. Nevertheless, those are related
to a gauge choice at null infinity (i.e. to the choice BMS frame) and they come from
degenerate amplitude contributions which have support on the zero-energy kinematics
for the messenger. In the following, we will avoid this subtlety and we will focus only
on the connected contribution. The first term in eq. (4.103) is the expectation value
of the field strength due to any incoming radiation which may be present in |ψin⟩; the
following term is linear in amplitudes, and thus of O(g3) (or higher); the last term
is quadratic in amplitudes (or equivalently, linear in a cut amplitude), and contains
terms of O(g5) and higher. Please see Fig. (4.5) for a pictorial representation of these
different contributions.

Figure 4.5: The waveform receives a linear and a quadratic contri-
butions from scattering amplitudes, as a consequence of unitarity.

Using unitarity, we can rewrite eq. (4.103),

⟨F out
µν (x)⟩ = ⟨ψin|Fµν(x)|ψin⟩+ i⟨ψin|[Fµν(x), T ]|ψin⟩+ ⟨ψin|T †[Fµν(x), T ]|ψin⟩ .

(4.104)

The commutator in the second term of this expression is reminiscent of the form of
the impulse ∆p (although in case of the field strength, the first term above need not
vanish). This second form of the field strength can be both instructive and useful, but
it has a slight disadvantage that reality properties are somewhat obscured compared
to eq. (4.103). When taking the classical limit, we are interested in the leading term in
the large-distance expansion as well; for such radiation observables, we will understand

the
〈〈
· · ·
〉〉

notation to impose that expansion as well.

4.3.1 Emission waveform in scalar QED

We turn now to photon emission in the scattering of two charged point particles. At
leading order in perturbation theory, only the second term in eq. (4.103) contributes.
The connected contribution will be of order O(g3), whereas the second term will be
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of O(g5). If we now substitute eq. (2.40), along with eq. (2.9) for the initial-state
wavefunction for the scattering particles into the first term of eq. (4.103), we obtain,

⟨Fµν(x)⟩1 =
2

ℏ3/2
ℜ
∑
σ=±1

∫
dΦ(p1, p2, p

′
1, p

′
2, k)e

−ib·(p′1−p1)/ℏψ(p1, p2)ψ
∗(p′1, p

′
2)

× k[µε(σ)ν]∗(k)e−ik·x/ℏ⟨p′1 p′2|aσ(k)T |p1 p2⟩

=
2

ℏ3/2
ℜ
∑
σ=±1

∫
dΦ(p1, p2, p

′
1, p

′
2, k)e

−ib·(p′1−p1)/ℏψ(p1, p2)ψ
∗(p′1, p

′
2)

× k[µε(σ)ν]∗(k)e−ik·x/ℏ⟨p′1 p′2 kσ|T |p1 p2⟩ .
(4.105)

We can identify the matrix element as a five-point amplitude,

⟨p′1 p′2 kσ|T |p1 p2⟩ = A5(p1, p2 → p′1, p
′
2, k

σ)δ4(p1 + p2 − p′1 − p′2 − k) . (4.106)

At leading order, we replace the amplitude by its leading order contribution, given by
a tree-level expression. To compute the required waveform, we must identify the ex-
pectation of Fµν(x) as the spatial current Jµ(x) in eq. (4.74)-(4.75), and via eq. (4.75),
in eq. (4.85).

Beyond leading order, the expectation of Fµν(x) will receive higher-order contri-
butions to the amplitudes in eq. (4.106), alongside contributions from the last term
in eq. (4.104),

⟨Fµν(x)⟩2 = − i

ℏ3/2
∑
σ=±1

∫
dΦ(p1, p2, p

′
1, p

′
2, k)e

−ib·(p′1−p1)/ℏψ(p1, p2)ψ
∗(p′1, p

′
2)

×
[
k[µε(σ)ν]∗(k)e−ik·x/ℏ⟨p′1 p′2|T †aσ(k)T |p1 p2⟩
− k[µε(σ)ν](k)e+ik·x/ℏ⟨p′1 p′2|T †a†σ(k)T |p1 p2⟩

]
(4.107)

Insert a complete set of states to the right of each T †,

⟨ψin|T †FµνT |ψin⟩ =
∑
X

∫
dΦ(r1)dΦ(r2) ⟨ψin|T †|r1 r2X⟩⟨r1 r2X|FµνT |ψin⟩ ,

(4.108)

where the sum over X is over all states, including no additional particles, and includes
an implicit integral over momenta of any particles in X and a sum over any other
quantum numbers. As in [166], we assume that each of the incoming massive particles
carries a separately conserved global charge, so that each intermediate state has one
net particle of each type. We can ignore additional particle-antiparticle pairs of the
massive particles, as these contributions will disappear in the classical limit. As there
are no messengers in the initial state, and hence no coherent states, there is no need
to sum over arbitrary numbers of messengers. Accordingly, we do not need to switch
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to a coherent-friendly representation in eq. (4.5) of the T matrix. We obtain,

⟨Fµν(x)⟩2 = − i

ℏ3/2
∑
X

∑
σ=±1

∫
dΦ(r1, r2, p1, p2, p

′
1, p

′
2, k)e

−ib·(p′1−p1)/ℏψ(p1, p2)ψ
∗(p′1, p

′
2)

×
[
k[µε(σ)ν]∗(k)e−ik·x/ℏ⟨p′1 p′2|T †|r1 r2X⟩⟨r1 r2X|aσ(k)T |p1 p2⟩
− k[µε(σ)ν](k)e+ik·x/ℏ⟨p′1 p′2|T †|r1 r2X⟩⟨r1 r2X|a†σ(k)T |p1 p2⟩

]
= − i

ℏ3/2
∑
X

∑
σ=±1

∫
dΦ(r1, r2, p1, p2, p

′
1, p

′
2, k)e

−ib·(p′1−p1)/ℏψ(p1, p2)ψ
∗(p′1, p

′
2)

×
[
k[µε(σ)ν]∗(k)e−ik·x/ℏ⟨p′1 p′2|T †|r1 r2X⟩⟨r1 r2 kσX|T |p1 p2⟩

− k[µε(σ)ν](k)e+ik·x/ℏ⟨p′1 p′2|T †|r1 r2 kσX⟩⟨r1 r2X|T |p1 p2⟩
]
.

(4.109)

In the second term within brackets, the creation operator requires a photon in the
intermediate state, and eliminates it from the bra. We then relabeled X to exclude
it. Note as well that at next-to-next-leading order and beyond, we necessarily require
amplitudes with three incoming particles. These can just as easily be obtained by
crossing. The term in eq. (4.109) has the interpretation of a cut of an amplitude, just
as for the second term in the impulse in [166], as seen in eqs. (3.26–3.31) therein.

4.3.2 The detected wave at leading order

The leading-order connected contribution to the waveform will arise at O(g3), as
described in the previous section. We apply the approach of [166] to eq. (4.105).
Similarly to that reference, we define the momentum mismatches,

q1 = p′1 − p1 ,

q2 = p′2 − p2 ;
(4.110)

and trade the integrals over the p′i for integrals over the qi,

⟨Fµν(x)⟩1 =
2

ℏ3/2
ℜ
∑
σ=±1

∫
dΦ(p1)dΦ(p2)d̂

4q1d̂
4q2dΦ(k) δ(2p1 · q1 + q21)δ(2p2 · q2 + q22)

× e−ib·q1/ℏΘ(p01 + q01)Θ(p02 + q02)ψ(p1)ψ
∗(p1 + q1)ψ(p2)ψ

∗(p2 + q2)

× k[µε(σ)ν]∗(k)e−ik·x/ℏA5(p1, p2 → p1 + q1, p2 + q2, k
σ)δ4(q1 + q2 + k) .

(4.111)

We can take the classical limit, and change to the required wavenumber variables for
the qi and k,

⟨Fµν(x)⟩1,cl =
1

2
g3
〈〈

ℏ2ℜ
∑
σ=±1

∫
dΦ(k̄)k̄[µε(σ)ν]∗(k)e−ik̄·x

×
∏
i=1,2

∫
d̂4q̄i δ(pi · q̄i) e−ib·q̄1δ4(q̄1 + q̄2 + k̄)A(0)

5,0(p1, p2 → p1 + ℏq̄1, p2 + ℏq̄2, ℏk̄σ)
〉〉
.

(4.112)

We have also extracted powers of ℏ from the coupling, and dropped the ℏ-suppressed
terms inside the on-shell delta functions as well as the positive-energy theta functions.
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We recognize the inner integral in the second term as the radiation kernel defined in
eq. (4.42) of [166] (after changing variables there pi → pi − ℏw̄i and w̄i → −q̄i),

R(0)(k̄σ; b) ≡ ℏ2
∏
i=1,2

∫
d̂4q̄i δ(pi · q̄i) e−ib·q̄1δ4(q̄1 + q̄2 + k̄)

×A(0)
5,0(p1, p2 → p1 + ℏq̄1, p2 + ℏq̄2, ℏk̄σ) .

(4.113)

We have made the impact parameter an explicit argument here. At leading order, we
can then write,

⟨Fµν(x)⟩1,cl =
1

2
g3
〈〈
ℜ
∑
σ=±1

∫
dΦ(k̄)k̄[µε(σ)ν]∗(k)e−ik̄·xR(0)(k̄σ; b)

〉〉
. (4.114)

The spectral waveform is then,

fµν(ω, n̂) = − ig3

16π

∑
σ=±1

[
Θ(ω)k̄[µε(σ)ν]∗(k)R(0)(k̄σ; b)

∣∣
k̄=ω(1,n̂)

−Θ(−ω)k̄[µε(σ)ν](k)R(0)∗(k̄σ; b)
∣∣
k̄=−ω(1,n̂)

] (4.115)

The corresponding result for the Fourier-space NP scalar is,

Φ̃0
2(ω, n̂) = − ig

3ω

16π

〈〈
Θ(ω)R(0)(ω(1, n̂)−; b) + Θ(−ω)R(0)∗(−ω(1, n̂)+; b)

〉〉
. (4.116)

Equivalently, we may write,

Φ0
2(t, n̂) = − ig3

16π

〈〈∫
d̂ωΘ(ω) ω

[
e−iω·tR(0)(ω(1, n̂)−; b)

− e+iω·tR(0)∗(ω(1, n̂)+; b)
]〉〉

.

(4.117)

As the leading order radiation kernel R(0) is given by a five-point amplitude, the
waveform as a function of frequency ω, is simply the five-point amplitude up to the
additional factor of ω. The explicit form of eq. (4.113) for electromagnetic scattering
is given in eq. (5.46) of [166]. We evaluate them to obtain,

R(0)(k̄; b) =
Q2

1Q2 e
ib·k̄

mA vA · k̄
[
vB · k̄ vA · ε− vA · k̄ vB · ε

]
× 1

2π
√
γ2 − 1

K0

(√
−b2 vA · k̄/

√
γ2 − 1

)
+
Q2

1Q2γ e
ib·k̄

mA vA · k̄
[
vA · k̄ b̃ · ε− b̃ · k̄ vA · ε

]
× i

2π (γ2 − 1)
K1

(√
−b2 vA · k̄/

√
γ2 − 1

)
+
(
1 ↔ 2 modulo phases

)
.

(4.118)



4.3. Localized observables I: waveform and Newman-Penrose scalars 73

A side calculation shows that (with ζ a null reference momentum),

vB · k̄ vA · ε−vA · k̄ vB · ε =
1√

2
〈
ζ k̄
〉[⟨k̄| vB |k̄] ⟨ζ| vA |k̄]− ⟨k̄| vA |k̄] ⟨ζ| vB |k̄]

]
=

1√
2
[k̄| vB vA |k̄]

(4.119)

for positive-helicity emission, and

1√
2
⟨k̄| vB vA |k̄⟩ (4.120)

for negative-helicity emission.
Then,

R(0)(k̄+; b) =
Q2

1Q2 e
ib·k̄

2
√
2πmA vA · k̄

√
γ2 − 1

×
{
[k̄| vB vA |k̄] K0

(√
−b2 vA · k̄/

√
γ2 − 1

)
+

i [k̄| b vA |k̄]√
γ2 − 1

√
−b2

K1

(√
−b2 vA · k̄/

√
γ2 − 1

)}
+

Q1Q
2
2

2
√
2πmB vB · k̄

√
γ2 − 1

×
{
[k̄| vA vB |k̄] K0

(√
−b2 vB · k̄/

√
γ2 − 1

)
+

i [k̄| b vB |k̄]√
γ2 − 1

√
−b2

K1

(√
−b2 vB · k̄/

√
γ2 − 1

)}
.

(4.121)

There is a similar result for the other photon helicity.
Using the integrals,∫ ∞

0
dω ωe−iω(t+a0)K0(ωa1) =

1

a21 + (a0 + t)2
− (t+ a0)

[a21 + (a0 + t)2]3/2
arcsinh

( 1

a1
(t+ a0)

)
− iπ

2

(t+ a0)

[a21 + (a0 + t)2]3/2
,∫ ∞

0
dω ωe−iω(t+a0)K1(ωa1) =

πa1

2[a21 + (a0 + t)2]3/2
− i

(a0 + t)

a1[a21 + (a0 + t)2]

− i
a1

[a21 + (a0 + t)2]3/2
arcsinh

( 1

a1
(t+ a0)

)
;

(4.122)

and defining,

vj,n̂ ≡ vj · k̄/ω = vj · (1, n̂) ,
ρ1(t) ≡ −b2v2A,n̂ + (γ2 − 1)(t+ b · n̂)2 ,
ρ2(t) ≡ −b2v2B,n̂ + (γ2 − 1)t2 ,

(4.123)
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along with,

Ξζ
ia(t, n̂;v) =

√
γ2 − 1

ρ1(t)
− ζ

(γ2 − 1)(t+ v · n̂)
ρ
3/2
1 (t)

arcsinh

( √
γ2 − 1√
−b2vA,n̂

(t+ v · n̂)
)

− iπ

2

(γ2 − 1)(t+ v · n̂)
ρ
3/2
1 (t)

,

Ξib(t, n̂;v) =
πvA,n̂

ρ
3/2
1 (t)

+ i

√
γ2 − 1(t+ v · n̂)
b2vA,n̂ρ1(t)

− i
vA,n̂

ρ
3/2
1 (t)

arcsinh

( √
γ2 − 1√
−b2vA,n̂

(t+ v · n̂)
)
,

(4.124)

we can write,

Φ0
2(t, n̂) =

− ig3Q2
1Q2

(4π)3
√
2mA vA,n̂

[
⟨n̂| vB vA |n̂⟩ Ξ+

1a(t, n̂;b)− [n̂| vB vA |n̂] Ξ−
1a(t, n̂;b)

+ i
(
⟨n̂| b vA |n̂⟩ − [n̂| b vA |n̂]

)
Ξ1b(t, n̂;b)

]
− ig3Q1Q

2
2

(4π)3
√
2mB vB,n̂

[
⟨n̂| vA vB |n̂⟩ Ξ+

2a(t, n̂;0)− [n̂| vA vB |n̂] Ξ−
2a(t, n̂;0)

+ i
(
⟨n̂| b vB |n̂⟩ − [n̂| b vB |n̂]

)
Ξ2b(t, n̂;0)

]
.

(4.125)

Here, |n̂⟩ and |n̂] are spinors built out of the null vector (1, n̂).

4.4 Localized observables II: Gravitational energy event
shapes

In analogy to the standard event shapes considered in QCD jet physics, we explore
here gravitational energy event shapes, which are of current interest to the gravita-
tional waves community. Our light-ray operators probe the underlying structure of
gravitational radiation as registered by a detector placed at null infinity in the direc-
tion n̂. Of particular interest is the gravitational radiation emitted by the scattering
of compact objects. The relevant amplitude for such processes is of the form

⟨p3p4{k
σj

j }j=1,..,M |T |p1p2⟩ = M4+M (p1, p2 → p3, p4, {k
σj

j }j=1,..,M )

× δ4

p1 + p2 − p3 − p4 −
M∑
j=1

kj

 , (4.126)

As a first approximation, we can focus on the soft kinematic region of the emitted
gravitons in order to take advantage of the simple form of graviton soft factors and
of the fact the quantum state representing the radiation is known as we will discuss
later in section 5.5. To be more precise, the detectors are assumed to have a lower
energy resolution λ and the emitted gravitons to have a total energy Ewave with

λ≪ Ewave ≪ Λ, (4.127)
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where Λ is a suitable UV cutoff which can be thought as the total energy of the process
[255, 256]. The classical limit requires the number of gravitons emitted to be large
M → +∞, as dictated by the coherent state structure [167]: this implies an infinite
resummation of all graviton contributions.

The 1-point gravitational energy event shape is simply the on-shell expectation
value of the gravitational ANEC at infinity

⟨ψout|Ẽ(n̂)|ψout⟩ = ⟨ψin|S†Ẽ(n̂)S|ψin⟩. (4.128)

Inserting the completeness relation of on-shell states
∑

X |X⟩⟨X| yields

⟨ψout|Ẽ(n̂)|ψout⟩ =
∑
X

⟨ψin|S†Ẽ(n̂)|X⟩⟨X|S|ψin⟩ =
∑
X

wẼ(n̂)|⟨X|S|ψin⟩|2, (4.129)

which is always positive definite.
The graviton emission amplitude for M soft gravitons of momenta kj and helicity

σj is then6

M4+M (p1, p2 → p3, p4, {k
σj

j }j=1,..,M ) = M4(p1, p2 → p3, p4)

M∏
l=1

[
κ

2

4∑
i=1

ηi
εσl
µν(kl)p

µ
i p

ν
i

pi · kl

]
,

(4.130)

where we have used the leading soft graviton factor [255, 257] and ηi = +1 (resp.
ηi = −1) if the particle is outgoing (resp. ingoing). One can go further in the soft
expansion by taking into account the sub- (and subsub-) leading contributions, see
[168, 170, 258–260] for further details.

We will be interested in the classical limit of this quantity, and the proper way to
do so would be to use the in-in KMOC formalism [166]. In such approach, the limit is
taken with a careful analysis of the wavepackets of the external massive fields which
localize the particles on their classical trajectory as ℏ → 0. Here for simplicity we will
work in the approximation ω ≪ b−1, where ω is the typical graviton frequency of the
emitted wave and b is the impact parameter of the two incoming particles: this will
allow us to get a simple universal b-independent result which will be useful to analyze
the properties of gravitational energy event shapes. In order to make transparent the
power counting for the amplitudes involved, we will consider the tree level classical
contribution for M4(p1, p2 → p3, p4) so that |M4(p1, p2 → p3, p4)|2 will always be of
order G2 in this section.

The leading contribution will be given by the single graviton emission amplitude,

⟨ψout|ẼGR(n̂)|ψout⟩
∣∣∣
O(G3)

=

∫
dΦ(p3)

∫
dΦ(p4)

∑
σ1=±2

∫
dΦ(k1)

×
[
(Ek1)δ

2(Ωk̂1
− Ωn̂)

]
(2π)4δ4

(
4∑

i=1

ηipi + k1

)
|M5(p1, p2 → p3, p4, k

σ1
1 )|2. (4.131)

6At leading order there is no distinction between consecutive double soft limits and simultaneous
double soft limits, so we don’t need to assume any hierarchy in the energy of the soft gravitons.
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In the soft regime for the graviton we can isolate the graviton phase space integration,

∑
σ1=±2

∫
dΦ(k1)(2π)

4δ4

(
4∑

i=1

ηipi + k1

)[
(Ek1)δ

2(Ωk̂1
− Ωn̂)

]
|M5(p1, p2 → p3, p4, k

σ1
1 )|2

≃ (2π)4δ4

(
4∑

i=1

ηipi

) ∑
σ1=±2

∫
dΦ(k1)

[
(Ek1)δ

2(Ωk̂1
− Ωn̂)

]
|M5(p1, p2 → p3, p4, k

σ1
1 )|2.

(4.132)

To make further progress we need to use the polarization sum identity for the graviton
polarization vectors which reads∑

σ=±2

εσµν(k)ε
σ,∗
αβ (k) =

1

2
[PµαPνβ + PµβPνα − PµνPαβ]

Pµν = ηµν −
qµpν + qνpµ

p · q
, (4.133)

where qµ is a suitable reference momentum. The gauge dependent terms will cancel
from our calculation using momentum conservation [255], so we do not need to worry
about spurious contributions. Since the amplitude factorizes, we can actually perform
the graviton phase space integration in a universal form

∑
σ1=±2

1

2(2π)3

∫ Ewave

λ
dEk1

∫
dΩk̂1

δ2(Ωk̂1
− Ωn̂)(Ek1)

2

∣∣∣∣∣
4∑

i=1

ηi
κ

2

εσ1
µν(k1)p

µ
i p

ν
i

pi · k1

∣∣∣∣∣
2

= G
Ewave

4π2

 4∑
i,j=1

ηiηj
2(pi · pj)2 −m2

im
2
j

(Epi − pi · n̂)(Epj − pj · n̂)

 . (4.134)

Working in the center of mass frame7 for the two massive particles we have

⟨ψout|ẼGR(n̂)|ψout⟩
∣∣∣
O(G3)

=

∫
dΩpCM

|pCM|
16π2

√
s
|M4(p1, p2 → p3, p4)|2

×G
Ewave

4π2

 4∑
i,j=1

ηiηj
2(pi · pj)2 −m2

im
2
j

(Epi − pi · n̂)(Epj − pj · n̂)

 ,

(4.135)

which is infrared finite at the leading order G3. It is worth noticing that eq. (4.135) is
only the leading order contribution, and we still need to sum over all possible graviton
emissions.

7Here s = (p1 + p2)
2 is the center of mass energy.
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Figure 4.6: The picture shows how the cancellation of infrared di-
vergences between real and virtual graviton emissions works for the

gravitational energy event shape

Before looking at the classical limit, it is worth looking at how infrared divergences
will cancel for the gravitational energy event shape in general. At order G4 we have,

⟨ψout|ẼGR(n̂)|ψout⟩
∣∣∣
O(G4)

=

∫
dΦ(p3)

∫
dΦ(p4)

∑
σ1=±2

∫
dΦ(k1) (2π)

4δ4

(
4∑

i=1

ηipi + k1

)
×
[
(Ek1)δ

2(Ωk̂1
− Ωn̂)

]
|M5(p1, p2 → p3, p4, k

σ1
1 )|2

+

∫
dΦ(p3)

∫
dΦ(p4)

1

2

∑
σ1,σ2=±2

∫
dΦ(k1)

∫
dΦ(k2) (2π)

4δ4

(
4∑

i=1

ηipi +

2∑
l=1

kl

)

×

[
2∑

l=1

(Ekl)δ
2(Ωk̂l

− Ωn̂)

]
|M5(p1, p2 → p3, p4, k

σ1
1 , k

σ2
2 )|2. (4.136)

The first contribution includes loop contributions related to virtual gravitons

|M5(p1, p2 → p3, p4, k
σ1
1 )|2

∣∣∣
O(G4)

= |M5(p1, p2 → p3, p4, k
σ1
1 )|2

∣∣∣
O(G3)

×

− G

4π2
log

(
Λ

λ

)∫
dΩk̂

 4∑
i,j=1

ηiηj
2(pi · pj)2 −m2

im
2
j

(Epi − pi · k̂)(Epj − pj · k̂)

 , (4.137)

where we have regularized the integral with the ultraviolet cutoff Λ [255]. The second
term instead has a divergent contribution which comes from the emission of one real
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graviton, since integrating over the 2-gravitons phase space gives

1

2

∑
σ1,σ2=±2

∫ Ewave

λ

dEk1(Ek1)

2(2π)3

∫ Ewave

λ

dEk2(Ek2)

2(2π)3

∫
dΩk̂1

∫
dΩk̂2

Θ(Ewave − Ek1 − Ek2)

×

[
2∑

l=1

(Ekl)δ
2(Ωk̂l

− Ωn̂)

]
2∏

l=1

∣∣∣∣∣
4∑

i=1

ηi
κ

2

εσl
µν(kl)p

µ
i p

ν
i

pi · kl

∣∣∣∣∣
2

= G
Ewave

4π2

 4∑
i,j=1

ηiηj
2(pi · pj)2 −m2

im
2
j

(Epi − pi · n̂)(Epj − pj · n̂)


× log

(
Ewave

λ

)
G

4π2

∫ dΩk̂

4∑
i,j=1

ηiηj
2(pi · pj)2 −m2

im
2
j

(Epi − pi · k̂)(Epj − pj · k̂)

 ,
(4.138)

where we have used the fact that∫ Ewave

λ
dEk1

∫ Ewave

λ
dEk2

1

Ek2

Θ(Ewave − Ek1 − Ek2)
Ek1

,Ek2
≪Ewave
≃ Ewave log

(
Ewave

λ

)
,

(4.139)

which is valid as long as we can neglect the single graviton energies (suppressed by ℏ)
compared to the energy of the wave Ek1 , Ek2 ≪ Ewave, as noticed in [256].

One can then perform the regularized sum in eq. (4.136)

⟨ψout|ẼGR(n̂)|ψout⟩
∣∣∣
O(G4)

=

∫
dΩpCM

|pCM|
16π2

√
s
|M4(p1, p2 → p3, p4)|2

×G
Ewave

4π2

 4∑
i,j=1

ηiηj
2(pi · pj)2 −m2

im
2
j

(Epi − pi · n̂)(Epj − pj · n̂)


× log

(
Ewave

Λ

)
G

4π2

∫ dΩk̂

4∑
i,j=1

ηiηj
2(pi · pj)2 −m2

im
2
j

(Epi − pi · k̂)(Epj − pj · k̂)

 , (4.140)

which is infrared finite as expected. One can then repeat the same argument for the
G3+n-th order contribution

⟨ψout|EGR(n̂)|ψout⟩
∣∣∣
O(G3+n)

=

∫
dΩpCM

|pCM|
16π2

√
s
|M4(p1, p2 → p3, p4)|2

×G
Ewave

4π2

 4∑
i,j=1

ηiηj
2(pi · pj)2 −m2

im
2
j

(Epi − pi · n̂)(Epj − pj · n̂)


×

n∑
M ′=0

1

M ′!
log

(
Ewave

Λ

)M ′
 G

4π2

∫
dΩk̂

4∑
i,j=1

ηiηj
2(pi · pj)2 −m2

im
2
j

(Epi − pi · k̂)(Epj − pj · k̂)

M ′

,

(4.141)

where M ′ =M − 1.
It is worth noticing that this situation is in contrast with QCD case where the

gluon energy event shape is infrared divergent and one has to sum also over quarks
energy event shapes to get a well-defined (i.e. an infrared finite) answer [141]. The
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cancellation of infrared divergences in this setting is similar to what was found for the
graviton emission cross section by Donoghue [261].

The energy-energy correlator is defined as,

⟨ψout|Ẽ(n̂1)Ẽ ′(n̂2)|ψout⟩ = ⟨ψin|S†Ẽ(n̂1)Ẽ ′(n̂2)S|ψin⟩. (4.142)

By inserting a completeness relation of on-shell final states
∑

X |X⟩⟨X| between the
two gravitational ANEC operators at infinity we get

⟨ψout|Ẽ(n̂1)Ẽ ′(n̂2)|ψout⟩ =
∑
X

⟨ψin|S†Ẽ(n̂1)|X⟩⟨X|Ẽ ′(n̂2)S|ψin⟩

=
∑
X

wẼ(n̂1)w
′
Ẽ(n̂2)|⟨X|S|ψin⟩|2. (4.143)

In details

⟨ψout|ẼGR(n̂1)Ẽ ′
GR(n̂2)|ψout⟩

∣∣∣
O(G4)

=

∫
dΦ(p3)

∫
dΦ(p4)

1

2

∑
σ1,σ2=±2

∫
dΦ(k1)

∫
dΦ(k2)

×
[
(Ek1)(Ek1)δ

2(Ωk̂1
− Ωn̂1

)δ2(Ωk̂1
− Ωn̂2

) + (Ek2)(Ek2)δ
2(Ωk̂2

− Ωn̂1
)δ2(Ωk̂2

− Ωn̂2
)

+ 2(Ek1)(Ek2)δ
2(Ωk̂1

− Ωn̂1
)δ2(Ωk̂2

− Ωn̂2
)
]
|⟨kσ1

1 k
σ2
2 p3p4|S|p1p2⟩|

2. (4.144)

Contrary to the 1-pt energy event shape, here we get also contact terms which corre-
spond to the case where the two detectors are aligned along the same direction. These
terms are usually included in QCD energy event shapes and they are required in order
to remove collinear divergences [142], but classical gravity does not have such type
of collinear divergences [262]. We will thus restrict our attention to the generic case
n̂1 ̸= n̂2:

⟨ψout|ẼGR(n̂1)Ẽ ′
GR(n̂2)|ψout⟩

∣∣∣
O(G4)

=

∫
dΦ(p3)

∫
dΦ(p4)

1

2

∑
σ1,σ2=±2

∫
dΦ(k1)

∫
dΦ(k2)

× (2Ek1Ek2δ
2(Ωk̂1

− Ωn̂1
)δ2(Ωk̂2

− Ωn̂2
))|⟨kσ1

1 k
σ2
2 p3p4|S|p1p2⟩|

2. (4.145)

At this point we can repeat the integration as we did before to get

⟨ψout|ẼGR(n̂1)Ẽ ′
GR(n̂2)|ψout⟩

∣∣∣
O(G4)

=

∫
dΩpCM

|pCM|
16π2

√
s
|M4(p1, p2 → p3, p4)|2

×
2∏

l=1

GEwave

4π2

 4∑
i,j=1

ηiηj
2(pi · pj)2 −m2

im
2
j

(Epi − pi · n̂l)(Epj − pj · n̂l)

 . (4.146)

As we can see, despite being a natural quantum observable the 2-point gravitational
energy event shape factorizes, i.e. there is no degree of correlation between the two
emissions. This is due to the soft limit we are considering and ultimately related to
the coherent state structure of the radiation [263]. It would be very interesting to
compute the non-trivial (connected) 2-point energy event shape in a quantum theory
of gravity from the six point amplitude with 4 massive scalars and 2 gravitons, which
should provide the leading infrared finite contribution to this observable.

So far we have discussed the quantum picture, where energy event shape correlators
are a non-trivial infrared-safe prediction. For our problem in the classical soft limit,
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as we will see, only the 1-point event shape will be non-trivial because of factorization
properties. In our case we can take the sum over all contributions M = 1, ..,+∞,
which implies to sum over M ′ = 0, ..,+∞ in our expression for the gravitational wave
event shape in eq. (4.141):

⟨ψout|ẼGR(n̂)|ψout⟩
∣∣∣
class

= G
Ewave

4π2

∫
dΩpCM

|pCM|
16π2

√
s
|M4(p1, p2 → p3, p4)|2

×

 4∑
i,j=1

ηiηj
2(pi · pj)2 −m2

im
2
j

(Epi − pi · n̂)(Epj − pj · n̂)

(Ewave

Λ

) G
2π

∑
i,j ηiηj

mimj(1+β2ij)

βij(1−β2
ij

)
1
2

log

(
1+βij
1−βij

)
,

(4.147)

where βij =

√
1− m2

im
2
j

(pi·pj)2 . This is consistent with the graviton production rate in

Weinberg [255] under our hypotheses. Once normalized by the total cross section we
have

〈
ẼGR(n̂)

〉∣∣∣
class

=
EwaveG

4π2

 4∑
i,j=1

ηiηj
2(pi · pj)2 −m2

im
2
j

(Epi − pi · n̂)(Epj − pj · n̂)


×
(
Ewave

Λ

) G
2π

∑
i,j ηiηj

mimj(1+β2ij)

βij(1−β2
ij

)
1
2

log

(
1+βij
1−βij

)

(4.148)

and if we try to compute the gravitational energy-energy correlator at the classical
level 〈

ẼGR(n̂1)Ẽ ′
GR(n̂2))

〉∣∣∣
class

=
〈
ẼGR(n̂1)

〉∣∣∣
class

〈
Ẽ ′

GR(n̂2)
〉∣∣∣

class
, (4.149)

which is a consequence of the classical (soft) factorization. This can be shown explicitly
using the coherent state in [264], and it is a simple consequence of the uncertainty
principle discussed in section 4.2.

4.4.1 IR safety and invariance under BMS soft supertranslations

It is possible to do an interesting consistency check about infrared safety of the gravi-
tational energy event shapes by looking at how soft supertranslation symmetry affects
such matrix elements. In the rest of the section we have used an infrared cutoff and
we have observed the cancellation of infrared divergences as in the Bloch-Nordsieck
mechanism, but it would be nice to understand if there is a theoretical reason for
these event shapes to be infrared finite.

It is well known that the action of the soft supertranslation mode corresponds to
an insertion of a soft graviton at the level of S-matrix elements [228, 230]. In particular
the generator of such symmetry reads

Tsoft(f) =
1

16πG

∫
d2ζ

[
∂ζD

ζ̄Cζ̄ζ̄ + ∂ζ̄D
ζCζζ

]
f(ζ, ζ̄)

= lim
E→0

E

4πκ

∫
d2ζ

[
(a+(En̂) + a†−(En̂))D2

ζ̄f + h.c.
]
, (4.150)
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where f(ζ, ζ̄) is an arbitrary function on the celestial sphere. Its action on graviton
creation operators is given by

[Tsoft(f), a+(k)] =
8π2

κ

δ(Ek)

γζk ζ̄k
D2

ζf [Tsoft(f), a−(k)] =
8π2

κ

δ(Ek)

γζk ζ̄k
D2

ζ̄f, (4.151)

and the one with creation operators is fixed because Tsoft(f) is hermitian. The latter
implies that

[Tsoft(f), a
†
σ(k)]

† = −[Tsoft(f), aσ(k)] ∀σ = ±2. (4.152)

We now consider a gravitational event shape of the form

⟨ψout|P̃µ,GR(n̂)|ψout⟩ =
∑
X

⟨ψin|S†P̃µ,GR(n̂)|X⟩⟨X|S|ψin⟩ (4.153)

and we want to check whether this definition is invariant or not under BMS soft
supertranslations, i.e. under the addition of a soft graviton. If it is, this provides
a strong evidence that eq. (4.153) is actually infrared finite, i.e. insensitive to soft
(graviton) physics. A short calculation shows that

[Tsoft(f), P̃µ,GR(n̂)] =
nµ

2πκγζn̂ζ̄n̂

lim
Ep→0

(Ep)
2
[
D2

ζf a
†
+(Epn̂) +D2

ζ̄f a
†
−(Epn̂)− h.c.

]
(4.154)

and since the addition of a soft graviton gives the usual Weinberg soft factor with
a pole in Ep, the action in eq. (4.154) annihilates every S-matrix element (once we
insert the completeness relation) [230].

It would be interesting to understand in more details if the invariance under the soft
modes of large gauge symmetries, BMS soft supertranslations and general asymptotic
symmetries of massless particles always guarantees the IR-finiteness (in the soft sense8)
of a matrix element in a QFT. This could be helpful to prove in general whether
for other on-shell observables, for example like the ones defined in [166], infrared
divergences are always going to cancel.

4.5 Amplitude of the waveform and energy event shapes

In section 4.3, we presented the general form for the waveform observable. We worked
out the leading-order form in two-particle scattering in Sect. 4.3.1, and computed
the explicit form for electromagnetic scattering. The appearance of the radiation
kernel suggests a connection to the radiated momentum previously computed in [166],
and more specifically with the event shape analogue discussed in section 4.4. Let us
elucidate that connection in this section.

In eq. (3.33) of [166], we find an expression for time-averaged radiated momentum,

Rµ ≡ ⟨kµ⟩ = ⟨ψin|S†KµS |ψin⟩ = ⟨ψin|T †KµT |ψin⟩ . (4.155)

This quantity is also integrated over the entire celestial sphere; we need a more dif-
ferential observable. Furthermore, this expression is related to the energy emitted,
rather than the amplitude of the emitted wave.

8Here we are not considering collinear divergences, which play a huge role in QCD.
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We can use Mellin transforms to extract a more restricted observable, passing
through the spectral waveform to relate the emitted power to the amplitude. Write
the expectation of the observable ⟨(k0)z−1⟩,

R(z) ≡ ⟨(k0)z−1⟩ = ⟨ψin|T †(K0)z−1T |ψin⟩ . (4.156)

The inverse Mellin transform is related to the unpolarized energy density function,

fϵ(E) = −iE
∫ c+i∞

c−i∞
dz E−zR(z) , (4.157)

where the integral is taken along a line parallel to the imaginary axis, with c ∈ (0, 1)
(or a deformation of that contour that doesn’t cross any poles or branch points)9. The
total energy is given by the integral,

Etot =

∫ ∞

0
dE fϵ(E) . (4.158)

Using the form in eq. (3.38) of [166], we can write,

R(z) =
∑
X

∫
dΦ(k)dΦ(r1)dΦ(r2) (k

0
X)z−1

∑
σ=±1

|R̂(kσ, rX)|2 , (4.159)

for the expression in the quantum theory. In this equation, R̂ represents the quantum
radiation kernel, given by the integral over wavefunctions inside the absolute square in
eq. (3.38). The quantum radiation kernel is expressed directly in terms of a scattering
amplitude.

In the classical limit, the density function is more naturally a function of frequency
rather than of energy,

fϵ,cl(ω) = −i ω
∫ c+i∞

c−i∞
dz ω−zRcl(z) , (4.160)

so that Rcl(z) = ℏ−z−1R(z). We can use eqs. (4.40–4.41) of [166] to write,

Rcl(z) =
∑
X

ℏ−z−1

〈〈∫
dΦ(k) (k0X)z−1

∑
σ=±1

|R(kσ, rX)|2
〉〉
. (4.161)

The radiation kernel here is expressed in terms of the appropriate limit of a quantum
scattering amplitude.

We next need to restrict the measured radiation from the entire celestial sphere to
a narrow cone in a given direction. We take the limit of the cone, and measure only
the radiation in a given direction from the scattering event. We implicitly assume that
the measurement distance is much larger than the impact parameter, so that there is
a unique and well-defined direction. It’s not clear exactly what a formal expression
for the operator would be, but what we want is,

Kµ δ(2)(k̂ − n̂) , (4.162)

9With our conventions, the expected power of (2π)−1 is in the forward rather than the inverse
Mellin transform.
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for radiation in the n̂ direction. This operator is to be understood as inserting,∑
i∈messengers

kµi δ
(2)(k̂i − n̂) , (4.163)

into a sum over states or equivalently the phase-space integral. Focusing on the energy
component, this can be understood as a light ray operator [3, 144–147] given by,

Ẽ(n̂) =
∫ +∞

−∞
dv lim

r→∞
r2Tvv (v, r, n̂) (4.164)

where v denotes the light-cone time v = t − r and Tvv (v, r, n̂) is the (light-cone)
time-time component of the stress-energy tensor (in gravity, this will be replaced by
the Bondi news squared operator [3]). By applying the saddle point approximation
for the fields in the energy momentum tensor, the plane wave expansion will localize
to the point on the sphere in the direction of propagation. Schematically we will have
(see refs. [10, 230] for further details)

eix·k/ℏ = eiωv+iωr(1−n̂·k̂) r→∞∼ 1

iωr
eiωvδ(2)

(
n̂− k̂

)
(4.165)

where ω = k̄0. Then one finds,

Ẽ(n̂) =
∑
σ=±1

∫
dΦ(k) k0 δ(2)

(
n̂− k̂

) [
a†σ(k)aσ(k)

]
(4.166)

where the action on on-shell particle states is equivalent to the time component of
eq. (4.163). The analogous Mellin kernel for (K0)z−1 is presumably,

(K0)z−1 δ(2)(K̂− n̂) , (4.167)

which is to be understood as inserting,∑
i∈ distinct

messengers

( ∑
j∥i

j∈messengers

k0j

)
z−1

δ(2)(k̂i − n̂) , (4.168)

into a sum over states or the phase-space integral. The sum over distinct messengers is
a sum over messengers which are not collinear; the sum over the collinear messengers
is taken in the inner sum. The inner sum includes i itself.

This form is motivated by a subtlety about overlapping directions: if k̂j = k̂l with
the remaining directions distinct we want,∑

i∈messengers
i ̸=j,l

(k0i )
z−1 δ(2)(k̂i − n̂) + (k0j + k0l )

z−1 δ(2)(k̂j − n̂) , (4.169)

which is what eq. (4.168) is designed to give. At leading order this subtlety is irrele-
vant.
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The analog to eq. (4.159) is,

R(z, n̂) =
∑

i∈ distinct
messengers

∑
X

∫
dΦ(ki)dΦ(r1)dΦ(r2)

( ∑
j∥i

j∈messengers

k0j

)
z−1

× δ(2)(k̂i − n̂)
∑
σ=±1

|R̂(kσi , rX)|2 ,
(4.170)

and to eq. (4.161),

Rcl(z, n̂) =
∑

i∈ distinct
messengers

ℏ−z−1

〈〈∫
dΦ(ki)

( ∑
j∥i

j∈messengers

k0j

)
z−1

δ(2)(k̂i − n̂)
∑
σ=±1

|R(kσi , rX)|2
〉〉
.

(4.171)

At leading order, eq. (4.171) simplifies to just,

R
(0)
cl (z, n̂) = g6

〈〈∫
dΦ(k̄) (k̄0)z−1 δ(2)(k̂− n̂)

∑
σ=±1

∣∣∣R(0)(k̄σ; b)
∣∣∣2〉〉 . (4.172)

The corresponding result for the spectral density in the n̂ direction is,

fϵ,cl(ω, n̂) = g6ω

〈〈∫
dΦ(k̄)

δ(ln k̄0 − lnω)

k̄0
δ(2)(k̂− n̂)

∑
σ=±1

∣∣∣R(0)(k̄σ; b)
∣∣∣2〉〉 .

(4.173)

Writing out,

dΦ(k̄) =
d3k̄

2(2π)3 |k̄|

=
|k̄|d|k̄| dΩk̄

2(2π)3
,

(4.174)

we can perform the integrals in eq. (4.173) to obtain,

fϵ,cl(ω, n̂) =
g6ω2

8π2

∑
σ=±1

〈〈 ∣∣∣R(0)(ω(1, n̂)σ; b)
∣∣∣2〉〉 . (4.175)

We can now compare this with the amplitude of each component of the waveform,
expanded at the leading order order in the coupling: for |fµνM∗µNν | and |fµνMµNν |
we have, respectively

|fµν(ω(1, n̂))M∗µNν | = ω

16π
g3
∣∣∣∣〈〈R(0)(ω(1, n̂)−; b)

〉〉 ∣∣∣∣
|fµν(ω(1, n̂))MµNν | = ω

16π
g3
∣∣∣∣〈〈R(0)(ω(1, n̂)+; b)

〉〉 ∣∣∣∣ (4.176)

At leading order, we can also write〈〈 ∣∣∣R(0)(ω(1, n̂)σ; b)
∣∣∣2〉〉 =

∣∣∣∣〈〈R(0)(ω(1, n̂)σ; b)

〉〉 ∣∣∣∣2 (4.177)
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and therefore we can express the spectral density of emission from eq. (4.175) in terms
of the amplitudes of the two helicity components of the waveform,

fϵ,cl(ω, n̂) = 32
[
|fµν(ω(1, n̂))M∗µNν |2 + |fµν(ω(1, n̂))MµNν |2

]
. (4.178)

This relation is the avatar of the relation between the energy of the wave and the
squared amplitude of the wave, the only difference being that here we are measuring
the momentum emitted in a given direction at a large distance r from the source.
The emitted radiation observable provides information about the magnitude of the
observed messenger wave, but not about its phase. The direct derivation in previous
sections adds that information. A recently proposed generalization of a standard
event shape is sensitive to amplitude phases [265]. It would be interesting to explore
a possible connection to the waveform.

4.6 BMS frame from amplitudes and static contributions
to the waveform

One interesting aspect of studying the asymptotic structure at null infinity is that it
impose constraints on the structure of the waveform and other radiative observables.
In particular, the displacement memory effect must be included consistently in the
generation of the waveform catalogue as stressed in [266]. In section 4.3, we have
argued that that the waveform receives contributions at leading order from the five-
point tree amplitude with the emission of one messenger, and we have studied the
connected piece to compute the time-dependent contribution to the waveform. Here,
we consider the disconnected piece in the gravitational setup.

Figure 4.7: The picture shows the static contribution of zero-energy
graviton emissions to the waveform at the lowest order.

This disconnected piece, pictured in Fig. 4.7, involves the product of the three-
point amplitude and one on-shell delta function:

⟨kσ1
1 p

′
1p

′
2|T |p1p2⟩ = ⟨kσ1

1 p
′
1|T |p1⟩δΦ(p2, p′2) + ⟨kσ1

1 p
′
2|T |p2⟩δΦ(p1, p′1). (4.179)

The on-shell kinematics implies that the energy of the graviton must be exactly zero:
we can therefore apply exactly Weinberg soft theorem

⟨kσ1
1 p

′
1|T |p1⟩ = lim

Ek1
→0

κ

2
εσ1
µν(k1)p

µ
1p

ν
1

(
1

k1 · p1 − iϵ
− 1

k1 · p1 + iϵ

)
δΦ(p1, p

′
1)

= πiκεσ1
µν(k1)p

µ
1p

ν
1δ(k1 · p1)δΦ(p1, p′1). (4.180)
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Therefore, the disconnected contribution to the five-point tree amplitude is of order
O(κ) and it is highly degenerate because it is supported on zero-energy kinematics
for the external graviton. We can easily get the classical contribution,

⟨kσ1
1 p

′
1p

′
2|T |p1p2⟩ = πiκεσ1

µν(k1) [p
µ
1p

ν
1δ(k1 · p1) + pµ2p

ν
2δ(k1 · p2)] δΦ(p1, p′1)δΦ(p2, p′2)

ℏ→0∼ πi
κ

ℏ3/2
εσ1
µν(k̄1)

[
mAv

µ
Av

ν
Aδ(k̄1 · vA) +mBv

µ
Bv

ν
Bδ(k̄1 · vB)

]
× δΦ(p1, p

′
1)δΦ(p2, p

′
2). (4.181)

If we compute the expectation value of the graviton field in the classical limit

⟨ψin|S†hµν(x)S|ψin⟩ = 2ℜ 1√
ℏ

∑
σ1=±2

∫
dΦ(p′1, p

′
2, p1, p2, k1)ψ

∗
b (p

′
1, p

′
2)ψb(p1, p2)

× ⟨kσ1
1 p

′
1p

′
2|T |p1p2⟩ ε∗σ1

µν (k̄1) e
−ik̄1·x

= 2ℜ 1√
ℏ

∑
σ1=±2

∫
dΦ(p1, p2, k1)|ψA(p1)|2|ψB(p2)|2 εσ1

αβ(k̄1)ε
∗σ1
µν (k̄1)

× πi
κ

ℏ3/2
[
mAv

α
Av

β
Aδ(k̄1 · vA)e

ik̄1·b +mBv
α
Bv

β
Bδ(k̄1 · vB)

]
e−ik̄1·x

= 2ℜ
∫

dΦ(k̄1)
∑

σ1=±2

[
εσ1
αβ(k̄1)ε

∗σ1
µν (k̄1)

]
e−ik̄1·x

× iπκ
[
mAv

α
Av

β
Aδ(k̄1 · vA)e

ik̄1·b +mBv
α
Bv

β
Bδ(k̄1 · vB)

]
= 2ℜ

∫
dΦ(k̄1) i

∑
j=A,B

[κ
2
mjPµναβv

α
j v

β
j (2π)δ(k̄1 · vj)e

ik̄1·bj
]
e−ik̄1·x,

where bj = b (resp. bj = 0) for j = A (resp. j = B) and

Pµναβ :=
1

2
[PµαPνβ + PµβPνα − PµνPαβ] , (4.182)

as defined earlier in eq. (4.133). This matches exactly with the time-independent
contribution to the waveform discussed in [131, 178], once we consider the leading 1/r
piece of the field at large distances

hµν(t, r, n̂) ∼
1

4πr

∫
dω1

2π
e−iω1(t−r)

∑
j=A,B

κ

2
mjPµναβv

α
j v

β
j (2π)δ(ω1(1, n̂) · vj)eik̄1·bj .

(4.183)
Our result in eq. (4.183) depends only on zero-energy physics, and it might seem
to be unphysical. But this is not the case, and the story is much more subtle. This
contribution is related to the choice of the BMS frame at null infinity at the amplitude
level and therefore it is a related to a gauge choice. Indeed, the vacuum in the full
non-linear general relativity is labelled by the value of the soft BMS supertranslation
charge [228], which is directly related to the contribution of zero-energy gravitons
as discussed in section 4.4.1. Indeed, these terms do not contribute to the total
energy emitted in gravitational waves but they will affect other observables like the
total emitted angular momentum [131, 178], due to a known classical problem in GR
known as BMS supertranslation ambiguity [267, 268]. Therefore, a byproduct of this
analysis is that amplitudes with zero-energy gravitons give a new perspective on the
choice of the BMS frame for radiative observables, which would be definitely worth
investigating in the future.
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Chapter 5

Coherent states from the S-matrix

Coherent states have a long history in applications to semi-classical physics [193, 269]
as well as more recent interest [4, 82, 106, 128, 270]. In the very low-energy regime,
a single coherent state provides the exact quantum state of radiation and taking the
limit of the large number of quanta reproduce known classical limit results for the
energy flux [255, 271–273]. A lot of attention has been devoted so far to the soft
expansion where coherent states arise naturally from classical currents [106, 167, 170,
256, 263, 274], but the dynamics of how such states are generated by the full two-body
classical dynamics is much less clear.

In this chapter, we will try to address this question from different perspectives. We
will start by looking at the soft dynamics from the worldline perspective, where at the
leading order it is possible to show analytically the emergence of the coherent state
from the path integral. Then we will use the uncertainty principle introduced ealier in
chapter 4 to impose the zero-variance classical requirement to the most generic density
matrix in QFT written in the P-representation, both in the radiative and in the spin
sector, and we will see how coherent states arise from this perspective. An alternative
and more direct insight into the problem is offered by studying the properties of the
particle distribution, like the mean, the variance and the factorial moments: as we
will see, the deviation from coherence is an infrared safe concept which can be studied
in perturbation theory. Finally, we will also establish a connection with asymptotic
symmetries and to the definition of an infrared finite S-matrix in four dimensions.

5.1 Coherent states from the soft dynamics

In this section, we would like to provide a derivation of the emergence of coherent
states from the soft dynamics in scalar QED in the classical scattering process of two
charged point particles. While [119] considered the conservative case, here we extend
the discussion to real radiation. This can be done using established methods which
have been used in relatively recent literature on the eikonal approximation [275, 276].
We start from an incoming state of the form

|ψin⟩ =
∫

dΦ(p1, p2)

∫
d4x1 d

4x2 ψ̃(x1, x2) e
i(p1·x1+p2·x2)/ℏei(b·p1)/ℏ |p1p2⟩ , (5.1)
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and our aim is to show that this should evolve over time to a state

|ψout⟩ =
∫

dΦ(p′1, p
′
2)

∫
d4x1 d

4x2 ψ̃(x1, x2) e
i(p′1·x1+p′2·x2)/ℏ

×
∫

d̂4q d4x eiq·x/ℏeib·p
′
1/ℏe−ib·q/ℏeiq·(x2−x1)/ℏeiχ(x⊥;s)/ℏ

× exp

[ ∑
σ=±1

∫
dΦ(k)β(σ)(k, x1, x2)a

†
σ(k)

]
|p′1, p′2⟩ , (5.2)

where we use β rather than α to refer to the coherent state parameter, as we will
ultimately calculate this only in a particular limit, namely the forward approximation
in which they follow classical straight-line trajectories. In such limit we are justified
to effectively obtain

|ψout⟩ =
∫

dΦ(p′1, p
′
2)

∫
d4x1 d

4x2 ψ̃(x1, x2) e
i(p′1·x1+p′2·x2)/ℏ

× eib·p
′
1/ℏeiχ(x⊥−b⊥;s)/ℏ exp

[ ∑
σ=±1

∫
dΦ(k)β(σ)(k, x1, x2)a

†
σ(k)

]
|p′1, p′2⟩ .

(5.3)

The situation being considered here is similar to the analysis of [277], which con-
sidered particles emerging from an amplitude interacting with soft radiation (see ref-
erence [276] for the gravitational case). This analysis used path integral methods —
also known as the Schwinger proper time formalism1 — to write the propagators for
the outgoing particles in terms of explicit sums over their spacetime trajectories. This
provided a very physical picture for describing soft radiation, allowing the authors
to generalise beyond the leading soft approximation, and to show that certain sets
of corrections exponentiate in perturbation theory. However, only virtual radiation
was included, and thus we must extend such methods to the real radiative case being
considered here. We restrict our discussion to the case of QED for simplicity.

Let us first recall a useful result from the Schwinger formalism (reviewed here in
appendix A), namely that the propagator for a particle in a background gauge field,
produced at position xi and ending up with final momentum pf , can be written as

DF (xi, pf ) =

∫ ∞

0
dTe−Tϵ/ℏ ⟨pf |e−i(ĤT )/ℏ|xi⟩, (5.4)

where

⟨pf |e−iĤT/ℏ|xi⟩ =
∫ p(T )=pf

x(0)=xi

DpDx exp
[
i

ℏ
p(T ) · x(T ) + i

ℏ

∫ T

0
dt(−p · ẋ−H(p, x))

]
(5.5)

is a double path integral in position and momentum space, subject to the above
boundary conditions, and2

Ĥ = −(p̂− eÂ)2 +m2 = −p̂2 + ep̂ · Â+ eÂ · p̂− e2Â2 +m2 (5.6)

is the Hamiltonian, where e is the coupling constant and Âµ is the gauge field in-
terpreted as an operator in the quantum mechanical Hilbert space. As discussed in

1A useful pedagogical review of Schwinger proper time methods may be found in ref. [278].
2As usual in the context of Schwinger proper time [278] we choose a convenient normalisation for

“time” t and the associated Hamiltonian H. In particular the dimensions of H are mass2.
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appendix A, we should Weyl-order the Hamiltonian so that all momentum operators
are to the left. Care must be taken with the term Â · p̂, where we note that we will
be operating on momentum states to the left:

⟨p|Â · p̂ = p̂µ(Â
µ)⟨p|+ ⟨p|p̂ · Â . (5.7)

Here p̂µ (Aµ) represents the action of p̂µ on Âµ. Using the fact that p̂ = −i∂µ in
position space, we can get rid of this term by using the Lorenz gauge ∂µAµ = 0, so
that our Hamiltonian becomes

Ĥ = −p̂2 + 2ep̂ · Â− e2Â2 +m2. (5.8)

Plugging this into eq. (5.4) and using eq. (5.5), we obtain a path integral representation
for the propagator of a scalar particle in the presence of a gauge field:

DF (xi, pf ;A) =

∫ ∞

0
dTe−Tϵ/ℏ

∫ p(T )=pf

x(0)=xi

DpDx

× exp

[
i

ℏ
p(T ) · x(T ) + i

ℏ

∫ T

0
dt
(
−p · ẋ+ p2 − 2ep ·A+ e2A2 −m2

)]
.

(5.9)
It is of course impossible to carry out this path integral in general; this would amount
to exactly solving for a quantum particle moving in an arbitrary electromagnetic
field! But we can evaluate it approximately in many different cases. Relevant for
our purposes is if a particle has position xi at t = 0, and follows an approximate
straight-line trajectory, given by

xµc = xµi + pµf t, 0 ≤ t ≤ T (5.10)

where pf is the final momentum introduced above. In the sum over trajectories in
eq. (5.9), we can then redefine

x(t) → xc(t) + x(t), p(t) → pf + p(t) , (5.11)

where now x(t) and p(t) are small fluctuations. Substituting this into eq. (5.9), one
finds

DF (xi, pf ;A) =

∫ ∞

0
dTe−Tϵ/ℏe

i
ℏpf ·xi+

i
ℏT(p

2
f−m2)

×
∫ p(T )=0

x(0)=0
DpDx exp

[
i

ℏ

∫ T

0
dt
(
p · (pf − ẋ) + p2 − 2ep ·A− 2epf ·A+ e2A2

)]
.

(5.12)
This still looks rather formidable, but it will simplify considerably in what follows.

Let us now apply this to the problem of a pair of propagating particles, interacting
via photon exchange, in the conservative case. We will consider two different scalar
fields ϕ1 and ϕ2, so that the scattering particles can in principle be different. We may
then consider the 4-point Green’s function:

G4(ϕ1(x1), ϕ1(x2),ϕ2(x3), ϕ2(x4))

=

∫
DAµDϕ1Dϕ2 ϕ1(x1)ϕ1(x2)ϕ2(x3)ϕ2(x4)e

i
ℏS(ϕ1,ϕ2,Aµ),

(5.13)
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which will ultimately be related to S-matrix elements for the scattering particles, and
we may separate the total classical action S(ϕ1, ϕ2, Aµ) into three distinct terms:

S(ϕ1, ϕ2, Aµ) = SA(Aµ) + S1(ϕ1, Aµ) + S2(ϕ2, Aµ). (5.14)

The first term on the right-hand side consists of terms involving only the gauge field
Aµ, and Si (ϕi, Aµ) contains terms involving the individual scalar field ϕi only, or
its coupling to the gauge field. Substituting eq. (5.14) into eq. (5.13), this may be
rewritten as

G4(ϕ1(x1), ϕ1(x2),ϕ2(x3), ϕ2(x4))

=

∫
DAµG2 (ϕ1(x1)ϕ1(x2);A)G2 (ϕ2(x3)ϕ2(x4);A) e

i
ℏSA(Aµ) ,

(5.15)
where

G2 (ϕi(x)ϕi(y);A) =

∫
Dϕi ϕi(x)ϕi(y) e

i
ℏSi(ϕi,A) , (5.16)

is the two-point function for the field ϕi in the presence of a background gauge field.
This is simply the propagator, and indeed is almost exactly the object that we worked
out in eq. (5.12). The only difference is that eq. (5.12) has the scalar particle moving
from a state of given initial position and final momentum, while in eq. (5.16) both
initial and final positions are specified. The form of eq. (5.12) is convenient for our
problem given that we wish to consider particles that are separated by an definite
distance ∆x. Let us therefore consider a pair of particles “produced” at positions zi,
so that z1 = x1 and z2 = x3. Then we can use translational invariance to set

zµ1 = ∆xµ, zµ2 = 0 . (5.17)

Each particle i propagates out to infinity, ending up with a final momentum p′i, and
so we are interested in the Green’s function

G4

(
ϕ1(z1), ϕ1(p

′
1), ϕ2(z2), ϕ2(p

′
2)
)
=

∫
DAµDF

(
z1, p

′
1;A

)
DF

(
z2, p

′
2;A

)
e

i
ℏSA(Aµ) ,

(5.18)
where we used the notation for the propagators in eq. (5.12). To turn this into a
transition matrix element, we need to truncate the free propagators for the final state
particles according to the LSZ prescription. In other words, each of the full scalar
field propagators will be modified

−i
(
p′2i −m2

i

)
DF

(
zi, p

′
i;A
)
= −i

(
p′2i −m2

i

) ∫ ∞

0
dTe−Tϵ/ℏe

i
ℏp

′
i·zi+

i
ℏT(p

′2
i −m2

i )fi(0, T )

= −e
i
ℏp

′
i·zi
∫ ∞

0
dTe−Tϵ/ℏfi(0, T )

d

dT
e

i
ℏT(p

′2
i −m2

i ).

(5.19)
Again we used eq. (5.12), and defined

fi(0, T ) =

∫ p(T )=0

xi(0)=0
DpDx exp

[
i

ℏ

∫ T

0
dt
(
p ·
(
p′i − ẋ

)
+ p2 − 2ep ·A− 2ep′i ·A+ e2A2

)]
.

(5.20)
Integrating by parts and enforcing the on shell constraint p′i

2 → m2
i gives

−i
(
p′2i −m2

i

)
DF

(
zi, p

′
i;A
)
→ ei(p

′
i·zi)/ℏf(0,∞) . (5.21)
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Combining this with eq. (5.18) and using the initial positions of eq. (5.17), we find
that the partially truncated Green’s function associated with our chosen process is

G4

(
p′1, p

′
2; b
) ∣∣∣

3,4
=

∫
DAµ e

i(∆x·p′1)/ℏf1(0,∞)f2(0,∞)e
i
ℏSA(Aµ), (5.22)

where the notation on the left-hand side denotes those particles for which the LSZ
reduction has been carried out. After shifting p → p + eA in the integration over p,
eq. (5.20) implies

fi(0,∞)

=

∫ p(T )=0

x(0)=0
DpDx exp

{
i

ℏ

∫ ∞

0
dt

[(
p− ẋ

2
+
p′i
2

)2

− ẋ2

4
+
p′i · ẋ
2

− m2
i

4
− eẋ ·A− ep′i ·A

]}
.

(5.23)
The p integral is Gaussian and can be absorbed into the overall normalisation of the
path integral of eq. (5.20) (as can the term in m2

i ). One then has

fi(0,∞) =

∫
Dx exp

{
i

ℏ

∫ ∞

0
dt

[
− ẋ

2

4
+

1

2
p′i · ẋ− eẋ ·A− ep′i ·A

]}
. (5.24)

Eq. (5.22) has a nice interpretation: to represent the (half-truncated) Green’s function
for scalar particles interacting via a gauge field, one can describe the passage of each
particle by a factor representing the sum over possible trajectories, weighted by an
“action” containing the interaction of the particle with the gauge field. It is possible to
carry out the path integral in eq. (5.24) perturbatively, which corresponds to summing
over the various wobbles that the trajectory can have. These wobbles are caused by
interactions with the gauge field, as one expects: each wobble corresponds to a recoil
against an emitted photon. Then the path integral over the gauge field in eq. (5.22)
sums over all possible photon emissions between the scalar particle lines.

Above, we have only carried out the LSZ reduction for the outgoing particles 3
and 4. We must also carry out the reduction for particles 1 and 2. That this is not
as simple as in eq. (5.19) ultimately stems from the fact that the lower limit of the
Schwinger proper time integral in eq. (5.4) is zero, rather than minus infinity. It is
possible to transform proper time coordinates so that the LSZ reduction for incoming
particles can be carried out in the above formulae, as argued recently in ref. [124]. An
alternative approach was presented, some time ago, in ref. [279]. Here we will take a
more pedestrian approach, and simply consider that the above argument has provided
only half of the full four-point Green’s function, as shown in Fig. 5.1(a). That is, the
particles at the origin and ∆xµ are off-shell and propagate out to form the final states
with momenta {p′i}. We can then easily fill in the remaining half of the scattering
process, as shown in Fig. 5.1(b), by appending the integrand of eq. (5.22) with two
additional f -factors for the incoming particles:

S
(
{pi}, {p′i}; ∆x

)
=

∫
DAµ e

i(∆x·p′1)/ℏf1(−∞, 0)f1(0,∞)f2(−∞, 0)f2(0,∞)e
i
ℏSA(Aµ)

=

∫
DAµ e

i(∆x·p′1)/ℏf1(−∞,∞)f2(−∞,∞)e
i
ℏSA(Aµ), (5.25)

where in the second line we have used the definition of the f -factors to combine them
into a single factor associated with each incoming particle. On the left-hand side, we
have acknowledged that the LSZ reduction has now been carried out for the incoming
particles, so that eq. (5.25) constitutes an S-matrix element. As such, it includes the
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Figure 5.1: (a) The half-truncated 4-point Green’s function consid-
ered in eq. (5.22), in which off-shell particles separated by a distance
∆xµ propagate out to form outgoing states; (b) the complete scatter-

ing process.

case of trivial scattering (which results if Aµ → 0). If we instead want the T-matrix
element, we would replace eq. (5.25) with

T
(
{pi}, {p′i}; ∆x

)
= ei(∆x·p′1)/ℏ

[∫
DAµ f1(−∞,∞)f2(−∞,∞)e

i
ℏSA(Aµ) − 1

]
,

(5.26)

To make sense of these expressions, let us consider the leading contribution to the path
integral for each incoming particle. This corresponds to the classical approximation in
which the particles follow classical straight-line trajectories, such that the fluctuations
xµ(t) = ẋµ = 0. Then, one may simplify

fi(−∞,∞) → exp

[
− i

ℏ
e

∫ ∞

−∞
dt p′i ·A

]
= Φi . (5.27)

The right-hand side is simply a Wilson line operator

Φi = exp

[
− i

ℏ
e

∫ ∞

−∞
dx′µi Aµ

]
, (5.28)

evaluated along the path

x′
µ
i = zµi + p′µi t, −∞ < t <∞. (5.29)

We have thus found that if our particles start at time t = 0 separated by an impact
parameter bµ, they evolve according to the operator

S
(
p′1, p

′
2; ∆x

)
=

∫
DAµe

i(∆x·p′1)/ℏΦ1Φ2e
i
ℏSA(Aµ) . (5.30)

This amounts to saying that the amplitude is described by a vacuum expectation value
of Wilson line operators, which is by no means a new observation: the description of
the Regge (high energy) limit of 2 → 2 scattering in terms of Wilson lines was given
in QCD [280], and later generalised to gravity in [281, 282] (see also refs. [283, 284]).
The QED case, however, is particularly simple. If we neglect pair production of the
scalar fields, the path-integral in eq. (5.24) can be performed exactly. It may look
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more familiar if we write the Wilson line coupling in terms of a current:

− i

ℏ
e

∫
dxµAµ ≡ − i

ℏ

∫
d4xJµ

i Aµ, Jµ
i = evµi δ

(3)(x− z(t)) , (5.31)

where the delta function localises the current onto the particle’s worldline described
by z(t). Then one may define an overall current

J = J1 + J2 (5.32)

so that the path integral of eq. (5.30) assumes the familiar form

S
(
p′1, p

′
2; ∆x

)
=

∫
DAµe

i(∆x·p′1)/ℏe
i
ℏ [SA(Aµ)−AµJµ] . (5.33)

Given SA (Aµ) is quadratic in QED, one finds

S
(
p′1, p

′
2; ∆x

)
= ei(∆x·p′1)/ℏ exp

[
i

ℏ

∫
d4x

∫
d4yJµ(x)Dµν(x− y)Jν(y)

]
, (5.34)

where Dµν(x− y) is the photon propagator. This can be interpreted as follows. The
exponent consists of all possible one-photon exchanges between the two Wilson lines
(including those diagrams in which the photon may be emitted and absorbed by the
same particle). This one-loop contribution then exponentiates, as we know it must!
We did not have to force this property: it comes out simply from the formalism we
are using. As was shown in e.g. [281], the one-loop VEV of Wilson lines generates
the eikonal phase χ experienced by two interacting particles in precisely the situation
we are examining. Note that this eikonal phase is only dependent on the transverse
distance which we can identify with x⊥ − b⊥. In general we expect it to be related to
the 4-pt amplitude via eq.(7.6). Thus, we can write eq. (5.30) simply as3

S
(
p′1, p

′
2; ∆x

)
= ei(∆x·p′1)/ℏeiχ(x⊥−b⊥,s)/ℏ. (5.35)

In turn, this leads to a final state∫
dΦ(p′1, p

′
2)

∫
d4x1 d

4x2 ψ̃(x1, x2) e
i(p′1·x1+p′2·x2)/ℏei(∆x·p′1)/ℏeiχ(x⊥−b⊥,s)/ℏ ∣∣p′1p′2〉 .

(5.36)
At the leading order we’re considering, there is no distinction between the impact
parameter bµ and ∆xµ and therefore we can equivalently write eq. (5.36) as∫

dΦ(p′1, p
′
2)

∫
d4x1 d

4x2 ψ̃(x1, x2) e
i(p′1·x1+p′2·x2)/ℏei(b·p

′
1)/ℏeiχ(x⊥−b⊥,s)/ℏ ∣∣p′1p′2〉 ,

(5.37)
which agrees with eq. (7.7) within our approximation. In general, we need to relate
eiχ(x⊥−b⊥,s)/ℏ with the four-point amplitude via eq. (7.1) and this would imply that
the relation between bµ and ∆xµ is more subtle (see eq. (7.14)).

This has all been in the conservative regime with no radiation, and now we would
like to extend this to the radiative case. To this end, we need to go back and include
the contribution of the gauge field insertion in the Green’s function correlator. In
principle, we should allow any number (n) of photons and therefore we will generalise

3We stress that eq. (5.35) applies to the S-matrix. Substituting this into eq. (5.26) recovers the
result that the scattering amplitude –related to the T-matrix – is given by eiχ − 1.
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eq. (5.13) to the (n+ 4)-pt correlator

Gn+4(ϕ1(x1), ϕ1(x2), ϕ2(x3), ϕ2(x4), {Aσj (xj)}j=5,...,n+4)

=

∫
DAµDϕ1Dϕ2 ϕ1(x1)ϕ1(x2)ϕ2(x3)ϕ2(x4)Aσ5(x5)...Aσn+4(xn+4)e

i
ℏS(ϕ1,ϕ2,Aµ).

(5.38)
We may then carry out similar steps to above to find the S-matrix element for the
radiative corrections to the process of Fig. 5.1(b). The result is (c.f. eq. (5.25))

S
(
{pi}, {p′i}, {ki}; ∆x

)
=

n+4∏
j=5

[∫
d4xj e

−i(kj ·xj)/ℏ□xj

]
ei(∆x·p′1)/ℏ

∫
DAµ e

i
ℏSA(Aµ)

×
n+4∏
j=5

[
(εσj (kj) ·Aσj (xj))

]
f1(−∞,∞)f2(−∞,∞), (5.39)

where we have included the LSZ reduction for the outgoing photons, with momenta
{ki} and polarisation vectors {ε(ki)}. Let us clarify this expression by again taking the
leading classical behaviour, such that the two massive particles are following straight-
line trajectories. Then we have, using eq. (5.27),

S
(
{pi}, {p′i}, {ki}; ∆x

)
=

n+4∏
j=5

[∫
d4xj e

−i(kj ·xj)/ℏ□xj

] ∫
DAµ e

i(∆x·p′1)/ℏΦ1Φ2

n+4∏
j=5

[
(εσj (kj) ·Aσj (xj))

]
e

i
ℏSA(Aµ).

(5.40)
Since the path integral is Gaussian, it is easy to perform it analytically and to take
the LSZ reduction to get

S
(
{pi}, {p′i}, {ki}; ∆x

)
=
ei(∆x·p′1)/ℏ

n!

n+4∏
j=5

[
εσj (kj) · J̃(kj)

]
exp

[
i

∫
d4x

∫
d4yJµ(x)Dµν(x− y)Jν(y)

]

=
ei(∆x·p′1)/ℏ

n!

n+4∏
j=5

[
εσj (kj) · J̃(kj)

]
eiχ(x⊥−b⊥,s)/ℏ,

where we have defined the Fourier transform of the current

J̃µ(kj) =

∫
d4xj e

−i(kj ·xj)/ℏJµ(xj), (5.41)

and recognised the eikonal phase from eq. 5.34 and eq. (5.35). We see that the photon
distribution is exactly Poissonian in this approximation, which is the hallmark of a
coherent state. To see this in more detail, note that we can construct the full final state
by summing over infinitely many photon emissions. Including then the measure for
the incoming wavepackets etc., in our leading soft approximation we obtain eq. (5.3)
as desired.

It is worth noticing at this point that a similar coherent state structure arise in
scattering amplitudes as a consequence of infrared divergences: indeed, this is just a
consequence of Weinberg soft theorems [255]. The fact that the scalar QED amplitude
factorizes at leading order in the soft expansion for the external photons is a classical
phenomenon: indeed, it can be viewed as the soft photon emission from a classical
hard current given by the massive particles following straight-line trajectories [285]. In
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this setup, there is a classical factorization for observables as discussed in section 4.4
which now we understand as a simple consequence of the uncertainty principle. We
will touch more this points in section 5.5.

Going beyond the straight-line approximation, we cannot solve the path integral
over particle trajectories exactly, and thus need to rely on perturbation theory. But
still, it is possible to see that the (perturbatively defined) classical currents associated
to massive particle trajectories are emitting on-shell photons according to a Poissonian
distribution. Therefore, coherent states naturally appear in this setup. This can be
proved by splitting the path integral in eq. (5.40) for the gauge field between potential
and radiation modes4 ∫

DAµ =

∫
pot

DApot
µ

∫
rad

DArad
µ . (5.42)

For radiation modes we can use the on-shell plane-wave expansion and eq. (5.39)
becomes

S
(
{pi}, {p′i}, {ki}; ∆x

)
=

n+4∏
j=5

[∫
d4xj e

−i(kj ·xj)/ℏ□xj

] ∫
pot

DApot
µ

∫
rad

DArad
µ

×
(∫

Dx1 eW
pot
1 +W rad

1

)(∫
Dx2 eW

pot
2 +W rad

2

) n+4∏
j=5

[
(εσj (kj) ·Aσj (xj))

]
e

i
ℏSA(Aµ),

(5.43)
where we have written

fi(−∞,∞) =

∫
DxieW

pot
i +W rad

i , (5.44)

and defined

W pot
i =

i

ℏ

∫ +∞

−∞
dt

(
−1

4
ẋ2 +

1

2
p′i · ẋ− eẋ ·Apot − ep′i ·Apot

)
,

W rad
i = − i

ℏ
3
2

e

∫ +∞

−∞
dt(ẋ+ p′i)µ

∑
σ=±1

∫
dΦ(k)

[
aσ(k)ε

µ∗
σ (k)e−

i
ℏk·x + h.c.

]
.

(5.45)

If we restore the power counting in ℏ for the coupling e → e/
√
ℏ and we define a

(perturbative) trajectory-dependent classical current

Jµ
i (t,x) := ie(ẋ+ p′i)

µ , (5.46)

we can write

W rad
i = −

∫ +∞

−∞
dt
∑
σ=±1

∫
dΦ(k̄)

[
aσ(k)(Ji(t,x) · ε∗σ(k̄))e−ik̄·x − h.c.

]
. (5.47)

At this point we can express the current in frequency modes Jµ
i (ω, x),

Jµ
i (t,x) =

∫
dω̄

2π
e−iω̄tJ̃µ

i (ω̄,x) , (5.48)

4Here, loosely speaking, we call radiation modes the ones corresponding to k0 ∼ |k| and potential
modes the ones with k0 ≪ |k| [35].
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which gives

W rad
i =

∑
σ=±1

∫
dΦ(k̄)

(
J̃∗
i (−ωk,x) · εσ(k̄)a†σ(k)− h.c.

)
. (5.49)

This is indeed a coherent state, in the form of a displacement operator. We wish
to remind the reader that at this stage we have not yet expanded the trajectory in
perturbation theory, since eq. (5.43) is an exact result. Effectively, at every order in
perturbation theory, there will be an effective on-shell current which is the classical
“source” of coherent radiation for each trajectory. What remains to be established,
perturbatively, is how these classical currents interact to produce the final conjectured
coherent state.

5.2 Coherent states from the uncertainty principle

We would like to understand the final particle distribution for the photons emitted
in a scattering process in the classical limit. In particular, we want to show here
that for classical radiation the factorization property of expectation values of physical
observables is directly connected to coherence. To simplify our discussion, we work in a
spacetime box of finite dimension V with periodic boundary conditions so that there
will be a finite number |V D| of allowed momenta {ki}i∈V D in the dual momentum
lattice V D. At the end of the discussion, we will take V → +∞. In this framework,
we can construct a coherent state for each quantum-mechanical harmonic oscillator
with momentum {ki}

|ασ
ki
⟩ = Nα exp

(
ασ(ki)a

†
σ(ki)

)
|0⟩, ∀ ki ∈ V D . (5.50)

It is known that we can write every classical radiation density matrix as a probability
distribution in the coherent state space, as proved by Glauber and Sudarshan [286–
289]

ρ̂out =
∑
σ=±1

∫ ∏
li∈V D

d2ασ
li
Pσ(α)|ασ

li
⟩⟨ασ

li
| d2ασ

l := (dℜασ
l dℑασ

l )/π (5.51)

where Pσ(α) is a separable function of ασ
li

with i ∈ V D

Pσ(α) :=
∏

li∈V D

Pσ(α(li)). (5.52)

For the classical case Pσ(α) ≥ 0, and this is what allows to talk about probability
distribution in the standard mathematical sense. Let us stress here that in the notation∑

li∈V D we include not only the summation over the dual lattice vectors but also the
appropriate finite-volume on-shell phase-space normalization.

What is the implication of the exact classical factorization on the final radiation
density matrix? Based on the previous discussion of negligible uncertainty we expect
that the expectation value ⟨ · ⟩ρout in the density matrix of eq. (5.51) gives

⟨Fµν(x)Fρδ(y)⟩ρout
ℏ→0
= ⟨Fµν(x)⟩ρout⟨Fρδ(y)⟩ρout . (5.53)



5.2. Coherent states from the uncertainty principle 97

We use the on-shell mode expansion for the field strength operator

Fµν(x) =
−i√
ℏ

∑
σ=±1

∑
k∈V D

[
aσ(k)k̄[µε

∗σ
ν] e

−ik̄·x − h.c.
]
, (5.54)

and by taking advantage of the completeness relation in the Hilbert space of photons5

+∞∑
n=0

1

n!

∑
σ1,...,σn=±1

∑
l1,...,ln∈V D

|lσ1
1 ...l

σn
n ⟩⟨lσ1

1 ...l
σn
n | = 1 , (5.55)

we have,

Trρout(Fµν(x)) =
+∞∑
n=0

1

n!

∑
σ1,...,σn=±1

∑
l1,...,ln∈V D

⟨lσ1
1 ...l

σn
n |Fµν(x)ρout|lσ1

1 ...l
σn
n ⟩

=
+∞∑

n,m=0

1

n!m!

∑
σ1,σ′

1,...,σn,σ′
m=±1

∑
l1,l′1,...,ln,l

′
m∈V D

× ⟨lσ1
1 ...l

σn
n |Fµν(x)|(l′1)σ1 ...(l′m)σ

′
m⟩⟨(l′1)σ1 ...(l′m)σ

′
m |ρout|lσ1

1 ...l
σn
n ⟩

= −iℏ
3
2

+∞∑
n=0

1

n!

∑
σ1,...,σn=±1

∑
l̄1,...,l̄n∈V̄ D

×
∑

k̄∈V̄ D

[
k̄[µε

∗σ
ν] ⟨l

σ1
1 ...l

σn
n kσ|ρout|lσ1

1 ...l
σn
n ⟩e−ik̄·x − h.c.

]
. (5.56)

where in the last line we have restored also the ℏ scaling implicit in the finite volume
phase-space normalization. Further manipulations show that

+∞∑
n=0

1

n!

∑
σ1,...,σn=±1

∑
l̄1,...,l̄n∈V̄ D

⟨lσ1
1 ...l

σn
n kσ|ρout|lσ1

1 ...l
σn
n ⟩

=
+∞∑
n=0

1

n!

∑
σ1,...,σn=±1

∑
l̄1,...,l̄n∈V̄ D

n∏
i=1

[
N 2

αli

∫
d2ασ

li
|ασi(li)|2 Pσi(α(li))

]
ασ(k)

= Trρout(1)α
σ(k)

= ασ(k) (5.57)

where we have used the fact that the density matrix is normalized Trρout(1) = 1. If
we demand the expectation value of Trρout(Fµν(x)) to be classical, restoring powers
of ℏ requires the waveshape to scale as determined in section 2.2

ασ(k) → ℏ−
3
2 ᾱσ(k) . (5.58)

Using this condition and the classical scaling of the normalization of the final state,
we get

Trρout(Fµν(x)) = −i
∑

k̄∈V̄ D

∑
σ=±1

∫
d2ᾱσ

k Pσ(ᾱk)
[
k̄[µε

∗σ
ν] ᾱ

σ,∗(k)e−ik̄·x − h.c.
]
. (5.59)

5For n = 0, the first term in the sum has to be interpreted as |0⟩⟨0|. This will be implicitly
assumed in the rest of the argument.
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Using a similar argument, for the expectation value of the product we obtain

Trρout(Fµν(x)Fρδ(y)) =
+∞∑
n=0

1

n!

∑
σ1,...,σn=±1

∑
l̄1,...,l̄n∈V̄ D

⟨lσ1
1 ...l

σn
n |Fµν(x)Fρδ(y)ρout|lσ1

1 ...l
σn
n ⟩

= −
∑

k̄1,k̄2∈V̄ D

∑
σ1,σ2=±1

∫
d2ᾱσ1

k1
d2ᾱσ2

k2
Pσ1,σ2(ᾱk1 , ᾱk2)

×
[
k̄1,[µε

σ1∗
ν] k̄2,[ρε

σ2∗
δ] ᾱ

σ1,∗(k1)ᾱ
σ2,∗(k2)e

−ik̄1·x−ik̄2·y

+ k̄1,[µε
σ1

ν] k̄2,[ρε
σ2∗
δ] ᾱ

σ1(k1)ᾱ
σ2,∗(k2)e

ik̄1·x−ik̄2·y + h.c.
]
,

(5.60)

up to the commutator term

4ℏ∂[µην][δ∂ρ]
∫

dΦ(k̄) e−ik̄·(x−y) =
ℏ
π2
∂[µην][δ∂ρ]

1

(x− y)2 − (x0 − y0 − iϵ)2
. (5.61)

which can be neglected in the ℏ → 0 limit [4, 187].
Therefore we are effectively asking whether the product of the averages is equal to

the average of the product over a distribution Pσ(α) for all k ∈ V D, i.e. we are asking
the distribution to have zero variance in the coherent state space. But distributions
of zero variance are degenerate because it means that the random variable ασ(k)6

is almost surely constant for each k ∈ V D (see page 173 in [290]). Therefore the
distribution has support in a lower-dimensional space, and since we can apply this
argument independently both for the real and for the imaginary part of ασ(k) we
have

Pσ(α) =
∏

k∈V D

+∞∑
j=1

cσj δ
2(ασ(k)− ασ

j (k)) . (5.62)

What this is essentially saying is that we get a (possibly infinite) sum of discrete
distributions with a constant value ασ

j (k). But then, making use of a crucial result
due to Hillery [291], we get

Pσ(α) =
∏

k∈V D

δ2(ασ(k)− ασ
⋆ (k)) , (5.63)

which means that we can describe the final state only with one coherent state for
each helicity and for each momentum k in the dual momentum lattice. At this point
we can take the large volume limit and what this calculation implies is that we can
describe the final state with a single coherent state

|ασ⟩ = Nα exp

(∫
dΦ(k)ασ(k)a†σ(k)

)
|0⟩, Nα = exp

(
−1

2

∫
dΦ(k)|ασ(k)|2

)
,

(5.64)
which takes naturally into the account the infinite-dimensional superposition of har-
monic oscillators of momentum k. The mininum uncertainty principle in this context

6Technically this is a random variable ασ(k) for each value of the momentum in the dual lattice,
i.e. there is an harmonic oscillator for each quanta of radiation. But since they are all independent,
we can promote this statement to the full expression.
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has been dubbed as the “complete coherence condition” in the literature7, a term
coined by Glauber [286, 287].

5.3 Spin coherent states from the uncertainty principle

It is possible to prove, similarly to what we have done for the radiation case in sec-
tion 5.2, that the generic spin quantum state for the massive particles is necessarily
a coherent spin state once we impose the uncertainty principle. We can represent
the most generic quantum spin state of the initial and the final massive particles in
our two-body scattering problem in terms of a density matrix. Such construction has
been developed in the quantum optics literature [294], and for our setup it corresponds
to dressing the external incoming and outgoing massive momentum states with the
following spin density matrix

ρ̂Sin :=

∫ 2∏
i=1

d2αS
i PS

in(α
S
1 , α

S
2 )|αS

1 ⟩|αS
2 ⟩⟨αS

2 |⟨αS
1 |,

ρ̂Sout :=

∫ 2∏
i=1

d2αS
i PS

out(α
S
1 , α

S
2 )|αS

1 ⟩|αS
2 ⟩⟨αS

2 |⟨αS
1 |,

where in the classical limit the P-representation is separable [294]

PS
in(α

S
1 , α

S
2 ) = PS

in(α
S
1 )PS

in(α
S
2 ),

PS
out(α

S
1 , α

S
2 ) = PS

out(α
S
1 )PS

out(α
S
2 ).

We now impose the uncertainty principle for the generic expectation value of the spin
operator,

TrρSin(SiSj)
ℏ→0
= TrρSin(Si)TrρSin(Sj) for i = 1, 2 ,

TrρSout
(SiSj)

ℏ→0
= TrρSout

(Si)TrρSout
(Sj) for i = 1, 2 .

Following some simple steps, it is easy to see that this is equivalent to demand the zero-
variance property for both PS

in(α
S
i ) and PS

out(α
S
i ) (i = 1, 2). Therefore, we conclude

that
PS

in(α
S
1 , α

S
2 ) = δ(αS

1 − αS
1,∗,in)δ(α

S
2 − αS

2,∗,in),

PS
out(α

S
1 , α

S
2 ) = δ(αS

1 − αS
1,∗,out)δ(α

S
2 − αS

2,∗,out).

This implies that spin coherent states are suitable to represent the quantum-mechanical
state of classical spin particles, and more in general an exponentiation of the spin de-
grees of freedom is required in the classical limit. This is also consistent with the fact
that we should expect to not have any entanglement in the spin sector [295].

5.4 Coherent states from the particle distribution

Here we would like to study the particle statistics distribution of the gravitons emitted
in the scattering of a pair of massive point particles of mass mA and mB in general
relativity, using methods of perturbative QFT. In particular, we relate the expectation
value of the graviton number operator to a sum of unitarity cuts involving scattering
amplitudes with external gravitons.

7In the quantum optics literature the normal-ordered correlator of the electric field at different
spatial locations can have various degrees of coherence [292, 293].
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Let P̄n be the probability of emitting n gravitons in the scattering of a pair of
massive particles as described above. Unitarity implies that

∑∞
n=0 P̄n = 1. In quan-

tum field theory, this statement is equivalent to a completeness relation in the Hilbert
space,

|0⟩⟨0|+
∞∑
n=1

1

n!

∑
σ1,...,σn=±

∫ n∏
i=1

dΦ(ki)|kσ1
1 ...k

σn
n ⟩⟨kσ1

1 ...k
σn
n | = 1, (5.65)

where |kσ1
1 ...k

σn
n ⟩⟨kσ1

1 ...k
σn
n | is the n-graviton particle projector on states with definite

momenta k1, ..., kn and helicities σ1, ..., σn, whose values are indicated by the single +
and − signs.

We denote the scattering matrix operator by S, the momenta of the incoming (resp.
outgoing) massive scalar particles by p1, p2 (resp. p3, p4), and the outgoing graviton
momenta by {ki}i=1,...,n. It is clear that the probability P̄n is given by taking the
expectation value of the n-graviton particle projector,

P̄n =
1

n!

∑
σ1,...,σn=±

∫
dΦ(p3)dΦ(p4)

∫ n∏
i=1

dΦ(ki)|⟨kσ1
1 ...k

σn
n p3p4|S|p1p2⟩|2. (5.66)

As it is written, (5.66) is formally divergent as it is known from the study of infrared
divergences in quantum field theory (see [296]) because of the contribution of zero-
energy gravitons. We will therefore work with a finite-resolution detector λ > 0, which
implies that we will study only the probabilities of gravitons emitted with an energy
Ek > λ. Correspondingly, we will replace

P̄n → P̄ λ
n ,

∫ n∏
i=1

dΦ(ki) →
∫
λ

n∏
i=1

dΦ(ki), (5.67)

As we will see later, we will not be interested in the single probability but in a
particular infrared-safe combination of probabilities. Therefore λ will be used only as
an intermediate regulator, and in the end we will send λ→ 0.

We would like to scatter classically two massive point particles with classical mo-
menta mAvA and mBvB with an impact parameter bµ. Since the main purpose of this
paper is to take the classical limit from a quantum field theory calculation, we use the
KMOC formalism [166] and take instead as our incoming state

|ψin⟩ :=
∫
dΦ(p1)dΦ(p2)e

ib·p1/ℏψA(p1)ψB(p2)|p1p2⟩, (5.68)

where

dΦ(p1) :=
1

(2π)3
d4p1δ(p

2
1 −m2

A)θ(p
0
1), dΦ(p2) :=

1

(2π)3
d4p2δ(p

2
2 −m2

B)θ(p
0
2).

(5.69)

The wavefunctions ψA(p1), ψB(p2) are defined as

ψA(p1) := Nm−1
A exp

[
− p1 · vA
ℏℓc,A/ℓ2w,A

]
, ψB(p2) := Nm−1

B exp

[
− p2 · vB
ℏℓc,B/ℓ2w,B

]
,

(5.70)

where N is a normalization factor, ℓc,j = ℏ/mj is the Compton wavelength and ℓw,j



5.4. Coherent states from the particle distribution 101

is related to the intrinsic spread of the wavefunction for the j-th massive particle
(j = A,B). We will also require the “Goldilocks conditions”

ℓc,j ≪ ℓw,j ≪ b for j = A,B, (5.71)

which ensure that wavefunctions such as those in (5.70) effectively localize the massive
particles on their classical trajectories as ℏ → 0. We expand the S-matrix in terms of
the scattering matrix T ,

S = 1 + iT. (5.72)

For the expectation value of the graviton projector operator, only the amplitudes with
at least one graviton emitted are going to contribute. We can read off from (5.66) the
probability of emitting n gravitons with energies Eki > λ,

P λ
n =

1

n!

∑
σ1,...,σn=±

∫
dΦ(r1)dΦ(r2)

∫
λ

n∏
i=1

dΦ(ki)⟨ψin|T †|r1r2kσ1
1 ...k

σn
n ⟩⟨r1r2kσ1

1 ...k
σn
n |T |ψin⟩.

(5.73)

We introduce now the momentum transfers [166],

qj := p′j − pj , wj := rj − pj , (5.74)

with which (5.73) can be written as

P λ
n =

1

n!

∑
σ1,...,σn=±

∫
dΦ(p1)dΦ(p2)

∫
λ

n∏
i=1

dΦ(ki)

∫
d4q

(2π)4

∫ ∏
j=1,2

d4wj

× δ
(
2p1 · q + q2

)
δ
(
2p2 · q − q2

)
Θ
(
p01 + q0

)
Θ
(
p02 − q0

)
e−ib·q/ℏδ(4)

(
w1 + w2 +

n∑
i=1

ki

)
× ψA(p1)ψ

∗
A(p1 + q)ψB(p2)ψ

∗
B(p2 − q)

∏
j=1,2

[
δ
(
2pj · wj + w2

j

)
Θ
(
p0j + w0

j

)]
×An+4 (p1, p2 → p1 + w1, p2 + w2, k

σ1
1 , ..., k

σn
n )

×A∗
n+4 (p1 + q, p2 − q → p1 + w1, p2 + w2, k

σ1
1 , ..., k

σn
n ) .

(5.75)

where q = q1 = −q2. We now conveniently define a set of symmetrized variables for
the external momenta [139]

pµA := pµ1 +
qµ

2
, pµB := pµ2 − qµ

2
, (5.76)
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which has the nice property of enforcing exactly the condition pA · q = pB · q = 0. In
terms of these new variables [128], we have

P λ
n =

1

n!

∑
σ1,...,σn=±

〈〈∫
λ

n∏
i=1

dΦ(ki)

∫
d4q

(2π)4
δ (2pA · q) δ (2pB · q)Θ

(
p0A +

q0

2

)
Θ

(
p0B − q0

2

)

×
∫
d4w1d

4w2e
−ib·q/ℏδ(4)

(
w1 + w2 +

n∑
i=1

ki

)

× δ
(
2pA · w1 + w2

1 − q · w1

)
Θ

(
p0A + w0

1 −
q0

2

)
δ
(
2pB · w2 + w2

2 + q · w2

)
Θ

(
p0B + w0

2 +
q0

2

)
×An+4

(
pA − q

2
, pB +

q

2
→ pA + w1 −

q

2
, pB + w2 +

q

2
, kσ1

1 , ..., k
σn
n

)
×A∗

n+4

(
pA +

q

2
, pB − q

2
→ pA + w1 −

q

2
, pB + w2 +

q

2
, kσ1

1 , ..., k
σn
n

)〉〉
,

(5.77)

where we use the double bracket notation
〈〈

·
〉〉

introduced in [166], which contains
the implicit phase space integral over pA, pB and the appropriate wavefunctions〈〈

f (pA, pB, . . .)
〉〉

≡
∫
dΦ(pA)dΦ(pB)|ψA(pA)|2|ψB(pB)|2f (pA, pB, . . .) , (5.78)

where

dΦ(pA) :=
1

(2π)3
d4pAδ

(
p2A −m2

A + q2/4
)
θ
(
p0A − q0/2

)
,

dΦ(pB) :=
1

(2π)3
d4pBδ

(
p2B −m2

B + q2/4
)
θ
(
p0B + q0/2

)
. (5.79)

Note that eq.(5.75) is expressed in terms of unitarity cuts involving n gravitons and
the two massive particles in the intermediate state. The same result can be obtained
by applying the LSZ reduction with the appropriate KMOC wavefunctions from the
in-in formalism, as shown in chapter 2.

In classical physics, we are interested in knowing whether the final graviton particle
distribution is exactly Poissonian or super-Poissonian (the most general case). We
refer the reader to appendix D for a brief review of the two cases. Poissonian statistics
are known to be equivalent to having a single coherent state representing the quantum
state for the classical radiation field. Here we give a short argument [4] for why we
expect a single coherent state, based on the fact that the we expect the incoming state
to be a pure state in the classical limit and on the unitarity of the S-matrix. The work
of Glauber in 1963 [286, 287] shows that every quantum state of radiation (i.e. every
density matrix) can be written as a superposition of coherent states,

ρ̂k,out =
∑
σ=±

∫
d2ασ

k Pσ
out(αk)|ασ

k⟩⟨ασ
k |, d2ασ

k :=
dℜ(ασ

k)dℑ(ασ
k)

π
, (5.80)

where Pσ
out(αk) is a well-defined probability density (Pσ

out(αk) ≥ 0) in the coherent
state space in the classical limit, and |ασ

k⟩ represents a coherent state of a graviton
excitation (“harmonic oscillator”) of momentum k and definite helicity σ, which we
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can write generically as

|ασ
k⟩ := exp

[
αka

†
σ(k)− α∗

kaσ(k)

]
|0⟩, (5.81)

where a†σ(k) and aσ(k) are the creation and annihilation operators of a graviton of
helicity σ. This representation is known as the Glauber-Sudarshan P-representation
[286, 288], and it is widely used in the quantum optics literature. In quantum field
theory, we need to consider an infinite superposition of harmonic oscillators for all
momenta k ∈ R1,3, and therefore we will promote eq.(5.80) to8

ρ̂radiation,out =
∑
σ=±

∫
D2ασ Pσ

out(α)|ασ⟩⟨ασ|, (5.82)

where now

|ασ⟩ = exp

[∫
dΦ(k)(α(k)a†σ(k)− α∗(k)aσ(k))

]
|0⟩. (5.83)

Since we are dealing with scattering boundary conditions and our incoming KMOC
state |ψin⟩ is a pure state, the unitarity of the S-matrix SS† = 1 implies that |ψin⟩
is mapped to outgoing pure states. Therefore, in particular, the outgoing radiation
state must be a superposition of pure states,

Pσ
out(α) =

∞∑
j=1

cσj,outδ
2(ασ − ασ

j ), (5.84)

But thanks to a crucial theorem of Hillery [291], we know that every such superposition
of pure states is trivial in the classical limit ℏ → 0,

Pσ
out,⋆(α) = δ2(ασ − ασ

⋆ ). (5.85)

We therefore expect, on general grounds, to be able to describe the final radiation
state for a scattering process involving point particles with a single coherent state.

From the pure amplitude perspective, the same question is hard to answer unless
we work strictly in the soft approximation [3, 256, 264]. But in general, we can address
this question perturbatively by studying the mean, the variance and the factorial mo-
ments of the particle distribution. A similar approach has been taken by F. Gelis and
R. Venugopalan [297–299] in the standard in-in formalism, which we try to specialize
here from a fully on-shell perspective and in the classical limit.

The graviton number operator is defined as

N̂ =
∑
σ=±

∫
dΦ(k) a†σ(k)aσ(k). (5.86)

Having defined

|ψout⟩ := S|ψin⟩, (5.87)

the expectation value of the number operator in the final state gives the mean of the
8See also [6] for a more rigorous approach by taking the large volume limit of a finite spacetime

box, where momenta are quantized and we only need to consider a finite superposition of harmonic
oscillators. We thank Donal O’Connell for emphasizing this point.
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distribution, which can be expressed in terms of unitarity cuts in a similar fashion to
the derivation of eq. (5.75), as depicted in Fig. 5.2. The mean of the distribution is
defined as

µλout := ⟨ψout|N̂ |ψout⟩

=

∫
dΦ(r1)dΦ(r2)

∑
nX

∫
λ
dΦ(X)nX⟨ψin|T †|r1r2X⟩⟨r1r2X|T |ψin⟩

=
∞∑
n=0

nP λ
n , (5.88)

where |r1r2X⟩ denotes the state with nX gravitons and two massive particles of mo-
menta r1 and r2, and

∫
λ dΦ(X) stands for the phase space integration for the gravitons.

Figure 5.2: Diagrammatic representation of the on-shell amplitude
contribution to the graviton number operator expectation value.

We define the variance of the distribution as

Σλ
out := ⟨ψout|(N̂)2|ψout⟩ −

(
⟨ψout|N̂ |ψout⟩

)2
=

∞∑
n=0

n2 P λ
n −

( ∞∑
n=0

nP λ
n

)2

. (5.89)

If the variance is equal to the mean, i.e. if

Σλ
out

?
= µλout, (5.90)

then the distribution is consistent with a Poissonian distribution. This means that
the deviation from the Poissonian distribution,

∆out : = Σλ
out − µλout

=

∞∑
n=0

(n2 − n)P λ
n −

( ∞∑
n=0

nP λ
n

)2

, (5.91)
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characterizes the deviation from the coherent state description.
We claim here that the difference between the mean µλ and the variance Σλ is

an infrared-safe quantity in perturbative quantum gravity. While the probability of
emission of n gravitons is generally ill-defined because of infrared divergences, there
is a non-trivial cancellation which happens for ∆out. Indeed, the contribution of
zero-energy gravitons to the final state, which give rise to the infrared divergent con-
tributions, is known to be exactly represented by a coherent state. This can be proved
either from a Faddeev-Kulish approach [3, 264] or from a path integral perspective
[6, 275, 276]. Let us denote the mean and the variance of this coherent state for
zero-energy gravitons by µEk∼0

out and ΣEk∼0
out respectively. In appendix D, we show that

for such coherent state of soft gravitons we have9

ΣEk∼0
out = µEk∼0

out =
∑
σ=±

∫
Ek∼0

dΦ(k)|ασ
Ek∼0(k)|2,

∆Ek∼0
out = ΣEk∼0

out − µEk∼0
out = 0. (5.92)

This is the reason why the cutoff λ was removed in eq. (5.91).10

We can easily check by induction on the number of loops and legs that 11

P λ
n =

∞∑
L1,L2=0

G2+n+L1+L2P (L1,L2)
n , (5.93)

where we have explicitly extracted the scaling in G of the product of an L1-loop
amplitude with an L2-loop amplitude with n gravitons. The lowest order contribution
to ∆out is of order O(G4), which corresponds to

∆out

∣∣∣
O(G4)

= 2G4P
(0,0)
2 . (5.94)

This leading term is the unitarity cut involving the 6-pt tree amplitude A(0)
6 (ϕAϕB →

ϕAϕBh1h2) and its conjugate A(0)∗
6 (ϕAϕB → ϕAϕBh1h2). It is important also to

understand the higher order terms in ∆out, since they will give non-trivial amplitude
relations if we assume coherence at all orders. From the definition eq. (5.91), we have

∆out =
∞∑

L1,L2=0

∞∑
n=2

G2+n+L1+L2(n2 − n)P (L1,L2)
n

−
∞∑

L1,L2,L′
1,L

′
2=0

∞∑
n,m=1

nmG4+n+m+L1+L2+L′
1+L′

2P (L1,L2)
n P

(L′
1,L

′
2)

m .

(5.95)
9It is not necessary to specify ασ

Ek∼0(k) for the argument to work. The interested reader can find
additional details in [264].

10This argument does not apply directly to non-abelian theories because of the presence of collinear
divergences, which for perturbative gravity are known to cancel exactly [262]. It would be interesting
to develop this idea further, along the lines of [270, 300].

11To avoid cluttering the notation, we keep the λ dependence implicit in P
(L1,L2)
n ≡ P

(L1,L2),λ
n .
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Let us examine the first several terms appearing explicitly in the expansion of eq. (5.95),

∆out = 2G4P
(0,0)
2 + 6G5P

(0,0)
3 + 12G6P

(0,0)
4 + 20G7P

(0,0)
5

+G5(2P
(1,0)
2 + 2P

(0,1)
2 ) +G6(2P

(0,2)
2 + 2P

(2,0)
2 + 6P

(1,0)
3 + 6P

(0,1)
3 )

+G7(2P
(3,0)
2 + 2P

(0,3)
2 + 6P

(2,0)
3 + 6P

(0,2)
3 + 6P

(1,1)
3 + 12P

(1,0)
4 + 12P

(0,1)
4 − 4P

(0,0)
1 P

(0,0)
2 )

+
[
G6(2P

(1,1)
2 − (P

(0,0)
1 )2) +G7(2P

(1,2)
2 + 2P

(2,1)
2 − 2P

(0,1)
1 P

(0,0)
1 − 2P

(1,0)
1 P

(0,0)
1 )

]
,

(5.96)

where we have organized each different line according to the expected behavior of
the terms in the classical limit. We expect that the first three lines of eq. (5.96) are
related to “quantum” contributions and are therefore irrelevant in the classical limit.
The last line of eq. (5.96), instead, contains a combination of unitarity cuts which will
give non-trivial quadratic relations between “classical” loop amplitudes with a higher
number of emitted gravitons of the form P

(L1,L2)
n with n ≥ 2 and L1 + L2 ≥ 1, and

5-point amplitude contributions involving P (L1,L2)
1 . We will discuss this interpretation

in more detail in section 6.3, where we will also emphasize the relevance of the 5-pt
amplitude for the calculation of classical radiative observables.

It is important to consider also higher moments of the statistical distribution for
the graviton number production. We can define a generating functional

F (x) =
∞∑
n=0

P λ
n e

nx, (5.97)

from which all higher moments can be derived,

⟨ψout|N̂m|ψout⟩ =
∞∑
n=0

nm P λ
n =

dmF (x)

dxm

∣∣∣
x=0

. (5.98)

Therefore, the knowledge of all graviton emission probabilities P λ
n is enough to com-

pletely determine the distribution of the particles above the energy cutoff. In practice,
we can rely on perturbation theory and therefore computing the first few moments
is enough to accurately determine the particle distribution. We can also defined
connected moments (or “cumulants”), like the variance and its higher order general-
izations. Having defined a generating functional

G(x) := log(F (x)), (5.99)

for a Poissonian distribution we would expect, given a certain waveshape ασ(k), that

Σ
(m),λ
Poisson :=

dmGPoisson(x)

dxm

∣∣∣
x=0

∼
∑
σ=±

∫
λ
dΦ(k)|ασ(k)|2 for all m > 0. (5.100)

because all the cumulants should be equal. In particular, the variance is a special case
for m = 2, i.e. Σ(2),λ = Σλ.

For our purposes it is more convenient to consider factorial moments Γ(m), which
correspond to a linear combination of the connected moments discussed above. We
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define the factorial moments

Γ
(m),λ
out := ⟨ψout|

m∏
j=1

(N̂ − j + 1)|ψout⟩

= ⟨ψout|N̂(N̂ − 1) . . . (N̂ −m+ 1)|ψout⟩ . (5.101)

For a Poissonian distribution it is possible to prove that

Γ
(m)
out,Poisson = (µλout,Poisson)

m (5.102)

and therefore we can also consider in perturbation theory other infrared-safe combi-
nations of probabilities like

∆
(m)
out := Γ

(m),λ
out − (µλout)

m, (5.103)

where for m = 2 one can check that we recover the difference between the mean and
the variance in eq. (5.95). By expanding eq. (5.103) we get immediately

∆
(m)
out =

∞∑
n=0

∞∑
L1,L2=0

G2+n+L1+L2
n!

(n−m)!
P (L1,L2)
n

−
∞∑

n1,...,nm=1

∞∑
L
(1)
1 ,...,L

(m)
1 =0

∞∑
L
(1)
2 ,...,L

(m)
2 =0

G
2m+

∑m
k=1

[
nk+L

(k)
1 +L

(k)
2

] m∏
j=1

[
njP

(
L
(j)
1 ,L

(j)
2

)
nj

]
.

(5.104)

It is interesting to consider the first terms in this expansion of ∆(3)
out,

∆
(3)
out =6G5P

(0,0)
3 + 24G6P

(0,0)
4 + 60G7P

(0,0)
5

+G6(6P
(1,0)
3 + 6P

(0,1)
3 ) +G7(6P

(0,2)
3 + 6P

(2,0)
3 + 6P

(1,1)
3 + 24P

(1,0)
4 + 24P

(0,1)
4 ) ,

(5.105)

and of ∆(4)
out,

∆
(4)
out =24G6P

(0,0)
4 + 120G7P

(0,0)
5

+G7(24P
(1,0)
4 + 24P

(0,1)
4 ) , (5.106)

where we have organized the terms similarly to what was done in eq. (5.96). We will
explore the deep consequences of assuming coherence at all orders, i.e. ∆

(m)
out = 0, in

section 6.3. In [6], it is shown how coherence properties are linked to the factorization
of radiative observables in the KMOC formalism.12 In classical physics, we expect only
the 1-point function to play a role for any observable of interest. Such an observable is
essentially uniquely determined by the classical equations of motion and the retarded
boundary conditions at t → −∞: all two-point and higher-point functions then have
to factorize as ℏ → 0. There the following relation was established,

Poissonian distribution
in Fock space

⇐⇒ Zero-variance property
in the Glauber-Sudarshan coherent state basis

12Similar statements about the classical factorization have been made in [3] for infrared divergences
and in [4] for the classical expansion.
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which implies that Poissonian distributions in the number operator basis correspond
to a degenerate distribution (∝ δ2(ασ − ασ

⋆ )) in the Glauber-Sudarshan space.

5.5 Coherent states from asymptotic symmetries and IR-
finite S-matrix

There is an interesting connection between asymptotic symmetries [10], coherent states
and the definition of an infrared finite S-matrix for perturbative quantum gravity [301,
302]. It is well known that while physical observables computed from it are always
infrared finite, the S-matrix is ill-defined in four dimensions due to presence of long-
range gravity interactions.

Weinberg showed that in gravity infrared divergences exponentiate as a conse-
quence of soft theorems [255], but the real revolution was to understand that there
is a general symmetry principle behind it. Indeed, soon after the discovery of the
BMS symmetry the gravitational scattering by Strominger [228], it was realized that
Weinberg soft theorem can be understood from the Ward identity of the BMS super-
translation charge [230]: schematically, if we define

N(z, z̄) = γζζ̄
∫ ∞

−∞
dv Nζζ

= − κ

8π
lim
E→0

E
[
a+ (En̂) + a†− (En̂)

]
(5.107)

then

⟨out|(N(z, z̄)S − SN(z, z̄))|in⟩ = −κ
2

8π

4∑
i=1

ηi
pµi p

ν
i ε

+
µν(n̂)

pi · n̂
⟨out|S|in⟩, (5.108)

where |out⟩ := S|in⟩ and for simplicity we can take |in⟩ = |p1p2⟩, consistently with the
notation in section 4.4 for the two-body problem. Clearly, a similar equation holds
for the other graviton helicity by using the conjugate memory operator N̄(z, z̄) =
γzz̄
∫∞
−∞ dv Nζ̄ζ̄ .

We will follow [302] for the next discussion. The interesting part about the memory
operator eq. (5.107) is that we can easily find the eigenstate which diagonalizes the
action of N(z, z̄): not surprisingly, it takes the form of a coherent state

|Nin/out⟩ = exp

{∑
σ=±2

∫
dΦ(k)Nµν

in/out(k)
[
εσµν(k)a

†
σ(k)− ε∗σµν(k)aσ(k)

]}
|0⟩, (5.109)

where the waveshape is required to have a pole in the energy

lim
E→0

E a+ (En̂) |Nin/out⟩ = lim
E→0

ENµν
in/out(En̂) ε

+
µν(n̂)|Nin/out⟩. (5.110)

consistently with the leading Weinberg soft theorem. At this point we can rewrite the
Ward identity between eigenstates of the memory operator as

(Nout −Nin)⟨out|S|in⟩ = Ωsoft⟨out|S|in⟩, (5.111)
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where the soft factor is

Ωsoft = −κ
2

8π

∑
i

ηi
pµi p

ν
i

pi · n̂
ε+µν(En̂) (5.112)

and the eigenvalue of the memory operator is given explicitly by

Nin/out = − κ

4π

(
lim
E→0

ENµν
in/out(En̂)ϵ

+
µν(n̂)

)
→ Nµν

out −Nµν
in =

κ

2

4∑
i=1

ηi
pµi p

ν
i

pi · k
.

(5.113)

Therefore, we see that the states are labelled by the value of the soft supertranslation
charge. Without loss of generality, we can assume that the incoming state is a Fock
state |p1p2⟩ with Nin = 0. Then, for consistency, the final state has to include a
coherent state of the form

|Nout⟩ = exp

{
κ

2

4∑
i=1

ηi
∑
σ=±2

∫
dΦ(k)

(
pµi p

ν
i

pi · k

)[
εσµν(k)a

†
σ(k)− ε∗σµν(k)aσ(k)

]}
|0⟩.

(5.114)

The appearance of this coherent state in the gravitational S-matrix can be shown in
other ways, which make manifest that this is classical result. Indeed, this is generated
by the stress tensor of free massive particles moving in a straight-line trajectory as can
be shown in the Faddeev-Kulish approach [301]. To make this precise, one can study
the interaction Hamiltonian for our theory of scalars minimally coupled with gravity
in the linearized gravity approximation and in asymptotic limit |t| → +∞ [264]

H(t) = H0 + V asy(t) = H0 −
∫

d3xhµν(t,x)T asy
µν (t,x),

T asy
µν =

∑
i=1,2

κ

2

∫
dΦ(p)

pµpν

Ep
ρi(p)δ

3

(
x− t

p

Ep

)
, (5.115)

where H0 is the free Hamiltonian, ρi(p) = a†i (p)ai(p) is the number operator for
the i-th scalar field and (t,x) are the coordinates of the asymptotic trajectory of
the scalar particles. This result is is valid only at first order in the perturbation
hµν , but it tells something important about the asymptotic dynamics: solving the
asymptotic Schrödinger equation for the potential V asy(t) gives an evolution operator
which generates the coherent state of gravitons given by eq. (5.114).13 This gives an
insight about how the quantum scattering theory generates a classical gravitational
wave, composed of infinitely many gravitons, at least in the soft kinematic regime.

In this specific context, the coherent state in eq. (5.114) is referred as Faddeev-
Kulish state [285]. It turns out that, if we dress the external hard massive scalar
particles with the appropriate coherent states of gravitons in a such a way that the
the BMS supertranslation Ward identity is obeyed, then the new dressed S-matrix in
perturbative quantum gravity is infrared finite as proved in [301]. In particular, for

13There is also an additional term which is the analogue of the Coulomb phase contribution in
QED, which plays an important role at higher orders in the soft expansion but not at leading order.
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our two-body problem this means that we should consider

⟨out|S|in⟩

= ⟨p3p4| exp
{
− κ

2

4∑
i=1

ηi

∫
dΦ(k)

pµi p
ν
i

pi · k

[
εσµν(k)a

†
σ(k)− ε∗σµν(k)aσ(k)

]}
S|p1p2⟩.

(5.116)

Finally, it is worth mentioning that while this procedure can be easily generalized
to scalar QED this is not the case for non-abelian theories like quantum chromody-
namics (QCD). Indeed, a crucial ingredient in our discussion was the fact that IR
divergences are only coming from the soft region: in general, collinear divergences
are also relevant. The coherent states required for the dressing of the S-matrix in
gravity are generated by classical sources given by the free massive particles moving
on straight-line trajectories, but collinear divergences do not arise from such simple
asymptotic dynamics. At leading logarithmic order, 14 one can still follow the coherent
state approach of Catani, Ciafaloni and Marchesini [307–311] which uses energy order-
ing in each interaction to systematically organise the divergences due to soft gluons in
QCD, and indeed a relation with asymptotic symmetries has been recently established
[1]. But despite the attempts to study collinear divergences fully within the coherent
operator approach [312, 313], it is likely that a more complicated structure should
arise at higher orders and might also involve other particles distributions than the
Poissonian one discussed in section 5.4. It would be very interesting to explore this
more in the future.

14See [303] for an introduction to the topic, [304] for a recent review on the problem and [305, 306]
for an alternative approach using old-fashioned perturbation theory.
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Chapter 6

Tree amplitudes in classical
gravitational scattering

In this chapter, we will compute several tree-level amplitudes for the quantum grav-
itational scattering with radiation both by using Feynman diagrams and BCFW re-
cursion relations. Then. we will take the classical limit and we will prove that the
leading deviation from coherence in the final state, which corresponds to the six-point
tree amplitude M(0)

6 (1A,2B,3A,4B, 5σ1 , 6σ2), is quantum suppressed. Just for this
section, we will use the mostly plus convention for the spacetime signature.

6.1 Tree amplitudes from Feynman diagrams

In this section, we extend the parametrization of the pure Lagrangian used by Cheung
and Remmen [314] to the case of real scalar fields minimally coupled with gravity. This
will make use of an auxiliary field, the connection, whose job is to effectively resum
higher order graviton pure contact vertices in the same spirit as the first order Palatini
formulation developed by Deser [315, 316]. We can then compute in a straightforward
way all the tree level amplitudes we need for this work.

Let us consider the Lagrangian of two real scalars minimally coupled with gravity
in D = 4 dimensions,

S := SGR + Smatter,

SGR :=
1

16πG

∫
d4x

[
∂aσce∂bσ

de

(
1

4
σabδcd −

1

2
σcdδad

)
+

1

2
σabωaωb

]
,

Smatter := −
∑

j=A,B

∫
d4x

[
1

2
σab∂aϕj∂bϕj +

1

2

√
−det(σ−1)m2

jϕ
2
j

]
, (6.1)

where we have used the following conventions:

σab :=
1√
−g

gab, σab =
√
−ggab, det(g) = det(σ−1),

ωa := ∂a log
√
−g =

1

2
σbc∂aσ

bc. (6.2)

We introduce the auxiliary field Aa
bc, which allows us to rewrite the pure gravity

Lagrangian as

SGR =
1

16πG

∫
d4x

[
−
(
Aa

bcA
b
ad −

1

3
Aa

acA
b
bd

)
σcd +Aa

bc∂aσ
bc

]
. (6.3)



112 Chapter 6. Tree amplitudes in classical gravitational scattering

Before setting up the perturbation theory in the new variables, it is useful to unmix
the graviton and auxiliary field by doing the shift

Aa
bc → Aa

bc −
1

2

(
∂bh

a
c + ∂ch

a
b − ∂ahbc +

1

2
ηbc∂

ahdd

)
(6.4)

and adding the gauge fixing term

LGF = −1

2
∂ah

ac∂bhbc = −1

2
ηcd∂a

(√
−ggac

)
∂b

(√
−ggbd

)
. (6.5)

Using

σab = ηab − κhab (6.6)

with κ =
√
32πG, and the expansion√

−det(σ−1) = exp

[
1

2
Tr log

(
1− κηh−1

)]
= 1− κ

2
Tr
(
ηh−1

)
− κ2

4
Tr
(
ηh−1

)2 − κ3

8
Tr
(
ηh−1

)3
+
κ2

8
Tr2

(
ηh−1

)
+
κ3

6
Tr
(
ηh−1

)
Tr
(
ηh−1

)2
+O(h3)

= 1− κ

2
haa −

κ2

4
habhab −

κ3

8
hbchabh

a
c +

κ2

8
(haa)

2 +
κ3

6
haa

(
hbch

bc
)
+O(h3),

(6.7)

we get explicitly up to O(h3) a Lagrangian of the form

L = LGR + Lmatter + LGF = Lhh + LAA + Lhhh

+ LhhA + LhAA + Lϕϕ + Lhϕϕ + Lhhϕϕ + Lhhhϕϕ. (6.8)

The quadratic terms in the Lagrangian are given by

Lhh :=
1

2

(
hab□h

ab − 1

2
hee□h

f
f

)
,

LAA := −2

(
Aa

bcA
b
ad −

1

3
Aa

acA
b
bd

)
ηcd,

Lϕϕ := −
∑

j=A,B

[
1

2
∂aϕj∂aϕj +m2

jϕ
2
j

]
, (6.9)

and the interaction terms are

Lhhh := κ
1

2
hab
[
∂ahcd∂bh

cd + 2∂[chd]b∂
dhca +

1

2

(
2∂chab∂

chee − ∂ah
e
e∂bh

f
f

)]
,

LhhA := 2κhab
[
Ac

ad

(
∂dhbc − ∂(bh

d
c)

)
− 1

2

(
ηadA

d
bc∂

chee −Ac
ca∂bh

e
e

)]
,

LhAA := 2κhab
(
Ac

adA
d
bc −

1

3
Ac

acA
d
bd

)
,

Lhϕϕ :=
κ

2

∑
j=A,B

[
hab∂aϕj∂bϕj +

1

2
haam

2
jϕ

2
j

]
,
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Lhhϕϕ :=
κ2

8

∑
j=A,B

[
habhab −

1

2
(haa)

2

]
m2

jϕ
2
j ,

Lhhhϕϕ :=
κ3

16

∑
j=A,B

[
4

3
hbchabh

a
c − haa

(
hbch

bc
)]
m2

jϕ
2
j . (6.10)

In the massless limit mA,mB → 0, the interaction terms become purely trivalent. In
that case, it is possible to set up the standard Berends-Giele recursion relations. But
even with the mass terms, the final expressions are more compact than in the stan-
dard perturbative expansion of gravity: the gravity pure self-interactions are nicely
resummed by the auxiliary field, which makes it possible to avoid the cumbersome
expressions for higher point vertices (at least at tree level, where ghosts are absent).
The Feynman rules for the propagators are then

(∆hh)abcd(p) = − i

2p2
(ηacηbd + ηadηbc − ηabηcd) ,

(∆AA)adbcef (p) = − i

4

[
1

2
δd(bηc)(eδ

a
f) + ηad

(
1

2
ηbcηef − 1

2
ηb(eηf)c

)]
,

(∆ϕjϕj )(p) = − i

p2 +m2
j

for j = A,B, (6.11)

and the rules for the interaction vertices are

⟨habhcdhef ⟩ (p1, p2, p3) = i
κ

2

{[
1

2

(
ηa(cηd)(eηf)b + ηb(cηd)(eηf)a

)
(p1 · p2)

−1

2

(
ηabηc(eηf)d + ηcdηa(eηf)b

)
(p1 · p2)

+

(
1

2
ηabηcd −

1

2
ηa(cηd)b

)
p1(ep2f) −

1

2
p2(aηb)(eηf)(dp1c)

]
+

[
p2 ↔ p3
cd↔ ef

]
+

[
p1 ↔ p3
ab↔ ef

]}
,

〈
habA

c
deA

f
gh

〉
(p1, p2, p3) = i

κ

2

(
δc(gηh)(aηb)(dδ

f
e) −

1

3
δf(gηh)(aηb)(dδ

c
e)

)
,

〈
habhcdA

e
fg

〉
(p1, p2, p3) =

κ

2

{[
1

2
δe(a
(
ηb)(fηg)(cp1d) − ηb)(cηd)(fp1g)

)
+
1

2
ηab

(
p1(fηg)(cδ

e
d) − p1(cηd)(fδ

e
g)

)]
+

[
p1 ↔ p2
ab↔ cd

]}
− κ

4
pe3
(
ηf(aηb)(cηd)g + ηg(aηb)(cηd)f

)
,

⟨habϕjϕj⟩ (p1, p2, p3) = −iκ
2

(
p2(ap3b) −m2

jηab
)

for j = A,B,

⟨habhcdϕjϕj⟩ (p1, p2, p3, p4) = i
κ2

4
m2

j (ηacηbd + ηadηbc − ηabηcd) for j = A,B,

⟨habhcdhefϕjϕj⟩ (p1, p2, p3, p4, p5) = i
κ3

8
m2

j

(
ηfaηb(cηd)e + ηd(aηe)cηfb + ηa(dηe)bηfc + ηe(aηb)cηfd

−[ηa(cηd)bηef + ηa(eηf)bηcd + ηabηe(cηd)f ]
)

for j = A,B,

(6.12)

where all momenta are chosen to be ingoing. At this point one can implement these
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Feynman rules in the xAct package [317], which we use extensively in the following
calculations.

For the purposes of simplifying computations, we adopt the following conventions
for the momenta of our amplitude:

M(0)
n+4(1

A,2B,3A,4B, 5σ1 , . . . , (n+ 4)σn) ≡ M(0)
n+4

(
p1, p2 → −p3,−p4,−pσ1

5 , . . . ,−p
σn
n+4

)
≡ M(0)

n+4 (p1, p2 → −p3,−p4,−kσ1
1 , . . . ,−k

σn
n ) ,

(6.13)

and we define the momentum invariants sij = −(pi+pj)
2, with Mandelstam invariants

defined as s = s12 and t = s13 in the particular case of four-point kinematics.

6.1.1 Four-point and five-point tree amplitude

We have only one diagram in the 4-pt case, given in Fig. 6.1. The Feynman rules give
the well-known result1

A(0)
4 (1A,2B,3A,4B) = − iκ

2

2t

(
1

2
t
(
−m2

A −m2
B + s

)
+

1

2

(
−m2

A −m2
B + s

)2 −m2
Am

2
B

)
.

(6.14)

Figure 6.1: The only Feynman diagram contributing to
A(0)

4 (1A,2B ,3A,4B).

For the 5-pt amplitude, we have explicitly computed the 7 diagrams pictured in
Fig. 6.2. Notice that the first 6 diagrams are in one-to-one correspondence with the
analogous calculation in scalar QED [95], while the last one is related to the graviton
self-interaction.

Figure 6.2: The Feynman diagrams contributing to
A(0)

5 (1A,2B ,3A,4B , 5σ1).

1See for example eq. (3.1) of [318], with D = 4 and κ =
√
2κ4.
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6.1.2 Six-point tree amplitude

We have computed the 68 diagrams in Fig. 6.3 for the 6-point tree amplitude. In
order from the top left of the picture in Fig. 6.3, the first 42 of these diagrams can
be compared with the analogous calculation in scalar QED done in [6], which in
particular involve the 3-point and the 4-point vertices with one matter line and one
or two gravitons. The remaining 26 diagrams are classified into the following three
types:

• 21 diagrams involving the graviton self-interaction;

• 3 diagrams with the auxiliary field propagator;

• 2 diagrams with a 5-point contact vertex with 3 gravitons and one matter line.

Figure 6.3: The Feynman diagrams contributing to
A(0)

6 (1A,2B ,3A,4B , 5σ1 , 6σ2). We have highlighted in red the
contribution of the auxiliary field, which is crucial to obtain the

correct result.

The calculation of these tree level amplitudes agrees exactly with an independent
on-shell BCFW calculation presented in the next section.
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6.2 Tree amplitudes from on-shell recursion relations

In this section,we compute the necessary tree-level amplitudes for the theory defined
in eq. (6.1) by using an on-shell diagrammar2 to recursively construct all the ampli-
tudes in the theory. A diagrammar requires basic amplitudes to serve as the atoms
of the computation, and the on-shell recursive framework of BCFW [321]. In mass-
less theories there are straightforward arguments to construct three-point amplitudes
from little-group scaling [322, 323]. The simplicity comes from the on-shellness of
the momenta, which is maintained throughout the computation and simplifies the
expressions needed as input.

We begin with a brief review of BCFW recursion, in preparation for the new shift
that we will introduce to compute the 5-point tree amplitude A(0)

5 (1A,2B,3A,4B, 5σ1)

and to set the stage for its application to the 6-point tree amplitude A(0)
6 (1A,2B,3A,4B, 5σ1 , 6σ2).

6.2.1 Review of BCFW

The basic mechanism of BCFW recursion is understood through elementary complex
analysis. The derivation begins by introducing a complex variable z and considering
a linear shift in (a subset of) the momenta pi in the (yet-to-be-determined) n-point
tree-level amplitude:

A(0)
n ({pi}) → A(0)

n ({p̂i}) , (6.15)

where the shifted momenta are defined as

p̂i = pi + zri. (6.16)

The choice of ri corresponds to a choice of shift.
As tree amplitudes are rational functions, we can consider A(0)

n ({p̂i}) as a mero-
morphic function of z which we denote as A(0)

n (z). We then evaluate the contour
integral ∮

γ∞

dz
A(0)

n (z)

z
= A(0)

n (0) +
∑
I

Res
z=zI

[
A(0)

n (z)

z

]
. (6.17)

where the zI are the poles in the complex plane, and the integration contour γ∞ :=
limR→∞ γR, where γR is a circular contour around the origin with radius R.

The choice of the vectors ri will to some extent determine the large-z behavior,
but importantly must also satisfy [324]:

• For all i, j, we have ri · rj = 0, which ensures linearity of deformed inverse
propagators in z;

• On-shellness of the shifted momenta: p̂2i = −m2
i , which implies ri · pi = 0;

• Conservation of momentum is maintained on the shift, i.e.
∑

i ri = 0 .

With an appropriate choice of shift, and for generic kinematics, and the non-
trivial residues on the right-hand side are thus encoded by the kinematic poles of the
amplitude. In particular, the first condition implies that the poles in A(0)

n (z) are simple
2This terminology is taken from [319, 320].
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poles. The residues are defined by the product of lower-point on-shell amplitudes in
the same theory and the scalar propagator,

∑
I

Res
z=zI

[
A(0)

n (z)

z

]
= −

∑
I

∑
σ=±

A(0)
L

(
{p̂L}, P̂ σ

I

) −i
P 2
I +m2

I

A(0)
R

(
−P̂−σ

I , {p̂R}
)
,

(6.18)

where L and R stand for the “left” and “right” amplitude in the factorization, and

PI =
∑
R

pR = −
∑
L

pL. (6.19)

The momentum channels which contribute a residue are those which contain at least
one shifted external momentum in both {p̂L} and {p̂R}, and the poles corresponding
to each channel are the solutions of the linear equations

P̂ 2
I = P 2

I + z
∑
i∈R

2ri · PI . (6.20)

Note also that each pole contributes only a single residue, so partitioning into {pL} and
{pR} should take into account global momentum conservation to avoid overcounting.

A “good” shift on A(0) is defined as any shift for which the left-hand side of
eq. (6.17) vanishes, behavior which corresponds to the vanishing of the residue at
infinity, also known as the “boundary term”,∮

γ∞

dz
A(0)

n (z)

z
= lim

z→∞

[
A(0)

n (z)
]
= 0 . (6.21)

For amplitudes in massless theories, it is understood what constitutes a good shift for
various helicity configurations in various theories [322, 325–328]. Then, by combining
eq. (6.18) with eq. (6.17), we get the recursive formula

A(0)
n (0) = A(0)

n

(
{p}
)
=
∑
I

∑
σ=±

A(0)
L

(
{p̂L}, P̂ σ

I

) −i
P 2
I

A(0)
R

(
−P̂−σ

I , {p̂R}
)
. (6.22)

Later in this section we introduce a new kind of shift which is applicable to massive
legs as well. In particular, it will be only the first item, the on-shellness of the
momenta, that needs modification to accommodate this case.

In the following section we apply BCF shifts [329] exclusively to massless legs:
they are labelled as [i, j⟩ and they modify the external legs as follows:

p̂aḃi = |̂i]a⟨i|ḃ =
(
|i] + z|j]

)a⟨i|ḃ,
p̂aḃj = |j]a⟨ĵ|ḃ = |j]a

(
⟨j| − z⟨i|

)ḃ
, (6.23)

which implies that

raḃi = −raḃj = |j]a⟨i|ḃ. (6.24)

We now proceed to apply these shifts to graviton-scalar amplitudes.
We use the spinor-helicity formalism throughout, adopting the shorthand of [324]

whereby Feynman-slashed four-momentum is replaced by the momentum labels with
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products denoted by simply concatenating momentum labels

. . . ij|X] ≡ . . . /pi/pj |X] . (6.25)

Differences of momenta are similarly denoted, whilst sums of momenta are combined
into an upper-case P :

(i− j)|X] ≡ (/pi − /pj)|X] , Pij = pi + pj . (6.26)

6.2.2 Building blocks of the amplitude diagrammar

Figure 6.4: Generic on-shell diagrams that are the atoms of the
diagrammar, corresponding to the amplitudes defined in eq. (6.27)

(resp. eq. (6.28) for (a) (resp. (b)).

We begin by looking at amplitudes with a single flavor of massive scalar, which we
pick as flavor A without loss of generality. To construct these amplitudes we require
pure gravity amplitudes as well as minimally coupled graviton-scalar amplitudes. The
diagrams for the three-point amplitudes needed are depicted in Fig. 6.4.

The massless three-point graviton amplitudes are

A(0)
3

(
1+, 2+, 3−

)
= iκ

[12]6

[23]2[31]2
, A(0)

3

(
1−, 2−, 3+

)
= iκ

⟨12⟩6

⟨23⟩2⟨31⟩2
, (6.27)

and the massive-scalar amplitudes are [323, 330]

A(0)
3

(
1A,2A, 3+

)
= iκ

[3|2|χ⟩2

⟨3χ⟩2
, A(0)

3

(
1A,2A, 3−

)
= iκ

⟨3|2|χ]2

[3χ]2
. (6.28)

where we have introduced a reference spinor χ. Although it may appear as though
the amplitudes in eq. (6.28) depend on the choice of χ, this is not the case, as long as
the denominators do not vanish.

Using the amplitudes in eq. (6.27) and eq. (6.28) we can apply BCFW recur-
sion to construct four-point amplitudes. Up to helicity conjugation and permutation
(crossing) invariance, there are two independent configurations:

A(0)
4 (1A,2A, 3+, 4+), A(0)

4 (1A,2A, 3−, 4+). (6.29)

We can apply a [3, 4⟩ shift to construct both,3

p̂aḃ3 = |3⟩a[3̂|ḃ = |3⟩a([3|+ z[4|)ḃ , (6.30)

p̂aḃ4 = |4̂⟩a[4|ḃ = (|4⟩ − z|3⟩)a[4|ḃ. (6.31)

3For simplicity, we will suppress the a, ḃ indices from here on.
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Figure 6.5: The sum of factorizations of A(0)
4 (1A,2A, 3±, 4+

)
which

is needed to reproduce the amplitude via BCFW on-shell techniques.

In massless theories the validity of such a shift follows directly from the scaling of
the two-point propagator and polarization tensors [326, 328], and this analysis ap-
pears to hold for the massive case too, as it results in the correct amplitudes (see for
example [331, 332]).

The momentum shift involves a subset of the physical poles of the theory,

ŝ31 −m2
A = 0 ⇒ z = z31 ≡ − [3|1|3⟩

[4|1|3⟩
, (6.32)

ŝ41 −m2
A = 0 ⇒ z = z41 ≡ − [4|1|4⟩

[4|1|3⟩
, (6.33)

and thus the amplitudes can be reproduced by the diagrams in Fig. 6.5.
At four points, some simple algebra reproduces a compact form of the amplitude

from the factorizations

A(0)
4 (1A,2A, 3+, 4+) = iκ2

[3̂|1|χ⟩2

⟨3χ⟩2
−1

s31 −m2
A

[4|2|χ⟩2

⟨4̂χ⟩2
+ iκ2

[3̂|2|χ⟩2

⟨3χ⟩2
−1

s32 −m2
A

[4|1|χ⟩2

⟨4̂χ⟩2

= −iκ2
m4

A[34]
2

(s31 −m2
A)⟨43⟩2

+ (1 ↔ 2). (6.34)

The spurious double pole cancels upon summation with the symmetric term, and the
technique also gives the correct result for the mixed-helicity configuration,4

A(0)
4 (1A,2A, 3+, 4+) = −iκ2

m4
A[34]

3

⟨34⟩(s31 −m2
A)(s32 −m2

A)
, (6.35)

A(0)
4 (1A,2A, 3−, 4+) = iκ2

[4|1|3⟩4

s34(s31 −m2
A)(s32 −m2

A)
. (6.36)

Finally, we consider the four-point two-flavor amplitude computed from a single
Feynman diagram and given in eq. (6.14), that is equivalent to

A(0)
4 (1A,2B,3A,4B) =

iκ2

2s13

(
2(p1 · p2)(p1 · p4) +m2

Am
2
B

)
. (6.37)

There are well-established on-shell constraints on the classical contribution of this
amplitude to eikonal scattering; it consists of a single residue in the form of a product
of three-point amplitudes subject to a shift prescription which defines the residue in
s13 [333]. The full QFT amplitude requires further information to fully reproduce
eq. (6.37). Because of the simplicity of the Feynman diagram calculation, we treat it

4In particular, the 3 ↔ 4 symmetry is restored, and the correct s34 factorization is reproduced.
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as a fundamental amplitude in our diagrammar, and it joins the basic building blocks
in eq. (6.27) and eq. (6.28).

6.2.3 The equal-mass shift

The results discussed in section 6.2.2 relied upon the presence of massless particles
in the processes in question, but here we are interested in the amplitude with two
massive particles with different flavors and just a single massless graviton, as depicted
in Fig. 6.6. This raises the question of whether we can construct this amplitude with
any kind of shift. In fact this is possible, but first we need to consider what actually
makes on-shell recursion effective.

Figure 6.6: The five-point tree amplitude we would like to compute
with BCFW-like techniques.

The principal advantage of the BCFW method is that it allows us to construct
higher-point amplitudes from on-shell expressions. When we are dealing with massless
theories/particles, this also implies that the on-shell condition for a particle is also
satisfied: p̂2i = 0. These two statements are not completely equivalent when consider-
ing theories with equally-massive particles (particles 1 and 3): an on-shell expression
need not be in terms of momenta and masses which satisfy the on-shell conditions

p̂21 = p̂23 = −m2
A (6.38)

but can be loosened such that the mass is shifted, but by the same value for both
particles:

p̂21 = p̂23 = −m̂2
A. (6.39)

The massmA is thus treated like a kinematic variable rather than an invariant defining
“on-shellness”. Crucially, the equal-mass expressions now used in the recursion remain
equal-mass expressions, and the diagrammar can be used to build amplitudes in the
theory just like the massless case.

This approach still requires at least one massless external particle, which we label
particle 5 and assume to have positive helicity, without loss of generality. The three-
line shift that satisfies the requirements of on-shell recursion is

p̂5 = |5̂⟩[5̂| = (|5⟩+ z (1− 3)|5])[5| ,
p̂1 = p1 + z 3|5][5| ,
p̂3 = p3 − z 1|5][5|, (6.40)

where one can easily verify that

p̂21 = p21 − z[5|13|5] = −m2
A + z[5|31|5] = p̂23. (6.41)
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Thus the condition in eq. (6.39) is satisfied, and equal-mass amplitudes can be used in
the recursion. Similarly to the BCFW shift, shifting the anti-holomorphic spinor |5]
produces a boundary term in A(0)

5 (z), i.e. it is a “bad” shift. From comparison with the
extended-Cheung-Remmen Feynman diagram computation of section 6.1, we confirm
that the holomorphic shift is a good shift for the five-point tree amplitude.

6.2.4 Five-point tree amplitude

We now apply the equal-mass shift to the tree-level amplitude with two flavors of
pairs of minimally-coupled massive particles and one graviton.

The equal-mass shift we use is

A(0)
5 (1A,2B,3A,4B, 5+) → A(0)

5 (1̂A,2B, 3̂A,4B, 5̂+) ,

|5̂⟩[5̂| = (|5⟩+ z(1− 3)|5]) [5| ,
p̂1 = p1 + z 3|5][5| ,
p̂3 = p3 − z 1|5][5| ,

p̂1 − p̂3 = p1 − p3 + z P13|5][5|. (6.42)

Figure 6.7: Factorizations of the five-point tree amplitude
A(0)

5 (1A,2B ,3A,4B , 5σ1) on the equal mass shift defined in the ex-
pressions in eq. (6.42).

The factorization on the equal-mass poles are depicted in Fig. 6.7, and the shift
yields a total of five terms,

A(0)
5 |51 = A(0)

3

(
1̂A, P̂A, 5̂+

) i

s51 −m2
A

A(0)
4 (−P̂A,2B, 3̂A,4B),

A(0)
5 |53 = A(0)

3

(
3̂A, P̂A, 5̂+

) i

s53 −m2
A

A(0)
4 (−P̂A,2B, 1̂A,4B),

A(0)
5 |52 = A(0)

3

(
2B, P̂B, 5̂+

) i

s52 −m2
B

A(0)
4 (−P̂B, 3̂A,4B, 1̂A),

A(0)
5 |54 = A(0)

3

(
4B, P̂B, 5̂+

) i

s54 −m2
B

A(0)
4 (−P̂B, 3̂A,2B, 1̂A),

A(0)
5 |13 =

∑
σ=±

A(0)
3

(
1̂A, 3̂A, P̂ σ

) i

s13
A(0)

4 (2B,4B, 5̂+,−P̂−σ), (6.43)
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where the factorizations correspond to residues at the following poles:

z51 =
[5|1|5⟩
[5|13|5]

, z53 =
[5|3|5⟩
[5|13|5]

,

z52 = − [5|2|5⟩
[5|2(1− 3)|5]

, z54 =− [5|4|5⟩
[5|4(1− 3)|5]

,

z13 =
s13

[5|P24(1− 3)|5]
. (6.44)

It is convenient to organize the calculation in terms of the variables5

KA := p1 − p3, KB := p2 − p4, (6.45)

which are antisymmetric under the exchange of the corresponding pair of momenta.
Each residue in eq. (6.43) yields an expression containing spurious poles, which are
not present in the full amplitude. For example the P52 factorization gives

A(0)
5

∣∣
52

=iκ3
[5|2KA|5]3[5|13|5]2

x251|53

−1

s52 −m2
B

×

2(p1 · p4 + z52[5|43|5])(p3 · p4 − z52[5|41|5]) + (m2
A + z52[5|13|5])m2

B

2x52|13
,

(6.46)

with the spurious poles xij|kl proportional to denominator factors evaluated at other
residues

xij|kl = [5|PijKA|5][5|PklKA|5](zij − zkl). (6.47)

Through algebraic manipulations the spurious poles in the full expression can be
cleared, and the amplitude can be symmetrized in KA and KB. The final expression
is

A(0)
5

(
1A,2B,3A,4B, 5+

)
=
iκ3

8

([
−p4 · p2[5|13|5]2

s24(s51 −m2
A)(s53 −m2

A)
+

[5|KAKB|5]2 − 8[5|13|5]2

16s13s24

+
(m2

A +m2
B)[5|13|5]

(
2(s13 − s24)[5|13|5] + [5|KB|5⟩[5|KAKB|5]

)
8(s51 −m2

A)(s53 −m2
A)(s52 −m2

B)(s54 −m2
B)

−
KA ·KB(s24 − s13)

2[5|13|5]
(
4s24[5|42|5]− [5|KA|5⟩[5|KAKB|5]

)
32s13s24(s51 −m2

A)(s53 −m2
A)(s52 −m2

B)(s54 −m2
B)

−
KA ·KB[5|42|5]

(
[5|KB|5⟩[5|KAKB|5]− 4(s13 + s24)[5|13|5]

)
8s13s24(s52 −m2

B)(s54 −m2
B)

−
KA ·KB[5|KA|5⟩[5|KB|5⟩

(
[5|KAKB|5]2 − 8[5|42|5]2

)
64s13(s51 −m2

A)(s53 −m2
A)(s52 −m2

B)(s54 −m2
B)

+ (Tr( /KA /KB /KA /KB) + 2[5|KA|5⟩2 + 2[5|KB|5⟩2 − 2s213 − 2s224)

×
(

[5|KA|5⟩[5|KB|5⟩[5|13|5][5|42|5]
64s13s24(s51 −m2

A)(s53 −m2
A)(s52 −m2

B)(s54 −m2
B)

+
[5|42|5](2(s13 − s24)[5|42|5]− [5|KA|5⟩[5|KAKB|5])
64s13(s51 −m2

A)(s53 −m2
A)(s52 −m2

B)(s54 −m2
B)

)]
+
[(
1, 3,KA) ↔

(
2, 4,KB

)])
,

(6.48)

5Note that because the momenta are all incoming, the Ki are not momentum transfers.
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and the negative helicity case is obtained simply by switching the square brackets
for angle brackets. We find perfect agreement with the Feynman diagram calculation
from section 6.1 when tested on rational kinematic points.

6.2.5 Six-point tree amplitude

The six-point tree amplitude can be computed using a standard BCFW shift [5, 6⟩,6
where we consider

A(0)
6 (1A,2B,3A,4B, 5̂±, 6̂+) , (6.49)

which generates 10 factorization diagrams. All of these are of the general types of
factorizations are shown in Fig. 6.8. We make use of the permutation invariance of
the scalar particle by defining {I1, I2} = P

(
{1A,3A}

)
or {I1, I2} = P

(
{2B,4B}

)
,

with the complement set labelled as Ji. There are four factorizations for each of the left
and middle diagrams and two for the last, giving a total of ten residue contributions
to the amplitude.

Figure 6.8: Schematic representation (up to crossing symmetry) of
the three independent factorizations which are relevant for the con-
struction of the six-point tree amplitude A(0)

6 (1A,2B ,3A,4B , 5σ1 , 6σ2)
from the BCFW shift.

A(0)
6 |5I1 = A(0)

3

(
I1, P̂

I1 , 5̂±
) i

s5I1 −m2
I

A(0)
5 (−P̂I1 ,J1, I2,J2, 6̂

+) (6.50)

A(0)
6 |6I1 = A(0)

3

(
I1, P̂

I1 , 6̂+
) i

s6I1 −m2
I

A(0)
5 (−P̂I1 ,J1, I2,J2, 5̂

±) (6.51)

A(0)
6 |I1I25 =

∑
σ=±

A(0)
4

(
I1, I2, 5̂

±, P̂ σ
) i

sI1I25
A(0)

4

(
J1,J2, 6̂

+,−P̂−σ
)

(6.52)

We confirm numerically the vanishing of the boundary (large-z) terms from the
Feynman-diagram expression.7 Moreover, we have verified that the reproduction of
the amplitude, as the Feynman-diagram and on-shell calculations produce the same
result on all (rational) numerical points tested.

6The three-line shift used in section 6.2.3 produces more factorisations making the form less
efficient. Moreover the presence of a boundary term in the same-helicity case restricts its application
to generic configurations.

7This occurs diagram by diagram for the mixed helicity case, but there are non-trivial cancellations
in the case of the all-plus-helicity configuration.
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6.3 The classical limit of scattering amplitudes with radi-
ation: graviton interference is a quantum effect

In this section, we use the explicit calculation of the six-point tree amplitude A(0)
6

of the previous section to prove the coherence of the emitted semiclassical radiation
field up to order O(G4) for radiative observables. Moreover, assuming coherence to
all orders as suggested by the arguments of section 5.4, we derive an infinite set of
non-trivial relations between unitarity cuts in the classical limit. Those are relevant
for the calculation of physical radiative observables, such as the waveform or the total
linear and angular momentum emitted by the gravitons, because they suggest that
only the 5-pt amplitude is required for the classical calculation and all the higher
multiplicity amplitudes are not explicitly needed.

In order to take the classical limit, we follow the rules established in [166]. We
express the massless momenta in terms of their wavenumbers and the momentum
transfers of eq. (5.74),

ki = ℏk̄i for i = 1, 2, 3, . . . ; qj = ℏq̄j , wj = ℏw̄j for j = 1, 2; (6.53)

and we use the parametrization of the massive momenta from eq. (5.76), which define
the classical trajectory. They are therefore associated to classical velocities vA and
vB,

pj = m̃jvj , m̃2
j = m2

j − ℏ2
q̄2

4
for j = A,B . (6.54)

Note that in section 6.2 we used notation which was more compact for the purposes
of computing the amplitudes. We can translate to the notation introduced earlier in
eq. (5.75) by noticing that

P13 = −w1 , P24 = −w2 . (6.55)

Crucially, we also need to restore the powers of ℏ in the coupling as

κ→ κ√
ℏ
. (6.56)

We use these equivalences to infer the ℏ scaling of the amplitudes. We begin by
extracting the leading classical scaling of the five-point and six-point amplitude, and
we then discuss the consequences of coherence for classical radiative observables.

6.3.1 Classical limit of the five-point tree amplitude

We begin by computing the classical limit of the five-point tree amplitude, which was
given previously in [95, 124] by an equivalent large mass expansion. An interesting
alternative derivation can be made in supergravity theory by using the Kaluza-Klein
compactification of amplitudes of massless particles in five dimensions, by taking
advantage of a straightforward application of double copy [334].

The manifestly gauge invariant expression for A(0)
5 given in eq. (6.48) can easily be

written in terms of the polarization tensor for the graviton through the identification

fµν = pµ5ε
ν
5 − pν5ε

µ
5 = [5|γµγν |5] ℏ→0∼ ℏ, (6.57)
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and the following scalings also hold:

P13, P24
ℏ→0∼ ℏ, Kµ

A , K
ν
B

ℏ→0∼ ℏ0, s13 , s24
ℏ→0∼ ℏ2,

s51 −m2
A = −2p5 · p1 , s52 −m2

B = −2p5 · p2
ℏ→0∼ ℏ. (6.58)

Moreover, we can safely neglect the quantum shift in the masses m̃j
ℏ→0
= mj . Using

eq. (6.58), we can simply apply power counting to each of the terms in eq. (6.48). We
deduce that, upon including the contribution from κ, the terms which contribute to
leading behavior as ℏ → 0 are

A(0)
5 (1A,2B,3A,4B, 5+)

ℏ→0∼
iκ3

64

([
[5|KAKB|5]2

2s13s24
− KA ·KB[5|42|5][5|KB|5⟩[5|KAKB|5]

s13s24(s52 −m2
B)(s54 −m2

B)

− KA ·KB[5|KA|5⟩[5|KB|5⟩[5|KAKB|5]2

8s13(s51 −m2
A)(s53 −m2

A)(s52 −m2
B)(s54 −m2

B)

+ Tr( /KA /KB /KA /KB)

(
[5|KA|5⟩[5|KB|5⟩[5|13|5][5|42|5]

8s13s24(s51 −m2
A)(s53 −m2

A)(s52 −m2
B)(s54 −m2

B)

− [5|42|5][5|KA|5⟩[5|KAKB|5]
8s13(s51 −m2

A)(s53 −m2
A)(s52 −m2

B)(s54 −m2
B)

)]
+
[(
1, 3,KA) ↔

(
2, 4,KB

)])
.

(6.59)

We can make the following replacements in order to match the notation in [95] at
leading order in the classical expansion 8,

p3
ℏ→0∼ −mAvA, p4

ℏ→0∼ −mBvB,

s13
ℏ→0∼ −q21, s24

ℏ→0∼ −q22,

[5|13|5] ℏ→0∼ mAfµνv
µ
Aq

ν
1 , [5|42|5] ℏ→0∼ −mBfµνv

µ
Bq

ν
2 ,

[5|KA|5⟩
ℏ→0∼ −4mAk · vA, [5|KB|5⟩

ℏ→0∼ −4mBk · vB,

(−s51 +m2
A), (s53 −m2

A)
ℏ→0∼ 2mAk · vA, (−s52 +m2

B), (s54 −m2
B)

ℏ→0∼ 2mBk · vB,

[5|KAKB|5]
ℏ→0∼ −4mAmBfµνv

µ
Av

ν
B, KA ·KB

ℏ→0∼ 4mAmBvA · vB .
(6.60)

This implies that the leading order behaviour of the five-point tree amplitude is of
order ℏ−7/2. As we will see later, this will imply that the amplitude contributes to
the total classical energy emitted in gravitational waves. In particular, we get

A(0)
5 (mAvA,mBvB, ℏq1 −mAvA, ℏq2 −mBvB, ℏk)

∣∣∣∣
ℏ−

7
2

=
iκ3

4

m2
Am

2
Bfµνfρσ
q21q

2
2

[
vA · vB

(
qµ1 v

ν
A

k · vA
−
qµ2 v

ν
B

k · vB

)
vρAv

σ
B +

(q21 + q22)vA · vBvµAvνBv
ρ
Av

σ
B

2k · vAk · vB

+ vµAv
ν
Bv

ρ
Av

σ
B +Tr(/vA/vB/vA/vB)

(
−

vµAq
ν
1v

ρ
Bq

σ
2

4k · vAk · vB
−

q22v
µ
Av

ν
Bv

ρ
Bq

σ
2

8k · vA(k · vB)2
−

q21v
µ
Bv

ν
Av

ρ
Aq

σ
1

8k · vB(k · vA)2

)]
,

(6.61)

8Only for this case, we use an asymmetric parametrization of the external momenta in terms of
the classical velocities just to show the agreement with the literature.
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where fµνfρσ is proportional to the linearized Riemann tensor and can be expressed
in terms of the polarization tensor εµν

fµνfρσ = 2Rµνρσ = kµkρενσ + kνkσεµρ − kµkσενρ − kνkρεµσ

= εαβ (kµkρηναησβ + kνkσηµαηρβ − kµkσηναηρβ − kνkρηµαησβ) . (6.62)

Upon substituting the relation

Tr(/vA/vB/vA/vB) = 8(vA · vB)2 − 4 (6.63)

the amplitude can thus be expressed

A(0)
5 (mAvA,mBvB, ℏq1 −mAvA, ℏq2 −mBvB, ℏk)

∣∣∣∣
ℏ−

7
2

=
iκ3

4

m2
Am

2
Bεµν

q21q
2
2

[
(k · vA)2vµBv

ν
B + (k · vB)2vµAv

ν
A − 2k · vAk · vBvµAv

ν
B

+ vA · vB
(
(k · vA)2q22v

µ
Bv

ν
B + (k · vB)2q21v

µ
Av

ν
A

2k · vA k · vB
+ k · vA qµ2 v

ν
B + k · vB qµ1 v

ν
A − (q21 + q22)v

µ
Av

ν
B

)
+
(
2(vA · vB)2 − 1

)((q21k · vBvµA − q22k · vAv
µ
B

)
(qν1 − qν2 )

2k · vBk · vA
− qµ1 q

ν
2+

+
(q21 − q22)

2
(
(k · vA)2q22v

µ
Bv

ν
B + (k · vB)2q21v

µ
Av

ν
A

)
4(k · vA)2(k · vB)2

−
(q21 − q22)

2vµAv
ν
B

4k · vAk · vB

)]
,

(6.64)

which matches the result in [95] analytically.

6.3.2 Classical limit of the six-point tree amplitude

To compute the leading terms of the classical expansion of A(0)
6 , we directly extract

the ℏ scaling of the BCFW residues in eq. (6.50) and eq. (6.52). In the following, we
will use explicitly the rules extracted in eq. (6.53), eq. (6.56) and eq. (6.58). First
we consider the terms which originate from the factorizations of the general type in
eq. (6.50),

A(0)
6 |5I1 = A(0)

3

(
I1, P̂

I1 , 5̂±
) i

s5I1 −m2
I

A(0)
5 (−P̂I1 ,J1, I2,J2, 6̂

+). (6.65)

For the scaling of the three-point amplitude A(0)
3 (I1, P̂I , 5̂

±), we first note that a shift
in momenta does not modify the ℏ scaling,

p̂5 = p5 + z5I1 |5⟩[6| → ℏ ˆ̄p5, (6.66)

which can be seen from the fact that z5I1 takes the form

z5I1 |5⟩[6| =
2p5 · pI1
[6|I1|5⟩

|5⟩[6| (6.67)
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so that it scales in the same way as p5. We can thus rearrange the amplitude to
extract the scaling:

A(0)
3

(
Î1, P̂

I1 , 5̂+
)
= iκ

[5̂|P̂I |χ⟩2

⟨5χ⟩2

= iκ
[5̂|P̂Iχ|5̂]2

(2p5 · pχ)2

= iκ
1

(2p5 · pχ)2
f̂µν5 f̂ρσ5 P̂µPρ(pχ)ν(pχ)σ

ℏ→0∼ ℏ−
1
2 , (6.68)

where f̂5 ≡ f as defined in eq. (6.57), but in terms of shifted momenta and polarization
vectors. The shifted five-point amplitude inherits the ℏ scaling of eq. (6.61),

A(0)
5 (−P̂I1 ,J1, I2,J2, 6̂

+)
ℏ→0∼ ℏ−

7
2 . (6.69)

Thus upon including the contribution from the pole, each term of the form in eq. (6.65)
has the leading scaling behavior

A(0)
6 |6I1

ℏ→0∼ ℏ−5. (6.70)

We now show how taking only the leading-classical term trivializes the kinematics.
Using eq. (6.66) we have

P̂ I1 = −pI1 − p̂5 = −pI1 +O(ℏ) , (6.71)

and we can make the statement

A(0)
5 (−P̂I1 ,J1, I2,J2, 6̂

+)

∣∣∣∣
ℏ−

7
2

= A(0)
5 (I1,J1, I2,J2, 6̂

+)

∣∣∣∣
ℏ−

7
2

. (6.72)

This is not the only simplification in the leading classical limit. We also observe that
from pI1 = −pI2 +O(ℏ) we have

zI15 =
[5|I1|5⟩
[6|I1|5⟩

=
[5|I2|5⟩
[6|I2|5⟩

+O(ℏ). (6.73)

Thus both the A(0)
3 and A(0)

5 factors in eq. (6.65) are invariant under the I1 ↔ I2
permutation. On the other hand the pole factor

1

sI15 −m2
I

=
1

[5|I1|5⟩
= − 1

[5|I2|5⟩
(6.74)

has the opposite sign under the I1 ↔ I2 switch, so these contributions cancel pairwise,
giving

A(0)
6 |5I1 +A(0)

6 |5I2
ℏ→0∼ ℏ−4 . (6.75)

An identical argument for the terms of type in eq. (6.51) also gives

A(0)
6 |6I1 +A(0)

6 |6I2
ℏ→0∼ ℏ−4 . (6.76)

So the permutation invariance naturally leads to a drop in inverse-ℏ scaling.
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Finally, describing the scaling of terms of the type in eq. (6.52),

A(0)
6 |I1I25 =

∑
h=σ

A(0)
4

(
I1, I2, 5̂

±, P̂ σ
) i

sI1I25
A(0)

4

(
J1,J2, 6̂

+,−P̂−σ
)
, (6.77)

requires the scaling from the four-point single-flavor amplitude. From ℏ counting we
find

A(0)
4

(
I1, I2, P̂

±, 5̂+
)

ℏ→0∼ ℏ−1 . (6.78)

And as the massless poles contributes ℏ−2, the massless factorizations manifestly scale
as

A(0)
6 |I1I25

ℏ→0∼ ℏ−4. (6.79)

Thus we conclude that

A(0)
6 (1A,2B,3A,4B, 5±, 6+)

ℏ→0∼ ℏ−4. (6.80)

We expect similar arguments to hold at higher points, which would imply that the
general scaling of the (n+ 4)-point amplitude is

A(0)
4+n

ℏ→0∼ ℏ−3−n
2 . (6.81)

6.3.3 Coherence of the final radiative state

Using the classical scaling discussed in eq.(6.53) and eq.(6.56), we can rewrite the
graviton emission probability in our problem as

P λ
n =

1

n!

∑
σ1,...,σn=±

〈〈
ℏ4+2n

∫
λ̄

n∏
i=1

dΦ(k̄i)

∫
d4q̄

(2π)4
δ (2pA · q̄) δ (2pB · q̄)Θ

(
p0A + ℏ

q̄0

2

)
Θ

(
p0B − ℏ

q̄0

2

)

×
∫
d4w̄1d

4w̄2e
−ib·q̄δ(4)

(
w̄1 + w̄2 +

n∑
i=1

k̄i

)
Θ

(
p0A + ℏw̄0

1 − ℏ
q̄0

2

)
Θ

(
p0B + ℏw̄0

2 + ℏ
q̄0

2

)
× δ

(
2pA · w̄1 + ℏw̄2

1 − ℏq̄ · w̄1

)
δ
(
2pB · w̄2 + ℏw̄2

2 + ℏq̄ · w̄2

)
×An+4

(
pA − ℏ

q̄

2
, pB + ℏ

q̄

2
→ pA + ℏw̄1 − ℏ

q̄

2
, pB + ℏw̄2 + ℏ

q̄

2
, ℏk̄σ1

1 , ..., ℏk̄
σn
n

)
×A∗

n+4

(
pA + ℏ

q̄

2
, pB − ℏ

q̄

2
→ pA + ℏw̄1 − ℏ

q̄

2
, pB + ℏw̄2 + ℏ

q̄

2
, ℏk̄σ1

1 , ..., ℏk̄
σn
n

)〉〉
.

(6.82)

The leading order contribution in the classically relevant region is

P λ
n =

1

n!

∑
σ1,...,σn=±

〈〈
ℏ4+2n

∫
λ̄

n∏
i=1

dΦ(k̄i)

∫
d4q̄

(2π)4
δ (2pA · q̄) δ (2pB · q̄)Θ

(
p0A
)
Θ
(
p0B
)

×
∫
d4w̄1d

4w̄2e
−ib·q̄δ(4)

(
w̄1 + w̄2 +

n∑
i=1

k̄i

)
δ (2pA · w̄1) δ (2pB · w̄2)

×An+4

(
pA − ℏ

q̄

2
, pB + ℏ

q̄

2
→ pA + ℏw̄1 − ℏ

q̄

2
, pB + ℏw̄2 + ℏ

q̄

2
, ℏk̄σ1

1 , ..., ℏk̄
σn
n

)
×A∗

n+4

(
pA + ℏ

q̄

2
, pB − ℏ

q̄

2
→ pA + ℏw̄1 − ℏ

q̄

2
, pB + ℏw̄2 + ℏ

q̄

2
, ℏk̄σ1

1 , ..., ℏk̄
σn
n

)〉〉
.

(6.83)
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It is the scaling of the energy of the emitted radiation that determines if the amplitude
contribution is classical or quantum, and in the following we take this as a guiding
principle. The expectation value of the energy operator is given by the same unitarity
cuts appearing in the mean of the graviton particle distribution, but weighted in
the phase space integration by an energy factor Ej := ℏωj for each of the emitted
gravitons. The scaling in the classical limit has to be such that the total energy carried
by the emitted gravitons, i.e. by the classical gravitational wave,

Ecl =
∞∑
n=1

1

n!

∑
σ1,...,σn=±

〈〈
ℏ5+2n

∫ n∏
i=1

dΦ(k̄i)

∫
d4q̄

(2π)4
δ (2pA · q̄) δ (2pB · q̄)

×
∫
d4w̄1d

4w̄2e
−ib·q̄δ(4)

(
w̄1 + w̄2 +

n∑
i=1

k̄i

)
δ (2pA · w̄1) δ (2pB · w̄2)

 n∑
j=1

ωj


×An+4

(
pA − ℏ

q̄

2
, pB + ℏ

q̄

2
→ pA + ℏw̄1 − ℏ

q̄

2
, pB + ℏw̄2 + ℏ

q̄

2
, ℏk̄σ1

1 , ..., ℏk̄
σn
n

)
×A∗

n+4

(
pA + ℏ

q̄

2
, pB − ℏ

q̄

2
→ pA + ℏw̄1 − ℏ

q̄

2
, pB + ℏw̄2 + ℏ

q̄

2
, ℏk̄σ1

1 , ..., ℏk̄
σn
n

)〉〉
,

(6.84)

is finite in the classical limit. While each separate probability of the emission of n
gravitons in eq. (6.83) is infrared divergent when λ→ 0, in this paper we are interested
only in the deviation from a Poissonian distribution in the ℏ → 0 limit,

lim
ℏ→0

ℏ∆out = lim
ℏ→0

ℏ (Σλ
out − µλout). (6.85)

As we have shown in section 5.4, this is an infrared-safe quantity. A naive power
counting in ℏ from Feynman diagrams for the five-point and six-point tree gives a
series expansion starting with the following types of terms,

A(0)
5

(
pA − ℏ

q̄

2
, pB + ℏ

q̄

2
, pA + ℏw̄1 − ℏ

q̄

2
, pB + ℏw̄2 + ℏ

q̄

2
, ℏk̄σ1

1

)
=
C

A(0)
5

1

ℏ
9
2

+
C

A(0)
5

2

ℏ
7
2

+O
(

1

ℏ
7
2

)
,

A(0)
6

(
pA − ℏ

q̄

2
, pB + ℏ

q̄

2
, pA + ℏw̄1 − ℏ

q̄

2
, pB + ℏw̄2 + ℏ

q̄

2
, ℏk̄σ1

1 , ℏk̄
σ2
2

)
=
C

A(0)
6

1

ℏ6
+
C

A(0)
6

2

ℏ5
+
C

A(0)
6

3

ℏ4
+O

(
1

ℏ4

)
,

(6.86)

but as we have seen in the preceding subsections, it turns out that some of the lower-
order terms are zero,

C
A(0)

5
1 = 0, C

A(0)
5

2 ̸= 0,

C
A(0)

6
1 = C

A(0)
6

2 = 0, C
A(0)

6
3 ̸= 0. (6.87)

The cancellation of the leading term in the ℏ expansion was shown already in [95] for
A(0)

5 , but the new result here is the double cancellation of two leading terms in the ℏ
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expansion for A6.9 This has physical consequences, as we have seen: we find that

lim
ℏ→0

ℏP (0,0)
1 ∼ ℏ0, lim

ℏ→0
ℏP (0,0)

2 = 0, (6.88)

where for simplicity we have kept the powers of ℏ coming from the coupling in eq. (6.56)
implicit inside the probabilities.10 This will be assumed for all the rest of our argu-
ments in this section.

Therefore, while the 5-point tree-level amplitude gives a classical contribution
to classical radiative observables, the 6-point tree-level amplitude gives a “quantum”
contribution

lim
ℏ→0

ℏ∆out

∣∣∣
O(G4)

= 0, (6.89)

which proves that we can describe the final semiclassical radiation state as a coherent
state at least up to order O(G4) for classical radiative observables.

6.3.4 Classical relations for unitarity cuts from all-order coherence

Assuming coherence to all orders in perturbation theory implies a set of (integral)
relations between loop and tree amplitudes with emission of gravitons.

For example, we expect that unitarity cuts involving tree-level amplitudes with two
or more gravitons emitted, and their conjugates, would give vanishing contributions
in the classical limit. The reason is that having a coherent state as an exact final
semiclassical state for the radiation would imply that all the gravitons emitted are
uncorrelated. Indeed, our conjectural classical scaling for tree-level amplitudes in
eq. (6.81),

A(0)
n+4(ϕAϕB → ϕAϕBh1h2.....hn) ∼ ℏ−3−n

2 , (6.90)

would imply that

lim
ℏ→0

ℏP (0,0)
n = 0 for n ≥ 2. (6.91)

This follows directly from our main result in eq. (5.104). While the expansion of
Γ
(n),λ
out starts at order G2+n, the lowest order contribution to (µλout)

n is of order G2n+n:
clearly then for n ≥ 2 the eq. (6.91) must hold, as a simple consequence of coherence.

In order to make definite statements about the probabilities at higher orders, we
need to combine them at a given loop order, so let us define

P (L)
n :=

L∑
j=0

P (j,L−j)
n . (6.92)

9A similar result has been obtained in scalar QED in [6].
10Alternatively, we should have written

lim
ℏ→0

ℏ
(
G3

ℏ3

)
P

(0,0)
1 ∼ ℏ0, lim

ℏ→0
ℏ
(
G4

ℏ4

)
P

(0,0)
2 = 0.

We have decided to avoid this cumbersome notation here.
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Once we feed eq. (6.92) and eq. (6.91) into the constraints given by considering the
factorial moments

lim
ℏ→0

ℏ∆(j)
out = 0 for j ≥ 2, (6.93)

we can conclude that

lim
ℏ→0

ℏP (L)
n = lim

ℏ→0
ℏ

 L∑
j=0

P (j,L−j)
n

 = 0, for n ≥ L+ 2. (6.94)

This is the loop-level generalization of eq. (6.91), which is essentially saying that
coherence implies that classically we can only have, at a given loop order L1 + L2,
contributions from product of amplitudes with n < L1 + L2 + 2 external gravitons.

We would like to make further progress in understanding exactly which amplitudes
are relevant in the classical limit, and in particular this requires to go beyond eq. (6.91)
and eq. (6.94). If we consider the expansion of ∆(m)

out with m = 2, 3, 4 that we found
in eq. (5.96), eq. (5.105) and eq. (5.106),

∆
(2)
out = 2G4P

(0,0)
2 + 6G5P

(0,0)
3 + 12G6P

(0,0)
4 + 20G7P

(0,0)
5

+G5(2P
(1,0)
2 + 2P

(0,1)
2 ) +G6(2P

(2,0)
2 + 2P

(0,2)
2 + 6P

(1,0)
3 + 6P

(0,1)
3 )

+G7(2P
(3,0)
2 + 2P
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2 + 6P

(2,0)
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(0,2)
3 + 6P

(1,1)
3 + 12P

(1,0)
4 + 12P

(0,1)
4 − 4P

(0,0)
1 P

(0,0)
2 )

+
[
G6(2P

(1,1)
2 − (P

(0,0)
1 )2) +G7(2P

(1,2)
2 + 2P

(2,1)
2 − 2P

(0,1)
1 P

(0,0)
1 − 2P

(1,0)
1 P

(0,0)
1 )

]
,

∆
(3)
out = 6G5P

(0,0)
3 + 24G6P

(0,0)
4 + 60G7P

(0,0)
5

+G6(6P
(1,0)
3 + 6P

(0,1)
3 ) +G7(6P

(0,2)
3 + 6P

(2,0)
3 + 6P

(1,1)
3 + 24P

(1,0)
4 + 24P
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∆
(4)
out = 24G6P

(0,0)
4 + 120G7P

(0,0)
5

+G7(24P
(1,0)
4 + 24P

(0,1)
4 ) , (6.95)

we get, after imposing all the constraints in eq. (6.91) and eq. (6.94) in the expansion
in the coupling,

lim
ℏ→0

ℏ∆(2)
out = lim

ℏ→0
ℏ
(
G6(2P

(2,0)
2 + 2P

(0,2)
2 )
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ℏ→0
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2 + 6P
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3
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(1,1)
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1 )2) +G7(2P
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2 + 2P

(2,1)
2 − 2P

(0,1)
1 P

(0,0)
1 − 2P

(1,0)
1 P

(0,0)
1 )

]
,

lim
ℏ→0

ℏ∆(3)
out = lim

ℏ→0
ℏ
(
G7(6P

(0,2)
3 + 6P

(2,0)
3 + 6P

(1,1)
3 )

)
,

lim
ℏ→0

ℏ∆(4)
out = 0. (6.96)

Assuming coherence, we can now impose

lim
ℏ→0

ℏ∆(3)
out = lim

ℏ→0
ℏ
(
G7(6P

(0,2)
3 + 6P

(2,0)
3 + 6P

(1,1)
3 )

)
= 0, (6.97)
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which implies for ∆
(2)
out

lim
ℏ→0

ℏ∆(2)
out = lim

ℏ→0
ℏ
(
G6(2P

(2,0)
2 + 2P

(0,2)
2 ) +G7(2P

(3,0)
2 + 2P

(0,3)
2 )

)
+ lim

ℏ→0
ℏ
[
G6(2P

(1,1)
2 − (P

(0,0)
1 )2) +G7(2P

(1,2)
2 + 2P

(2,1)
2 − 2P

(0,1)
1 P

(0,0)
1 − 2P

(1,0)
1 P

(0,0)
1 )

]
.

(6.98)

We see now that the contributions in the first line manifestly involve the six-point tree
amplitude and six-point loop amplitudes. We expect, based also on the uncertainty
principle [6], that these contributions must be irrelevant in the classical limit because
the six-point tree amplitude does not contribute to the classical field. But we cannot
prove this directly from the coherence property, so we therefore assume that this is
the case. Generalizing this idea to higher point amplitudes„ we conjecture that

lim
ℏ→0

ℏ(P (L,0)
n + P (0,L)

n ) for n ≥ 2. (6.99)

which is equivalent to saying that the leading classical term in the expansion of the
L-loop (4 + n)-point amplitudes will not conspire with the quantum ℏ scaling of the
(4+ n)-point tree amplitude to give a classical contribution. It would be nice to have
a direct check of eq. (6.99) and its higher order generalizations. A first consequence
of eq. (6.97) and eq. (6.99) is

lim
ℏ→0

ℏP (1,1)
3 = 0, (6.100)

which is equivalent to the statement that the seven-point one-loop amplitude is clas-
sically suppressed. More generally, from the equations eq. (6.98) and eq. (6.99) a very
interesting set of relations follow directly,

ℏP (1,1)
2

ℏ→0
=

1

2
ℏ(P (0,0)

1 )2

ℏ(P (1,2)
2 + P

(2,1)
2 )

ℏ→0
= ℏ(P (0,1)

1 P
(0,0)
1 + P

(1,0)
1 P

(0,0)
1 ). (6.101)

Those relations have the common feature that they relate particular combinations of
unitarity cuts involving more than one graviton emitted at higher loops to other uni-
tarity cuts involving the 5-point amplitude at a lower loop level. We have represented
the simplest of these relations, involving the one-loop amplitude with two gravitons
emitted and the tree-level amplitude A(0)

5 (1A,2B,3A,4B, 5σ1) in Fig. 6.9.

Figure 6.9: If the final graviton particle distribution is Poissonian,
this implies non-trivial classical relations between cut contributions of
classical amplitudes with more than one graviton emitted to the cuts

of the 5-point amplitude A5(1
A,2B ,3A,4B , 5σ1).
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The outcome of this section is that we have strong evidence that the fundamental
data to describe the final semiclassical state are encoded in the 5-point amplitude
at all orders in the coupling constant, providing that eq. (6.99) and its higher order
generalizations hold. All the higher-multiplicity amplitudes are either suppressed in
the classical regime, or related to the 5-point amplitude by a classical relation. This
suggests, purely from the S-matrix perspective, that we can describe the radiation
in the two-body problem entirely with a coherent state where the 5-point amplitude
A5(ϕAϕB → ϕAϕBh1) plays an essential role, as suggested in [6].
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Chapter 7

Eikonal with radiation and spin

We would like to understand the exact structure of the final semiclassical state, in-
cluding classical radiation. Many recent insights, coming both from a pure worldline
description [124, 275, 276, 282] and from a different parametrization of the kinematics
in the classical limit [122, 138, 139, 335], suggest that we should expect an (eikonal)
exponentiation at all orders in the impact parameter space. This is clear from the path
integral point of view, since the saddle-point estimate gives an exponential with the
classical action evaluated on the classical trajectory, up to possible boundary terms.
The situation is less clear when we allow particle production. We got some insights on
the problem in chapter 5, where we showed that it is natural to describe the outgoing
classical radiation with a single coherent state. Motivated by that, in this chapter
we provide a new evidence in favor of a representation of the classical S-matrix for
the two-body problem in terms of an eikonal phase and a coherent state of gravitons.
Finally, we show how to extend the eikonal description to classically spinning particles.

7.1 Generalising the eikonal

We have now seen that the uncertainty, or the variance, in the measurement of a
scattering observable can be computed in terms of amplitudes and, moreover, that
the classical absence of uncertainty leads to an infinite set of relationships among
fragments of amplitudes expanded in powers of momentum transfer, which is a Laurent
series in ℏ. In a purely conservative limit, these relationships can be understood in
terms of eikonal exponentiation. Our goal now is to review the eikonal formula,
emphasising its connection to final state dynamics. We will then build on this eikonal
state to incorporate radiative dynamics as a kind of coherent state so that the variance
is naturally small.

7.1.1 Eikonal final state

Eikonal methods have long been used to extract classical physics from quantum me-
chanics. Recent years have seen a renewed surge of interest in this approach, especially
in the context of gravitational scattering [110, 113, 115, 116, 118, 119, 124, 132, 136,
138, 139, 180, 263, 282, 301, 336–344], though this has roots in earlier work [345–347].
Originally born out of the study of high energy/Regge scattering [348–355] where the
Feynman diagrammatics dramatically simplify, eikonal physics now have much wider
application. The simplification in this regime allows diagrams, expressed in impact
parameter space rather than momentum space, to be summed exactly to an exponen-
tial form. This exponential depends on the 2 → 2 scattering amplitude, and contains
information about classical quantities such as the deflection angle. There are rich con-
nections to soft/IR physics and Wilson lines [275–277, 280, 281, 356] which lead to a
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formal proof of the exponentiation quite generally [275]. Nowadays the exponentiation
is taken as a starting point and applied to various scattering regimes.

In this section our goal is to explain the link between eikonal methods and the
KMOC approach. Firstly it is worth noting that the small ℏ expansion in the KMOC
formalism is essentially the same as the soft expansion in the eikonal literature; the
ℏ scaling counts the order of softness. The key connection is to compute the final
state using the methods of KMOC instead of computing observables directly. We
will see that this final, outgoing, state is controlled by the usual eikonal function.
In this section we restrict to a purely conservative scattering scenario: then eikonal
exponentiation is exact. We take two incoming particles and (since the scattering is
conservative) assume that the outgoing state is also an element of the two-particle
Hilbert space.

We begin with the standard definition of the eikonal as the transverse Fourier
transform of the four-point amplitude

eiχ(x; s)/ℏ(1 + i∆(x; s))− 1 = i

∫
d̂4q δ(2p1 · q)δ(2p2 · q)e−iq·x/ℏA4(s, q

2) , (7.1)

where χ(x; s) is the eikonal function and ∆(x; s) is the so-called quantum remain-
der which takes into account contributions that do not exponentiate (see for exam-
ple [116]). This remainder is important for computing the eikonal function — but
it will play no role in this thesis, so we will omit it. Meanwhile the two Dirac delta
functions appearing in eq. (7.1) ensure that we integrate only over the components of
q transverse to the momenta. This is often just written instead as d̂D−2q⊥ (times a
Jacobian factor). Indeed, the parameter x should be thought of as an element of the
D − 2 dimensional spatial slice perpendicular to p1 and p2: this is most evident on
the right-hand-side of the eq. (7.1), where the Dirac delta functions project away any
components of q in the (timelike) p1 and p2 directions. Consequently no components
of x in the space spanned by p1 and p2 enter the dot product q · x.

The eikonal can be written as an expansion in powers of the generic coupling g

χ(x; s) =
∞∑
n=0

χn(x; s) , χn(x; s) ∼ g2n , (7.2)

and we will, as others have (see for example [110, 116, 138, 139, 340, 357]), assume
that this holds to all orders. The structure has been formally proven at leading order,
(see for example [275, 301]), however an all orders proof has not been given (to the
best of our knowledge).

Starting with the in state in eq. (2.9) from chapter 2, we obtain the final state by
acting with the S matrix. Writing S = 1 + iT and inserting a complete set of states,
we have

S|ψin⟩ =|ψin⟩+ i

∫
dΦ(p′1, p

′
2, p1, p2)ψb(p1, p2)|p′1p′2⟩⟨p′1p′2|T |p1p2⟩

=|ψin⟩+ i

∫
dΦ(p′1, p

′
2, p1, p2)ψb(p1, p2)A4(s, q

2)δ(4)(p1+p2−p′1−p′2)|p′1p′2⟩ .
(7.3)

Notice that we made explicit use of our assumption of conservative scattering by
restricting the complete set of states to the two-particle Hilbert space.
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p′1 p′2

p1 = p′1 − q p2 = p′2 + q

Figure 7.1: Momentum labelling at four points

With the momentum labelling in Fig. 7.1 we can convert the p1 and p2 phase space
integrals to integrals over q. Doing so, we may write

S|ψin⟩ = |ψin⟩

+ i

∫
dΦ(p′1, p

′
2) d̂

4q δ(2p′1 ·q−q2)δ(2p′2 ·q+q2)ψb(p
′
1−q, p′2+q)A4(s, q

2)|p′1p′2⟩.
(7.4)

At this point, the q integral is tantalising similar to the q integral in the eikonal formula
in eq. (7.1). However there is a key difference in the nature of the delta functions:
those in eq. (7.4) involve q2 terms which are absent in eq. (7.1). This issue appeared
recently in refs. [122, 335]: there the authors proceeded using a “HEFT” phase, which
is analogous to yet distinct from the eikonal phase. We will instead continue with the
eikonal phase.

It may be worth remarking that the q2 terms in these delta functions are suppressed
in specific examples. One such example is the leading order impulse [166]. Nevertheless
the impulse at NLO does indeed involve the full delta functions [166].

To incorporate the full delta functions, we follow the route described in [139]. We
introduce new momentum variables p̃ as

p̃1 = p′1 −
q

2
p̃2 = p′2 +

q

2
. (7.5)

Now, rather than using the eikonal eq. (7.1) directly we can take advantage of its
inverse Fourier transform in the following form1

iδ(2p̃1 · q)δ(2p̃2 · q)A4(s, q
2) =

1

ℏ4

∫
d4x eiq·x/ℏ

{
eiχ(x⊥; s)/ℏ − 1

}
, (7.6)

where we have written x⊥ as one of the arguments of the eikonal function χ(x⊥; s) to
emphasise that χ(x⊥; s) only depends on components of x which are orthogonal to the
space spanned by p̃1 and p̃2. Indeed, integrating over the two components of x which
are in the space spanned by p̃1 and p̃2, one recovers the two Dirac delta functions on
the left-hand-side of eq. (7.6). In this way, we find that the final state is

S|ψin⟩ =
∫

dΦ(p′1, p
′
2) |p′1p′2⟩

1

ℏ4

∫
d4q d4x eiq·x/ℏ eiχ(x⊥; s)/ℏ ψb(p

′
1 − q, p′2 + q) . (7.7)

It is worth emphasising once again that x⊥ is perpendicular to p̃i, rather than to pi,
so that

p̃1 · x⊥ = 0 = p̃2 · x⊥. (7.8)

1As noted above, we dropped the quantum remainder ∆ which plays no role in our analysis.
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In particular, x⊥ depends on q.

7.1.2 The impulse from the eikonal

In this subsection, we will recover one beautiful result from the literature on the
eikonal function: the scattering angle can be extracted from the eikonal function
using a stationary phase argument. As our interest is not so much in this conservative
case but rather in its radiative generalisation (which we discuss below), we wish to
emphasise that it is, in fact, possible to extract the full final momentum from the
eikonal using stationary phase. Later, in section 7.1.4, we will use the same ideas
to extract the final momentum in the case of radiation — with radiation, of course,
knowledge of the direction of the final momentum is insufficient to recover the full
momentum.

The impulse is the observable

∆pµ1 ≡ ⟨ψin|S†Pµ
1S|ψin⟩ − ⟨ψin|Pµ

1 |ψin⟩
= ⟨ψin|S†[Pµ

1 , S]|ψin⟩ .
(7.9)

It is convenient to focus on
[Pµ

1 , S]|ψin⟩ . (7.10)

As we shall see, in essence the operator [Pµ
1 , S] pulls out a factor of the momentum

transfer multiplying S|ψin⟩. We will evaluate [Pµ
1 , S]|ψin⟩ by stationary phase; it is

then trivial to determine ⟨ψin|S† in the same way.
We begin our expression for the final-state wavepacket, eq. (7.7), quickly finding

[Pµ
1 , S]|ψin⟩ =

∫
dΦ(p′1, p

′
2) e

ib·p′1/ℏ |p′1p′2⟩
1

ℏ4

∫
d4q d4x eiq·x/ℏe−ib·q/ℏ

× eiχ(x⊥; s)/ℏ ψ(p′1 − q, p′2 + q) qµ .

(7.11)

To obtain formulae for the impulse, we apply the stationary phase approximation
to the x and q integrals. (Our approach is very similar to that of Ciafaloni and
Colferai [358] who previously discussed wavepacket dynamics, the eikonal, and sta-
tionary phase.)

The stationary phase condition for x is2

qµ = − ∂

∂xµ
χ(x⊥, s) . (7.12)

One thing to note immediately is that this qµ is not of order ℏ: it is a classical
momentum, of order g2. Further, it is useful to note that χ is actually a function of
x2⊥ (since the four-point function is a function of s and q2.) Therefore we may write
the momentum transfer as

qµ = −2χ′(x2⊥, s)x
µ
⊥ , (7.13)

where χ′(x2⊥, s) is the derivative of χ with respect to its first argument. Since p̃1 ·x⊥ =
0 = p̃2 · x⊥, it now follows that p̃1 · q = 0 = p̃2 · q: thus the on-shell delta functions in

2One can find this expression also by promoting the eikonal phase to an operator χ̂(x⊥, s): the
impulse on particle i in the transverse plane Q̂µ

⊥i is then be related to the standard commutator
[Q̂µ

⊥i, e
iχ̂(x̂⊥; s)/ℏ] = eiχ̂(x̂⊥; s)/ℏ∂µ

⊥iχ̂(x̂⊥, s) and the result follows from unitarity.
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eq. (7.6) have reappeared, now as “equations of motion” following from the stationary
phase conditions3.

The second stationary phase condition, associated with q, is

xµ − bµ +
∂

∂qµ
χ(x2⊥, s) = 0 . (7.14)

The q derivative is non-vanishing because x⊥ depends on q. It is often useful to intro-
duce a particular notation for the variables q and x when they satisfy the stationary
phase conditions: we will denote these by q∗ and x∗. Armed with this notation, we
may use eq. (7.12) we may write eq. (7.14) as

xµ = bµ + q∗ν
∂

∂qµ
xν⊥ . (7.15)

Performing the derivative is straightforward, but requires some notation which we
relegate to appendix E. The result may be expressed in the form

xµ∗⊥ = bµ − Ñq(p
µ
1 − pµ2 )− Ñ0q(p

µ
1 + pµ2 ) , (7.16)

where Ñq and Ñ0q can be interpreted as Lagrange multipliers ensuring that x⊥ · p̃1 =
0 = x⊥ · p̃2.

Our result for x∗⊥ takes a familiar form in the CM frame. Then x0∗⊥ = 0 and,
using, p2 = −p1, we have

x∗⊥ = b− 2Nqp

⇒ b · x∗⊥ = b2 .
(7.17)

Denoting the scattering angle by Ψ, we may write this result4 as

|b| = |x∗⊥| cos(Ψ/2) , (7.18)

where Ψ is the scattering angle.

p1

b

p′
1

Ψ/2
Ψ/2

q∗

∝eq

x⊥

Figure 7.2: Geometry of eikonal scattering.

In this way, we have performed the integrals over q and x. The result has been
to evaluate the factor qµ as a derivative of the eikonal function. To obtain the full
expectation, we simply evaluate ⟨ψin|S† using stationary phase in precisely the same
way: the only difference (apart from the obvious Hermitian conjugation) is the absence

3Since some of the x integrations may be performed exactly to yield delta functions, we are slightly
abusing terminology by referring to all of the conditions on x and q as “stationary phase conditions”.
Some of the conditions arise approximately by stationary phase, and some are exact conditions due
to the delta functions. Nevertheless it is most convenient to treat all the conditions as one set.

4In this context, the quantity x⊥ is sometimes referred to as the “eikonal” impact parameter.
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of the qµ factor. We then exploit unitarity to conclude that5

∆pµ1 = qµ = −∂µχ(x⊥, s) , (7.19)

where all quantities are defined on using the solution of the stationary phase condi-
tions.

Notice that we have determined the complete impulse four-vector, not just the
scattering angle. The distinction between these quantities is obviously unimportant
at the level of conservative dynamics, but it is important when radiation occurs. The
key aspect of our argument which leads to the full impulse rather than the scattering
angle is the presence of a perpendicular projector. To see how this works, let us
discuss an explicit example: the impulse at next-to-leading order in gravitational fast
scattering.

Focusing on the scattering between two massive bodies in general relativity, the
eikonal phase at next-to-leading order in G is

χ = −2GmAmB

((
2γ2 − 1

)√
γ2 − 1

log |x⊥| −
3π

8

(
5γ2 − 1

)√
γ2 − 1

G (mA +mB)

|x⊥|

)
, (7.20)

where we have defined γ = vA · vB as the scalar product between the four-velocities
of the particles. Using eq. (7.19) and straightforward differentiation, we obtain the
following expression in terms of xµ⊥,

∆pµ1 =
2GmAmBx

µ
⊥∣∣x2⊥∣∣
((

2γ2 − 1
)√

γ2 − 1
+

3π

8

(
5γ2 − 1

)√
γ2 − 1

G (mA +mB)

|x⊥|

)
, (7.21)

where the four-velocities in γ can now be identified with the incoming four-velocities
of the particles due to the integrals over the wavepackets that took place to arrive
at eq. (7.19). At this point, it is important to remember that xµ⊥ is not quite bµ.
It is trivial to show that xµ⊥ coincides with bµ at leading order in the gravitational
coupling, but this is no longer the case at next-to-leading order; then instead

xµ⊥ = bµ − G(2γ2 − 1)

(γ2 − 1)3/2
(
vµA(mB + γmA)− vµB(mA + γmB)

)
, (7.22)

where
|x2⊥| = |b2| . (7.23)

We can now express the impulse in terms of the impact parameter bµ. At the order
we are interested in we find,

∆pµ1 =
2GmAmBb

µ

|b2|

((
2γ2 − 1

)√
γ2 − 1

+
3π

8

(
5γ2 − 1

)√
γ2 − 1

G (mA +mB)

|b|

)

−
G2mAmB

(
2γ2 − 1

)2 (
(γmA +mB) v

µ
A − (γmB +mA) v

µ
B

)
(γ2 − 1)2 |b2|

,

(7.24)

in perfect agreement with the literature [136].
From the perspective of this work, the key achievement of the eikonal resumma-

tion is that negligible variance becomes automatic in the stationary phase argument.
5We discuss the details of unitarity more explicitly in appendix F, performing all the remaining

integrals.
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Indeed since the stationary phase condition in eq. (7.12) sets the momentum transfer
to a specific, classical, value it is clear that the expectation value of any polynomial
in the momentum operator will evaluate to the classical expectation.

7.1.3 Extension with coherent radiation

The exponentiated eikonal final state of eq. (7.7) beautifully describes semiclassical
conservative dynamics, leading to a transparent method for extracting the impulse
(or scattering angle) from amplitudes in a manner which automatically enforces min-
imal uncertainty. We have also seen that coherent states naturally enforce minimal
uncertainty for radiation. Now let us put these two ideas together to form a proposal
for an eikonal-type final state in the fully dynamical, radiative, case.

It is very natural to consider a modification of the eikonal formula which includes
radiation, and indeed this idea has received attention [263] in the literature. Given
that our motivation is to extend the eikonal while maintaining its minimal uncer-
tainty property, an obvious way to proceed is to include an additional factor in the
eikonal formula which has the structure of a coherent state like in eq. (5.50). If this
radiative part of the state has large occupation number, expectations of products of
field-strength operators will naturally factorise into products of expectations of the
operators.

We will simply propose one possibility for the structure of this final state, depend-
ing on a coherent waveshape parameter ασ (of helicity σ) in addition to an eikonal
function χ. We believe there is strong evidence in favour of the basic structure of our
proposal, and in particular in the idea that two objects χ and ασ suffice to define it;
however, it seems possible to implement the idea in somewhat different ways. We will
discuss the basic virtues of our proposal in the remainder of this section, leaving it to
future work to determine further details. Since we are primarily interested in classical
effects, we will continue to neglect the quantum remainder ∆ in this discussion6.

To describe our proposal, we begin with the eikonal final state in eq. (7.7). With an
eye towards a situation where momentum is lost to radiation, we need a description
in which the sum of the momenta of the two final particles differs from the initial
momenta. A first step, then, is to Fourier transform the wavepacket to position space:

S|ψin⟩|conservative =

∫
dΦ(p′1, p

′
2)

∫
d̂4q̄ d4x d4x1 d

4x2 ψ̃b(x1, x2) e
i(p′1·x1+p′2·x2)/ℏ

× ei[q·(x−x1+x2)+χ(x⊥;s)]/ℏ |p′1p′2⟩ .
(7.25)

Our proposal is now very straightforward: we simply incorporate a coherent state by
assuming that

S|ψin⟩ =
∫
dΦ(p′1, p

′
2)

∫
d̂4q̄ d4x d4x1 d

4x2 ψ̃b(x1, x2) e
i(p′1·x1+p′2·x2)/ℏ

× ei[q·(x−x1+x2)+χ(x⊥;s)]/ℏ exp

[ ∑
σ=±1

∫
dΦ(k)ασ(k, x1, x2)a

†
σ(k)

]
|p′1p′2⟩ .

(7.26)
This is a minimal proposal: more generally, one could imagine that the coherent
waveshape parameter ασ depends on other variables, for example x or q which appear
in the eikonal dynamics. We will nevertheless restrict throughout this work to our
minimal proposal. However, it is important that the state is not merely an outer

6Indeed radiative quantum effects will require ∆ to be upgraded to an operator.
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product of a conservative eikonal state with a radiative factor. Some entanglement
is necessary so that the radiation can backreact on the motion. In the case of the
present proposal, the integrals over the variables x1, x2 and x perform this role. We
have already presented a partial derivation of this proposal in section 5.1, showing
that the leading low-frequency classical radiation does indeed exponentiate as antici-
pated. There is a connection between our proposal here and recent work [343] on the
exponential structure of the S matrix.

Following the discussion in section 5.2, we know that the waveshape should be
proportional to ℏ−3/2 so we may also write the state as

S|ψin⟩ =
∫

dΦ(p′1, p
′
2)

∫
d̂4q̄ d4x d4x1 d

4x2 ψ̃b(x1, x2) e
i(p′1·x1+p′2·x2)/ℏ

× ei[q·(x−x1+x2)+χ(x⊥;s)]/ℏ exp

[
1

ℏ3/2
∑
σ=±1

∫
dΦ(k)ᾱσ(k, x1, x2)a

†
σ(k)

]
|p′1p′2⟩ .

(7.27)
In this expression, the classical waveshape ᾱσ is independent of ℏ, just as the eikonal
function χ is independent of ℏ.

In order to determine ασ, we follow the same steps as in section 7.1.1; we act
on the incoming state with the S matrix, and then expand in terms of integrals of
amplitudes. To isolate the waveshape, we consider the overlap of our proposed final
state with the bra ⟨p′1 p′2 kσ|:

⟨p′1 p′2 kσ|S|ψin⟩ =
∫

d̂4q̄ d4x d4x1 d
4x2 ψ̃b(x1, x2) e

i(p′1·x1+p′2·x2)/ℏ

× ei[q·(x−x1+x2)+χ(x⊥;s)]/ℏ ασ(k, x1, x2) .
(7.28)

Next we expand the S matrix as

⟨p′1 p′2 kσ|S|ψin⟩ =
∫

dΦ(p1, p2)ψb(p1, p2) ⟨p′1 p′2 kσ|S|p1p2⟩

=

∫
dΦ(p1, p2)

∫
d4x1 d

4x2 ψ̃b(x1, x2) e
i(p1·x1+p2·x2)/ℏ

× iA5(p1, p2 → p′1, p
′
2, k

σ) δ4(p1 + p2 − p′1 − p′2 − k) .
(7.29)

We note that the five-point amplitude appearing here could in principle include dis-
connected components beginning at order g. This order g disconnected term would
involve exactly zero-energy photons, and does not contribute to observables such as
the radiated momentum or the asymptotic Newman-Penrose scalar. We have already
briefly discussed this type of contributions in section 4.6, and for the purpose of this
section we will omit this term.

To continue, it is useful to perform a change of variable in the phase space mea-
sures, taking q1 ≡ p1 − p′1 and q2 ≡ p2 − p′2 as variables of integration. Neglecting
Heaviside theta functions (which will always be unity in the domain of validity of our
calculation) we find

⟨p′1 p′2 kσ|S|ψin⟩ =
∫

d4x1 d
4x2 ψ̃b(x1, x2) e

i(p′1·x1+p′2·x2)/ℏ

×
∫

d̂4q1 d̂
4q2 δ(2p

′
1 · q1 + q21)δ(2p

′
2 · q2 + q22) e

i(q1·x1+q2·x2)/ℏ

× iA5(p
′
1 + q1, p

′
2 + q2 → p′1, p

′
2, k

σ) δ4(q1 + q2 − k) .
(7.30)



142 Chapter 7. Eikonal with radiation and spin

Requiring eq. (7.28) and eq. (7.30) to be equal for any (appropriately classical) initial
wavepacket ψ̃b(x1, x2) we deduce that

ασ(k, x1, x2) = i

∫
d̂4q1 d̂

4q2 δ(2p
′
1 · q1 + q21)δ(2p

′
2 · q2 + q22)δ

4(q1 + q2 − k)ei(q̄1·x1+q̄2·x2)

×A5(p
′
1 + q1, p

′
2 + q2 → p′1, p

′
2, k

σ)

[∫
d̂4q d4x eiq·xeiq·(x2−x1)/ℏeiχ(x⊥;s)/ℏ

]−1

.

(7.31)
It is easy to use the eikonal eq. (7.1) to show that equivalently we may write the
waveshape as

ασ(k, x1, x2) = i

∫
d̂4q1 d̂

4q2 δ(2p
′
1 · q1 + q21)δ(2p

′
2 · q2 + q22)δ

4(q1 + q2 − k)ei(q̄1·x1+q̄2·x2)

×A5(p
′
1 + q1, p

′
2 + q2 → p′1, p

′
2, k

σ)

[
1 +

∫
d̂4q δ(2p̃1 · q)δ(2p̃2 · q) eiq·(x2−x1)/ℏiA4(s, q

2)

]−1

.

(7.32)
This last expression makes the physical meaning transparent: the waveshape is ob-
tained by removing iterated contributions of four-point amplitudes from the five-point
amplitude.

To see this in more detail, it is instructive to expand the ασ order-by-order in per-
turbation theory. We again consider a generic coupling g and expand the waveshape
as

ασ = ασ
0 + ασ

1 + · · · . (7.33)

The leading order term, ασ
0 , follows immediately from eq. (7.32):

ασ
0 (k, x1, x2) = i

∫
d̂4q1 d̂

4q2 δ(2p
′
1 · q1 + q21)δ(2p

′
2 · q2 + q22)δ

4(q1 + q2 − k)

× ei(q1·(x1+b)+q2·x2)/ℏA(0)
5 (p′1 + q1, p

′
2 + q2 → p′1, p

′
2, k

σ) .
(7.34)

It is determined by the tree-level five-point amplitude A(0)
5 , so it is of order g3 in

gauge theory and gravity. The fact that the leading-order classical radiation field
is intimately related to five-point amplitudes was already discussed in [4, 95, 166,
171]. The basic structure of this leading-order waveshape is strikingly reminiscent of
a coherent state which describes the static Coulomb/Schwarzschild background [106]
on analytic continuation from Minkowski signature to (2, 2) signature (+,+,−,−).

More precisely, ασ
0 is really determined by A(0)

5 . This follows by counting powers
of ℏ. Indeed extracting dominant powers of ℏ using

A(0)
5 (i→ f) = ℏ−7/2

(
A(0)

5 (i→ f) + ℏA(0)
5 (i→ f) + · · ·

)
,

A(1)
5 (i→ f) = ℏ−9/2

(
A(1)

5 (i→ f) + ℏA(1)
5 (i→ f) + · · ·

)
,

(7.35)

we find

ασ
0 (k, x1, x2) =

i

ℏ3/2

∫
d4q̄1 d

4q̄2 δ(2p
′
1 · q̄1)δ(2p′2 · q̄2)δ4(q̄1 + q̄2 − k̄)

× ei(q̄1·x1+q̄2·x2)A(0)
5 (p′1 + q1, p

′
2 + q2 → p′1, p

′
2, k

σ) .
(7.36)

Note that the factor ℏ−3/2 arises as expected on general grounds. The conclusion is
that the leading-in-ℏ part of the five-point tree amplitude determines the radiation.
The amplitude itself contains higher order terms in ℏ; rather than arising from the
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radiative factor in our proposal in eq. (7.27), these terms arise from a generalised
quantum remainder.

The next-to-leading order correction to the waveshape following from eq. (7.32) is

ασ
1 (k, x1, x2) = i

∫
d̂4q1 d̂

4q2 δ(2p
′
1 · q1 + q21)δ(2p

′
2 · q2 + q22)δ

4(q1 + q2 − k)

× ei(q1·x1+q2·x2)/ℏA(1)
5 (p′1 + q1, p

′
2 + q2 → p′1, p

′
2, k

σ)

− ασ
0 (k, x1, x2)

∫
d̂4q δ(2p̃1 · q)δ(2p̃2 · q) eiq·(x2−x1)/ℏiA(0)

4 (s, q2) .

(7.37)

This correction involves the five-point one-loop amplitude, after subtracting an itera-
tion term. To understand the role of the subtraction, it is instructive to extract the
leading-in-ℏ part of ασ

1 :

ασ
1 (k, x1, x2) =

i

ℏ5/2

∫
d4q̄1 d

4q̄2 δ(2p
′
1 · q̄1)δ(2p′2 · q̄2)δ4(q̄1 + q̄2 − k̄)

× ei(q̄1·x1+q̄2·x2)A(1)
5 (p′1 + q1, p

′
2 + q2 → p′1, p

′
2, k

σ)

− 1

ℏ5/2
ᾱσ
0 (k, x1, x2)

∫
d4q̄ δ(2p′1 · q̄)δ(2p′2 · q̄) eiq̄·(x2−x1)iA(0)

4,0(s, q
2)

+O(ℏ−3/2) .
(7.38)

At this stage it seems that there is an unwanted order ℏ−5/2 term in the NLO wave-
shape! Consistency with our proposal therefore demands∫
d4q̄1 d

4q̄2 δ(2p
′
1 · q̄1)δ(2p′2 · q̄2)δ4(q̄1 + q̄2 − k̄)ei(q̄1·x1+q̄2·x2)A(1)

5,0(p
′
1 + q1, p

′
2 + q2 → p′1, p

′
2, k

σ)

= −ᾱσ
0 (k, x1, x2)

∫
d4q̄ δ(2p′1 · q̄)δ(2p′2 · q̄) eiq̄·(x2−x1)A(0)

4,0(s, q
2) .

(7.39)
Since ᾱσ

0 is determined by A(0)
5,0, this requirement relates A(1)

5,0 to A(0)
5,0 and A(0)

4,0. The re-
quirement is nothing but a Fourier transform of the zero-variance relation in eq. (4.66)
which we encountered in section 4.2.4. So we see that the zero-variance relations retain
their importance in the context of this eikonal/coherent resummation: their validity
admits the possibility of exponentiation.

In the same vein, it is interesting to project our proposal onto a two-photon final
state:

⟨p′1p′2k
σ1
1 k

σ2
2 |S|ψin⟩ =

∫
d̂4q̄ d4x d4x1 d

4x2 ψ̃b(x1, x2) e
i(p′1·x1+p′2·x2)/ℏ

× ei[q·(x−x1+x2)+χ(x⊥;s)]/ℏ ασ1(k1, x1, x2)α
σ2(k2, x1, x2) .

(7.40)

Since the waveshape is at least of order g3, it follows that this overlap begins at
order g6. However by expanding the S matrix out directly, we encounter a six-point
amplitude. The conclusion is that our proposal does not populate the (order g4) tree-
level six-point amplitude. Of course this is as it should be: we saw that the six-point
tree is suppressed in the classical region. Similarly the seven-point tree and one-loop
amplitudes are suppressed, etc.

As a final remark, note that we did not introduce any normalisation factor in
our proposal. This may be surprising, but the origin of the difference is simply that
unitarity must already guarantee the normalisation of the final state. As is by now
well understood, at two loops the eikonal function χ ceases to be real in the radiative
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case. Instead the imaginary part of χ is related to
∑

σ=±1 |ασ|2; this supplies the
necessary normalisation.

7.1.4 Radiation reaction

Once there is radiation, there must also be radiation reaction: the particle’s motion
must change in the radiative case relative to the conservative case to account for the
loss of momentum to radiation. In this section we will see that the waveshape indeed
contributes to the impulse of a particle in the manner required.

We begin by acting on our conjectural final state, eq. (7.26), with the momentum
operator of the field corresponding to particle 1:

Pµ
1S|ψin⟩ =

∫
dΦ(p′1, p

′
2)

∫
d̂4q̄ d4x d4x1 d

4x2 ψ̃b(x1, x2) e
i(p′1·x1+p′2·x2)/ℏ

× ei[q·(x−x1+x2)+χ(x⊥;s)]/ℏ exp

[ ∑
σ=±1

∫
dΦ(k)ασ(k, x1, x2)a

†
σ(k)

]
p′µ1 |p′1p′2⟩ .

(7.41)
The operator simply inserts a factor p′µ1 . We proceed by rewriting this factor in terms
of a derivative −iℏ∂/∂x1µ acting on the exponential factor in the first line of eq. (7.41),
and then integrating by parts. Neglecting the boundary term, the result is

Pµ
1S|ψin⟩ =

∫
dΦ(p′1, p

′
2)

∫
d̂4q̄ d4x d4x1 d

4x2 e
i(p′1·x1+p′2·x2)/ℏei(q·x+χ(x⊥; s))/ℏ

× iℏ∂µ1

(
ψ̃b(x1, x2)e

iq·(x2−x1)/ℏ exp

[ ∑
σ=±1

∫
dΦ(k)ασ(k, x1, x2)a

†
σ(k)

])
|p′1p′2⟩ .

(7.42)
Expanding out the derivative, we encounter three terms. In the first, the derivative
acts on the spatial wavefunction: as usual in quantum mechanics, this term will
evaluate (in the expectation value of the final momentum) to the contribution of
the initial momentum. The second term arises when the derivative operator acts on
eiq·(x2−x1)/ℏ, which inserts a factor of qµ. This term is familiar from eq. (7.11) in
section 7.1.2, and contributes to the impulse as a (suitably projected) derivative of
the eikonal function. Only the final term is new: it involves the waveshape, and must
then be the origin of radiation reaction in our approach.

Since we have discussed the conservative impulse in detail in section 7.1.2, we focus
on the final (new) term here. In this term, the derivative brings down a factor of∑

σ=±1

∫
dΦ(k) ∂µ1α

σ(k, x1, x2)a
†
σ(k). (7.43)

Now to extract the momentum observable we multiply by ⟨ψin|S†. Since this will
introduce yet more integrals, it is helpful to define a modified KMOC style ‘classical
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average angle brackets’
〈〈
...

〉〉
, defined by

〈〈
...

〉〉
=

∫
dΦ(p′1, p

′
2)

∫
d̂4q̄ d4x d4Q̄d4y d4x1 d

4x2 d
4y1 d

4y2 ψ̃
∗
b (y1, y2)ψ̃b(x1, x2)

× ei(p
′
1·(x1−y1)+p′2·(x2−y2)/ℏei(q·(x2−x1)−Q·(y2−y1))/ℏei(q·x+χ(x⊥; s)−Q·y−χ∗(y⊥; s))/ℏ

× exp

[
−1

2

∑
σ=±1

∫
dΦ(k) |ασ(k, x1, x2)− (ασ)∗(k, y1, y2)|2

]
(...) .

(7.44)
The a†(k) will act on this left state will produce a delta function and α∗. After using
the delta function it gives just a factor α∗. Putting this together, and using the angle
brackets shorthand we get

⟨Pµ
1 ⟩reaction =

〈〈
i
∑
σ=±1

∫
dΦ(k)α(σ),∗(k, x1, x2)∂

µ
1α

σ(k, x1, x2)

〉〉
. (7.45)

Notice that the manipulations leading to eq. (7.45) were exact (under the assump-
tion of eq. (7.26)). However eq. (7.45) involves a number of integrals which would need
to be performed to arrive at a concrete expression for the impulse. In section 7.1.2,
we performed these integrals by stationary phase. In the present (radiative) case a
similar approach would be possible, but the stationary phase conditions are signifi-
cantly more complicated. For example, demanding the phase of the q integral to be
stationary leads to a condition involving the variables x2 and x1; further demanding
that the phases of these xi integrals should be stationary leads to an equation involv-
ing the integral of a quadratic function of the waveshape. In this way the stationary
phase conditions involve an intricate interplay of the eikonal and the waveshape. Of
course this is as it should be: the complexity of radiation reaction must be captured
by the final state.

As a simpler sanity check of our machinery, we evaluate the radiation reaction
contribution to the impulse at lowest non-trivial perturbative order. In [166] the
leading order radiation reaction term was written as

Iµrad = e6
〈〈∫

dΦ(k̄)
∏
i=1,2

d̂4q̄id̂
4q̄′i q̄

µ
1 Y(q̄1, q̄2, k̄)Y∗(q̄′1, q̄

′
2, k̄)

〉〉
, (7.46)

with

Y(q̄1, q̄2, k̄) = δ(p1 · q̄1)δ(p2 · q̄2)δ̂4(q̄1 + q̄2 − k)eib·q̄1A(0)
5,0(q̄1, k̄

σ). (7.47)

It is straightforward to verify that this is equivalent to the second term in eq. (7.45).
In fact, recalling the leading order waveshape formula in eq. (7.36), the match between
the two expressions of eq. (7.46) and eq. (7.45) is immediate, once our definition of
average over wave packets in eq. (7.44) is taken into account.

We note in passing that the expectation ⟨ψin|S†FµνS|ψin⟩ (or ⟨ψin|S†RµνρσS|ψin⟩)
can be determined in a similar way. The annihilation operators in the field strength
operator immediately bring down a single power of the waveshape. At leading non-
trivial order in g, it is then straightforward to see that the field strength is determined
by the five-point tree amplitude (specifically the leading fragment in ℏ) consistent with
reference [4]. Similarly, the momentum radiated into messengers can be computed as
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the expectation

⟨ψin|S†
∑
σ=±1

∫
dΦ(k) kµ a†σ(k)aσ(k)S|ψin⟩ . (7.48)

In this case, the creation and annihilation operators bring down the waveshape times
its conjugate. At leading perturbative order, the momentum radiated is the square of
the five-point tree, as observed in [166]. The result is also consistent with classical field
theory: in that context, radiation is described the the energy-momentum tensor, which
is quadratic in the field strength. Finally, we note that conservation of momentum
holds as discussed in [166].

7.2 Classical spin dynamics from the eikonal

So far, we have only discussed the classical dynamics of spinless charges in electrody-
namics or point masses in gravity. However, the application of scattering amplitudes
to classical systems involving colour and spin is also an important topic [82, 121, 128,
246, 247, 252, 295, 342, 359–364], motivated in large part by the dynamics of inspi-
raling black holes with angular momentum. In this section, we expand this discussion
to include minimum uncertainty spin states. For simplicity, however, we revert to the
purely conservative case throughout this section, leaving radiation of spin to future
work.

7.2.1 Final state including spin

In section 7.1, we derived a formula for the final state involving an eikonal operator
acting on the two-particle state. In general, states are labelled by an assortment of
quantum numbers which can also evolve during a scattering event, and so in this
section we will generalise the eikonal S-matrix operator to include Lie-algebra valued
quantum numbers, focussing on spin for clarity.

We begin with a generalisation of eq. (2.19) to include spin, resulting in a state of
the form

|ψin⟩ ≡
∫

dΦ(p1, p2)ψb(p1, p2)ξ
a1
1 ξ

a2
2 a

†(p1)a1a
†(p2)a2 |0⟩

≡
∫

dΦ(p1, p2)ψb(p1, p2)ξ
a1
1 ξ

a2
2 |p1, a1; p2, a2⟩

≡
∫

dΦ(p1, p2)ψb(p1, p2)|p1, ξ1; p2, ξ2⟩ ,

(7.49)

where a1 and a2 are the spins (and the indices are summed over). When spin is
included, the expectation value of the T matrix is given by

⟨p′1, a′1; p′2, a′2|T |p1, a1; p2, a2⟩ = A4(p1, p2 → p′1, p
′
2)

a′1a
′
2

a1a2δ
(4)(p1 + p2 − p′1 − p′2) .

(7.50)

Notice that the scattering amplitudes are now matrices in spin space. In view of this
matrix structure, we follow [114, 295, 365] and assume that eikonal exponentiation
takes a matrix form7

exp

(
iχ(x⊥, s)/ℏ

)a′1,a
′
2

a1,a2

= δ
a′1
a1δ

a′2
a2 + i

∫
d̂4q δ(2p1 · q)δ(2p2 · q) e−iq·x/ℏA4(s, q

2)
a′1,a

′
2

a1,a2 .

(7.51)

7We continue to ignore the quantum remainder in this discussion.
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Acting with the S-matrix on the initial state in eq. (7.49) and following steps
similar those in section 7.1.1, we find the out state to be

S|ψin⟩ = |ψin⟩+
∫
dΦ(p′1, p

′
2)d̂

4q ψb

(
p′1 − q, p′2 + q

)
|p′1, a′1; p′2, a′2⟩

× δ̂
(
2p′1 · q − q2

)
δ̂
(
2p′2 · q + q2

)
iA4(s, q

2)
a′1a

′
2

a1a2 ξ
a1
1 ξ

a2
2 ,

(7.52)

which clearly recovers the spinless case of eq. (7.4) if we take the spin group to be
trivial. Again following section 7.1.1, we invert the Fourier transform in eq. (7.51) to
find

iδ(2p̃1 · q)δ(2p̃2 · q)A4(s, q
2)

a′1a
′
2

a1,a2 =
1

ℏ4

∫
d4x eiq·x/ℏ

{
exp

(
iχ(x⊥, s)/ℏ

)a′1,a
′
2

a1,a2

− δ
a′1
a1δ

a′2
a2

}
.

(7.53)
As a result, we can express the final state in terms of the eikonal operator as

S|ψin⟩ =
1

ℏ4

∫
dΦ(p′1, p

′
2) |p′1, a′1; p′2, a′2⟩

∫
d4qd4xψb(p

′
1 − q, p′2 + q)eiq·x/ℏ

× exp

(
iχ(x⊥, s)/ℏ

)a′1,a
′
2

a1,a2

ξa11 ξ
a2
2 .

(7.54)

While we have constructed this with spin in mind, it is applicable to any operator
with quantum numbers ai, and so we will now consider the expectation value of a
generic Lie-algebra valued operator O. The change in an observable due to a scattering
event is defined as

∆O = ⟨Ψ|S†ÔS|Ψ⟩ − ⟨Ψ|Ô|Ψ⟩ = ⟨Ψ|S†[Ô, S]|Ψ⟩. (7.55)

For concreteness, we restrict ourselves to an important class of operators with sensible
classical limits, namely the momentum operator Pµ, the Pauli-Lubanski operator Wµ

defined as

Wµ ≡ 1

2
ϵµνρδPνSρδ , (7.56)

and (in the Yang-Mills case) the colour charge operator Ca. Such operators act on
one particle states, are linear in the momentum and obey momentum conservation,
meaning they can be written

⟨p, a|O|k, b⟩ = δΦ(p− k)Oa
b(p). (7.57)

Examining an operator that acts only on the spin space of particle one, we find

O1S|ψin⟩ =
1

ℏ4

∫
dΦ(p′1, p

′
2) |p′1, b1; p′2, a′2⟩

∫
d4q d4xψb(p

′
1 − q, p′2 + q)eiq·x/ℏ

×O1(p
′
1)

b1
a′1

exp

(
iχ(x⊥, s)/ℏ

)a′1,a
′
2

a1,a2

ξa11 ξ
a2
2 ,

(7.58)

where, in order to evaluate the operator, we have inserted a complete set of spin states

1 =
∑
b1,b2

∫
dΦ(k1, k2) |k1, b1; k2, b2⟩⟨k1, b1; k2, b2|. (7.59)
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Similarly, acting with SO1|ψin⟩ gives

SO1|ψin⟩ =
1

ℏ4

∫
dΦ(p′1, p

′
2) |p′1, b1; p′2, a′2⟩

∫
d4q d4xψb(p

′
1 − q, p′2 + q)eiq·x/ℏ

× exp

(
iχ(x⊥, s)/ℏ

)b1,a′2

a′1,a2

O1(p
′
1 − q)

a′1
a1 ξ

a1
1 ξ

a2
2 .

(7.60)
Notice that we encounter the operator O1(p

′
1−q) at a shifted value of the momentum.

Since the class of operators we consider is at most linear in the momentum, we proceed
by writing

O1(p
′
1 − q) = O1(p

′
1)−O1(q) . (7.61)

Notice that our notation O1(q) indicates that momentum factors in the operator are
evaluated at momentum q. Using this notation, we can eventually write

[O1(p
′
1), S]|ψin⟩ =

1

ℏ4

∫
dΦ(p′1, p

′
2) |p′1, b1; p′2, a′2⟩

∫
d4q d4xψb(p

′
1 − q, p′2 + q)eiq·x/ℏ

×

{[
O1(p

′
1), exp (iχ(x⊥, s)/ℏ)

]b1,a′2
a1,a2

+ exp

(
iχ(x⊥, s)/ℏ

)b1,a′2

a′1,a2

O1(q)
a′1
a1

}
ξa11 ξ

a2
2 .

(7.62)
Two matrix structures have appeared under the integral: one is a commutator, while
the second is a more simple matrix product. This structure is a generalisation of the
structure discussed in [360], where the second term was called the “direct” term in
contrast to the “commutator” term.

We will shortly perform the q and x integrals in eq. (7.62) using stationary phase.
In preparation for doing so, it is convenient to rewrite the equation such that the ma-
trix exp(iχ(x⊥, s)/ℏ) stands to the left of any other matrices. Then in the evaluation
of the overlap ⟨ψin|S†[O1(p

′
1), S]|ψ⟩, the matrix and (on the solution of the stationary

phase conditions) its inverse will simplify. We only have to move the eikonal operator
though the commutator term in eq. (7.62); we can do so using the Baker-Hausdorff
lemma in the form [366]

[O, eiχ/ℏ] = eiχ/ℏ
(
− i

ℏ
[O, χ] + 1

2ℏ2
[χ, [O, χ]] + · · ·+ −in

n!ℏn
[χ, [χ, [χ, ...[O, χ]]]...]

)
,

(7.63)
where the last term contains n nested commutators involving χ.

So far, we have not yet taken advantage of any simplifications available for large,
classical spins. Classical spin representations must be large, in the sense that the spin
quantum number S times ℏ is a classical angular momentum Sℏ. It can be useful to
think of this as the limit S → ∞, ℏ → 0 with Sℏ fixed. Large spin representations
have the property that

⟨SµνSρσ⟩ = ⟨Sµν⟩⟨Sρσ⟩+O(ℏ) , (7.64)

where Sµν is a spin Lorentz generator and ⟨Sµν⟩ is its expectation value on the spin
state, as shown in section 2.3. The key point here is that the small correction term is
of order Sℏ2 compared to the explicit term on the right-hand side, which is of order
S2ℏ2 (see appendix A of [270] for a recent review.) We would therefore like to take
advantage of this kind of simplification in the context of eq. (7.62).

In fact, we can easily take advantage of this simplification provided we first use the
Baker-Hausdorff lemma (7.63) to move the eikonal operator to the left. The reason
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is that this exposes the infinite series to the right-hand-side of eq. (7.63) which is a
series in inverse powers of ℏ. These inverse powers are compensated by powers in
commutators of operators; for example in the case of spin we have

[Wµ,Wν ] = −iℏϵµνρσWρPσ . (7.65)

Had we not simplified the matrix structure and first tried to replace operators by
expectation values we would make an error because the small correction in eq. (7.64),
which is intimately related to the commutator in eq. (7.65), would be omitted.

Having taken advantage of the Baker-Hausdorff lemma, then, we may replace all
operators by commutators. In doing so, we must retain the infinite set of non-vanishing
commutators. This is easily done: we simply introduce the Poisson bracket notation
defined by

{⟨Wµ⟩, ⟨Wν⟩} = −ϵµνρσ⟨Wρ⟩⟨Pσ⟩ . (7.66)

Notice that the Poisson brackets are directly inherited from the underlying algebraic
structure of the quantum field theory. We have scaled out appropriate factors of iℏ.

We therefore pass from eq. (7.62) to

[O1(p
′
1), S]|ψin⟩ =

1

ℏ4

∫
dΦ(p′1, p

′
2)

∫
d4q d4xψb(p

′
1 − q, p′2 + q) eiq·x/ℏ

×
({

O1(p
′
1), e

iχ(x⊥,s;⟨w⟩)/ℏ
}

B.H.
+O1(q)e

iχ(x⊥,s;⟨w⟩)/ℏ
)
|p′1, ξ1; p′2, ξ2⟩,

(7.67)
where all operators have been replaced with scalar functions, at the expense of intro-
ducing Poisson brackets. The notation is{

O1(p
′
1), e

iχ(x⊥,s;⟨w⟩)/ℏ
}

B.H.
≡ eiχ/ℏ

(
−{O, χ} − 1

2
{χ, {O, χ}}+ · · ·

)
. (7.68)

We emphasise that {·, ·}B.H. is not a Poisson bracket: it is simply convenient notation
for the commutator structure in eq. (7.63).

In this form, the eikonal has also become a scalar function χ(x⊥, s; ⟨w⟩) which
now depends on the expectation value of operators, eg Pauli-Lubanski ⟨w⟩ (and/or
in the Yang-Mills case, the colour). We can therefore perform the x and q integrals
by stationary phase, following precisely the methods of section 7.1.2. The stationary
phase conditions are

qµ = − ∂

∂xµ
χ(x⊥, s) . (7.69)

We now note that χ is now potentially a linear function of xµ⊥ and so qµ∗ need not
point only along xµ⊥, and will in general point along some other direction in the plane
perpendicular to p̃1 and p̃2. The final result for the out state is then

[O1(p
′
1), S]|ψin⟩ =

∫
dΦ(p′1, p

′
2)ψb(p

′
1 − q∗, p

′
2 + q∗)e

iq∗·(x∗)/ℏ

×
({

O1(p
′
1), e

iχ(x⊥∗,s)/ℏ
}

B.H.
+O1(q∗)e

iχ(x⊥∗,s)/ℏ
)
|p′1, ξ1; p′2, ξ2⟩.

(7.70)
We can evaluate ⟨ψin|S† on the stationary phase too, which results in

⟨ψin|S† =

∫
dΦ(p1, p2)ψ

†
b(p1 − q∗, p2 + q∗)e

−iq∗·(x∗)/ℏe−iχ†(x⊥∗,s)⟨p1, ξ1; p2, ξ2|,

(7.71)
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such that

∆O1 = ⟨ψin|S†[O1, S]|ψin⟩

=

∫
dΦ(p1, p2)|ψ(p1 − q∗, p2 + q∗)|2

(
e−iχ†(x⊥∗,s)/ℏ

{
O1(p1), e

iχ(x⊥∗,s)/ℏ
}

B.H.
+O1(q∗)

)
=

〈〈
e−iχ†(x⊥∗,s)/ℏ

{
O1(p1), e

iχ(x⊥∗,s)/ℏ
}

B.H.
+O1(q∗)

〉〉
.

(7.72)
The Baker-Hausdorff lemma in the form of eq. (7.68) immediately tells us how to
expand the Poisson bracket, leading to a neat expression for the change in O1

∆O1 = O1(q∗)− {O1(p1), χ} −
1

2
{χ, {O1(p1), χ}}+

1

6
{χ, {χ, {O1(p1), χ}}}+ · · · .

(7.73)
where we recall that χ depends on xµ⊥∗ along with spin, colour etc, and we have
dropped the brackets since we are in the fully classical regime. It is useful to note
that for operators without momentum dependence, the term involving q∗ vanishes,
since it was induced by a shift in momentum and the linearity of the operator.

To check this, we can consider the momentum operator of particle one, which acts
trivially in spin-space meaning we can choose

O1 = Pµ
1 , → O1

a
b(p) = pµ1δ

a
b. (7.74)

Since the identity commutes with everything in spin-space, only the O(q∗) term con-
tributes, giving

∆pµ1 =

〈〈
qµ∗

〉〉
= −

〈〈
∂µχ(x⊥, s)

〉〉
, (7.75)

which matches the expression given in eq. (7.19). Note, however, that in general the
xµ⊥ dependence of χ will be different in the spinning case, which will lead to additional
spin contributions to the impulse.

7.2.2 Classical spin from the Eikonal

The angular impulse for particle one is given by

∆sµ1 =
1

mA
⟨Ψ|S†[Wµ

1 , S]|Ψ⟩ (7.76)

=

〈〈
e−iχ†(x⊥∗,si)/ℏ

{
sµ1 (p1), e

iχ(x⊥∗,si)/ℏ
}

B.H.
+ sµ1 (q∗)

〉〉
, (7.77)

where the expection of the Pauli-Lubanski pseudovector is

⟨p, ai|Wµ|p′, aj⟩ ≡ msµij(p)δ̂(p− p′). (7.78)

The spin is more complicated to consider than colour, since the Pauli-Lubanski oper-
ator is a product of both the linear and angular momentum operators. This means
that the q∗-dependent piece contributes to the spin and we find that the expansion is
therefore given by

∆sµ1 = sµ1 (q∗)− {sµ1 , χ} −
1

2
{χ, {sµ1 , χ}}+ · · · (7.79)
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The first term is the spin vector of particle one evaluated at q∗, and so we can write
it as

sµ1 (q∗) =
1

2mA
ϵµνρσq∗νSρσ(p1), (7.80)

where the spin tensor is defined as Sρσ(p1) = 1
mA

ϵρσµνp
µ
1s

ν
1(p1). We can input this

definition to find that

sµ1 (q∗) =
1

2m2
A

ϵµνρσq∗νϵρσλτp
λ
1s

τ
1(p1) =

1

m2
A

((q∗ · p1)sµ1 (p1)− (s1 · q∗)pµ1 )

=
1

m2
A

(
(∆p1 · p1)sµ1 (p1)− (s1 ·∆p1)pµ1

)
.

(7.81)

We can compute the angular impulse in GR at the spin-1/2×spin-0 order by consid-
ering the lowest order eikonal phase

χ = −2GmAmB√
γ2 − 1

[
(2γ2 − 1) log

∣∣∣∣x⊥L
∣∣∣∣− 2γ

mA

ϵµνρσvAµx⊥νvBρs1σ
|x⊥|2

]
. (7.82)

The angular impulse is given by

∆sµ1 = sµ1 (q∗)− {sµ1 , s
ν
1}
∂χ

∂sν1

= − 1

m2
A

pµ1 (s1(p1) ·∆p1)−
1

mA
ϵµνρσ

∂χ

∂sν1
p1ρs1σ,

(7.83)

where we have used {sµ1 , sν1} = 1
mA

ϵµνρσp1ρs1σ. The derivative with respect to sµ1 is
given by

∂χ

∂s1α
=

4GmBγ√
γ2 − 1

ϵαµνρvAµx⊥νvBρ

|x⊥|2
, (7.84)

such that the angular impulse is finally

∆sµ1 = − 1

m2
A

(s1 ·∆p1)pµ1 − 4GmBγ√
γ2 − 1

ϵµνρδs1νvAρϵσαβγv
α
Av

β
Bx

γ
⊥

|x⊥|2
, (7.85)

which matches the existing literature [360] and where we have dropped the higher
order ∆p1 · p1 term.
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Chapter 8

Conclusion

We are only at the beginning of a new exciting adventure. The inspiral regime of
the coalescence of compact objects in the sky can be conveniently described in the
post-Minkowskian expansion by scattering amplitudes in the classical limit, which
has offered a new perspective on the calculation of observables in general relativity.
The Kosower-Maybee-O’Connell (KMOC) formalism [166] is a way to derive classi-
cal observables in the two-body scattering problem directly from amplitudes, which
follows from the classical on-shell reduction of the in-in formalism, i.e. from the LSZ
reduction with appropriate wavefunctions localizing the massive fields on their point-
particle trajectory as ℏ → 0.

In chapter 2 we have extended this formalism to include waves, which are made
of an infinite superposition of massless particles, in terms of coherent states. The
waveshape α(k) of the coherent state determines the structure of the wave, and it is
interesting to analyze it in different physical situations. For example, in section 4.1 we
studied the scattering of a very sharply-localized wave off a massive particle by using
the geometric optics approximation, which is relevant for the light deflection around
a massive compact body. But we can also derive the waveshape from the two-body
scattering of a pair of massive point particles: at large distances and in the classical
limit, this will be given by the five-point amplitude with one external messenger as
discussed in section 4.3. Interestingly, the waveform offers a first example of a local-
ized observable: a detector located at spatial infinity will register the deviation from
an empty space, which is exactly what happens for the LIGO-VIRGO interferometers.
But this is not the only localized observable we can detect: there are analogues of
the global momentum and angular momentum emitted in gravitational waves, which
we call collectively gravitational event shapes. These can be studied in the on-shell
approach by considering a system of light-ray operators for linearized gravity near null
infinity, as done in chapter 3. They offered quite interesting observables: gravitational
energy event shapes are linked directly to the amplitude of the waveform and we have
shown explicitly that they are infrared-finite, see section 4.5 and section 4.4 respec-
tively. Moreover, zero-energy graviton contributions to the displacement memory are
linked to the choice of the BMS frame at the amplitude level, as discussed in 4.6.

Since we know that gravitational waves are composed of many gravitons, it might
be surprising to hear that only the five-point amplitude is relevant in the classical
limit. What happens is that all the gravitons contribute coherently to the wave, as we
have proved in section 5 and section 6. This can be done from different perspectives,
and it is useful to do so in order to understand the physics behind it. First of all,
we expect on general grounds that the unitary evolution of a pure state gives a pure
state, and coherent state are the only classical pure states for radiation in quantum
mechanics. It is well-known how to derive exactly the final coherent state from the
soft dynamics, as we also discussed in section 5.1 within the worldline formalism
and in section 5.5 by using asymptotic symmetries. The challenge is extend this
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to the full classical dynamics in the two-body problem. A detailed analysis of the
particle distribution shows that we can study the deviation from a Poisson statistics
for the emitted gravitons, as we did in section 5.4. But we can also take advantage
of the uncertainty principle for the radiative field: since we expect to have only one
classical field, all expectation values of product of field operators must factorize. Both
approaches gave the same answer: at leading order, the six-point tree level amplitude
must be classically suppressed. We have checked this in section 6.1, both by using
Feynman diagrams from a convenient field redefinition of the Einstein-Hilbert action
and also from a BCFW massive recursion relation, confirming thus that coherence
holds at least at the lowest order in the coupling.

Exponentiation is very natural in classical physics as it follows directly from the
uncertainty principle, not only in the Fock space of gravitons but also in spin space for
the external massive spinning particles. Mathematically, this translates in the “zero-
variance” property in the Glauber-Sudarshan representation which has an exponential
as a solution as we showed in section 5.2 and section 5.3. All this evidence for coherence
in the final state calls for an extension of the standard eikonal formulation with a
coherent state of gravitons and with spin coherent states for the massive spinning
external particles. We have carried out this program successfully in chapter 7, where
we have also explored the infinity of amplitude relations which follows as a consequence
of this representation.

Finally, we conclude with some important open questions. First, we have primarily
focused on the scattering case but it is known that classical equations of motion can
be used also for the bound case by changing boundary conditions [66, 162–165]. It
would be very exciting if both χ and α can be analytically continued in a similar way:
this would lead to a direct, quantum-first connection between amplitudes and binary
black hole physics. Second, it would be nice to have a full derivation of the conser-
vative eikonal phase from physical principles. While in the traditional formulation a
quantum remainder is present which prevents the full exponentiation of the conserva-
tive part, this might not be the case if we use a more symmetric parametrization of
the external momenta for the classical trajectory [122, 139]. Last but not least, it is
known that the classical description breaks down at sufficiently high energies because
of quantum radiation reaction effects, which ultimately make the emitted gravitons
interfere with each other [135, 136, 263, 337]. This is actually important to have
a consistent resummation of radiation reaction effects, and perhaps a simpler setup
where analytic calculations are possible at very high orders – like working in a fixed
background – can give us some useful lessons in this direction [192, 367–372].
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Appendix A

Review of Schwinger proper time
method

In this appendix, we present a short review of the Schwinger proper time method,
which allows propagators in quantum field theory can be rewritten in terms of path
integrals in ordinary quantum mechanics. We set ℏ = 1 only for this appendix, but
we have restored for the application of this formalism in section 5.1. Consider first
the Feynman propagator for a free scalar field of mass m:

DF (x− y) =

∫
ddk

(2π)d
i

k2 −m2
eik·(x−y), (A.1)

which satisfies the position space equation

i(Ĥ − iε)DF (x− y) = δ(d)(x− y), Ĥ = □+m2, (A.2)

where we have introduced the Klein-Gordon operator Ĥ, which appears in the quadratic
terms in the scalar field Lagrangian. Eq. (A.2) corresponds to the well-known fact
that the propagator is associated with the inverse of the operator Ĥ, and we may
formally write

−i(Ĥ − iε)−1 =

∫ ∞

0
dTe−iT (Ĥ−iε), (A.3)

where the iε prescription guarantees convergence of the integral, and T is convention-
ally called a Schwinger parameter. The integral in eq. (A.3) contains the operator

Û(T ) = e−iĤT , (A.4)

and if we interpret T as a time variable. this has the known form of the evolution
operator in quantum mechanics where Ĥ is the Hamiltonian, given by

Ĥ = −p̂2 +m2. (A.5)

We can introduce a Hilbert space of states on which this Hamiltonian acts. Complete
sets are provided by the position or momentum states {|x⟩} or {|p⟩} (eigenstates of x̂
and p̂ respectively). Consider the evolution operator sandwiched between a state of
given initial position and final momentum. For a small time separation δT , one finds

⟨p|e−iĤδT |x⟩ = e−iHδT+O(δT 2)⟨p|x⟩, (A.6)

where H denotes the replacement of the position and momentum operators in Ĥ with
their corresponding eigenvalues. Note that, strictly speaking, we must ensure that the
Hamiltonian is first written in Weyl-ordered form, such that all momentum operators
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appear to the left of all position ones. This is not an issue for the Hamiltonian of
eq. (A.5), but will be relevant when a gauge field is included. The above simple result
applies only for small time separations. For a large time separation T , one may divide
the time interval into N steps

δT =
T

N
, (A.7)

where the limit N → ∞ will eventually be taken. Then we may introduce a complete
set of intermediate position and momentum states at each time-step, so that the
matrix element of the evolution operator between a final momentum state |pf ⟩ and
initial position state |xi⟩ becomes

⟨pf |e−iĤT |xi⟩ =
∫

dx1 . . . dxN

∫
dp0 . . . dpN−1⟨pf |e−iĤδt|xN ⟩

× ⟨xN |pN−1⟩⟨pN−1|e−iĤδt|xN−1⟩⟨xN−1|pN−2⟩⟨pN−2|e−iĤδt|xN−2⟩ . . .

× ⟨x1|p0⟩⟨p0|e−iĤδt|xi⟩.
(A.8)

Introducing the notation x0 ≡ xi, pN ≡ pf for the fixed boundary conditions, we can
write the previous equation more succinctly as

⟨pf |e−iĤT |xi⟩ =
∫

dx1 . . .

∫
dxN

∫
dp0 . . . dpN−1 exp

[
−i

N∑
k=0

H (pk, xk) δT

]

×
N∏
k=0

⟨pk|xk⟩
N−1∏
k=0

⟨xk+1|pk⟩

=

∫
dx1 . . .

∫
dxN

∫
dp0 . . . dpN−1 exp

[
−i

N∑
k=0

H (pk, xk) δT

]

×

[
N−1∏
k=0

exp

(
i
pk · (xk+1 − xk)

δT
δT

)]
e−ipf ·xN ,

(A.9)

where in the second line we have used that the inner product of position and momen-
tum states gives

⟨x|p⟩ = e−ip·x. (A.10)

We have written eq. (A.9) in a form such that its continuum limit N → ∞ – eq. (5.5)
– may be straightforwardly recognised.

This has the form of a double path integral in position and momentum, subject
to the boundary conditions we imposed above. With further manipulations, eq. (5.5)
can be related to the usual expression for the evolution operator sandwiched between
two position states:

⟨xf |e−iĤT |xi⟩ =
∫ x(T )=xf

x(0)=xi

Dx exp
[
i

∫ T

0
dtL(x, ẋ)

]
, (A.11)

where L(x, ẋ) is the Lagrangian1. We have here considered a free particle, but the
extension to a particle in a background gauge field is straightforward: one simply
replaces the Hamiltonian of eq. (A.5) with the corresponding quadratic operator when
a gauge field is present, as in eq. (5.6).

1To do this, one can add an arbitrary potential to the Hamiltonian, and complete the Gaussian
path integral over p.
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Appendix B

Shear-inclusive ANEC and
Raychaudhuri equation

The connection of the ANEC operator and its expectation value with causality prop-
erties of the underlying quantum field theory is well-known [373]. A congruence of
null (complete, achronal) geodesics obeys Raychaudhuri equation

dΘ

dλ
= −1

2
Θ2 − σµνσ

µν − 8πGTmatter
µν kµkν , (B.1)

where λ is the affine parameter, Θ = 1
A

dA
dλ

1 is the expansion, σµν is the shear and
kµ is a null vector of unit affine length which in our case we will take the light-
sheet generator kµ = δµ−. The right hand side of eq. (B.1) immediately reminds us
the enlarged definition of the matter ANEC with the gravitational contribution once
we integrate along the null direction of the generator, albeit here eq. (B.1) is purely
classical in its nature. If we consider a generic congruence of null geodesics with starts
at I− and ends on I+, one can ask how the expansion parameter changes along the
congruence. Classically, the ANEC condition Tmatter

µν kµkν ≥ 0 implies the classical
focussing theorem, that is light-rays never “anti-focus” as long as matter has positive
energy. Quantum mechanically, quantum fields can developed negative energy so that
we generically need a quantum version of the ANEC [374] and of the focussing theorem
[375]. In general, there are problems in including quantized gravity perturbations in
this story. Nevertheless, assuming we have matter minimally coupled with gravity,
for a stationary null surface one can quantize hµν on the null surface in light-front
quantization [204] and at the first order in the perturbation one can define a shear-
inclusive ANEC operator of the form

Eshear-inclusive =

∫
dλ

[
1

8πG
σµνσ

µν + Tmatter
µν kµkν

]
, (B.2)

whose expectation value is positive definite ⟨Eshear-inclusive⟩ ≥ 0 as it can be proved
from the linearized Raychaudhuri equation [376]. The connection to our previous
definition of the shear-inclusive ANEC in the Bondi gauge consists in considering the
asymptotically flat region for the geodesic congruence. Indeed in such region one can
define a boundary shear as the limit of the rescaled shear of the congruence on future
null infinity,

lim
r→+∞

r2
[

1

8πG
σµνσ

µν + Tmatter
µν kµkν

]
∼ 1

32πG
NζζN

ζζ + lim
r→∞

r2Tmatter
vv (B.3)

as proved in [377, 378] in order to study asymptotic entropy bounds.

1A is the cross sectional area here.
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Appendix C

Light-ray operators for a
light-sheet in the bulk

In the general, one would like to generalize the light-ray operator definition to allow
them to be localized on general light-sheets in the bulk of the spacetime. If the theory
is scale invariant (i.e. for all CFT for example) then the two definitions will coincide
but in general they will be different.1 To simplify our calculations, we can define

x̃− :=
x0 + x3

2
x̃+ :=

x0 − x3

2
, (C.1)

so that light-sheets at fixed x̃− = const will be parametrized by the coordinate x̃+.
It is worth noticing that as x̃− → +∞ we will have x̃± → x±, so that there is no
ambiguity with the previous notation in appendix B. For the light-sheet defined by
x̃− = c with c ∈ R, we define the light-ray family as

E(x̃⊥) :=
∫ +∞

−∞
dx̃+ T−−(x̃+ = c, x̃−, x̃⊥),

K(x̃⊥) :=

∫ +∞

−∞
dx̃+ (x̃+)T−−(x̃+ = c, x̃−, x̃⊥),

NA(x̃⊥) := (∂Ax̃
µ)

∫ +∞

−∞
dx̃+T−µ(x̃+ = c, x̃−, x̃⊥). (C.2)

C.0.1 Spin 0

For a general light-sheet c ∈ R one needs to compute

T−−(x) =
1

4
(T00(x) + T33(x)− 2T03(x)) =

1

4
(∂0ϕ(x)− ∂3ϕ(x))

2 = ∂−ϕ(x)∂−ϕ(x),

T1−(x) =
1

2
(T10(x)− T13(x)) =

1

2
∂1ϕ(x) (∂0ϕ(x)− ∂3ϕ(x)) = ∂1ϕ(x)∂−ϕ(x),

T2−(x) =
1

2
(T20(x)− T23(x)) =

1

2
∂2ϕ(x) (∂0ϕ(x)− ∂3ϕ(x)) = ∂2ϕ(x)∂−ϕ(x). (C.3)

1See the explicit Hofman-Maldacena conformal transformation [149].
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The light-ray operators are then defined as

Escalar(x̃⊥) :=

∫ +∞

−∞
dx̃+ ∂−ϕ(x̃)∂−ϕ(x̃)

∣∣∣
x̃−=c

,

NA,scalar(x̃⊥) :=

∫ +∞

−∞
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. (C.4)

It is quite remarkable that interactions drop out completely. This generically happens
for scalar theories without derivative couplings and it implies some universality of the
scalar light-ray algebra.
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where in the last line have imposed the light-cone gauge

A0 = A3 ⇔ A− = 0. (C.6)

We see that while T−−(x̃) is interaction independent in this gauge, TA−(x̃) is not.
Nevertheless, we are interested in light-ray operators where we integrate over the
light-cone time x̃+ and therefore we can take advantage of the equations of motion
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provided that we take into account possible boundary terms at x̃+ → ±∞. To fix
completely the gauge for the boundary contributions, we can enforce the radiation
gauge where together with the light-cone condition A− = 0 we have
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The light-ray operators are then defined as
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If we compare to the self-interacting scalar case, we see that in YM theory interactions
do not affect the definition of the operators Egluon(x̃⊥) and Kgluon(x̃⊥) but they appear
in NA,gluon(x̃⊥) through the boundary contribution.
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Appendix D

Poissonian distributions and
coherent states

The graviton coherent states introduced in the main text can be expanded in the Fock
space basis of a definite number of gravitons,

|ασ⟩ = exp

(
−1

2

∫
dΦ(k)|ασ(k)|2

) ∞∑
n=0

1

n!

∫ n∏
i=1

[dΦ(ki)α
σ(ki)] |kσ1 ...kσn⟩, (D.1)

and a direct calculation of the probability of detecting n gravitons with helicity σ′

gives
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−
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which corresponds exactly to Poissonian statistics. A straightforward calculation of
the mean and the variance in a coherent state gives

µασ = Σασ =

∫
dΦ(k)|ασ(k)|2. (D.3)

Poissonian statistics are equivalent to having a coherent state, as can be seen by
computing P σ′

n for a generic probability distribution in the Glauber-Sudarshan repre-
sentation,

Tr
(
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n

)
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=
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D2ασ Pσ(α)P σ

n , (D.4)

which requires Pσ(α) = δ2(ασ − ασ
⋆ ) to match the Poissonian distribution.

In classical physics, however, we can have more general statistics for the classical
radiation field. In particular, the variance of the distribution can be greater than the
mean,1

µρ < Σρ, (D.5)

which defines the so-called super-Poissonian statistics. This applies, for example, to
thermal classical distributions. In our case, as discussed in the main text, the fact
that we are working with pure states that are evolved with a unitary map suggests
that all the classical states will have to obey the minimum uncertainty principle [166].

1We expect the opposite inequality, i.e. µρ > Σρ, to be relevant for purely quantum particle
statistics. Indeed by using the Jensen inequality it is possible to prove that any mixture of coherent
states will produce only super-Poissonian distributions.
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Appendix E

Projection in the plane of
scattering in the eikonal approach

The relation between the eikonal impact parameter xµ⊥ and bµ can be stated clearly by
first introducing some notation. Let us define the following four-vectors in momentum
space {

eµ0 ≡ N0(p̃
µ
1 + p̃µ2 )

eµq ≡ Nq(p̃
µ
1 − p̃µ2 )−N0q(p̃

µ
1 + p̃µ2 ) ,

(E.1)

where the normalization factors N0, Nq and N0q are fixed by requiring e20 = 1, e2q = −1
and e0 · eq = 0. By definition of xµ⊥, the following identities hold:

e0 · x⊥ = 0 , eq · x⊥ = 0 . (E.2)

As a consequence, we can write the projection of xµ on the plane orthogonal to p̃µ1
and p̃µ2 as

xµ⊥ = xµ − (x · e0)eµ0 + (x · eq)eµq , (E.3)

where the different signs in the the last two terms are a consequence of eµ0 being time-
like while eµq space-like. Using eq. (E.3) we can easily compute some of the derivatives
involved in the evaluation of the stationary phase on xµ such as

∂x2⊥
∂xµ

= 2x⊥,ν(η
µν − eµ0e

ν
0 + eµq e

ν
q ) = 2xµ⊥ . (E.4)

Another example where the use of eq. (E.3) is useful is when we apply the stationary
phase for the integral over qµ. In this case, the stationary condition for qµ can be
expressed as

xµ = bµ + qν,∗
∂xν⊥
∂qµ

∣∣∣∣
q=q∗

, (E.5)

where qµ∗ satisfies the stationary phase condition on xµ given by qµ∗ = −2χ′(x⊥)x
µ
⊥.

One of the advantages in the definition in eq. (E.1) of eµ0 is that it is qµ independent
so that the previous stationary condition can be expressed as

xµ = bµ + qν,∗
∂

∂qµ

[
(x · eq)eνq

]∣∣∣∣
q=q∗

. (E.6)

Since qµ∗ is parallel to xµ⊥, we know that q∗ ·eq ∝ x⊥ ·eq = 0, and so eq. (E.6) simplifies
to

xµ = bµ + qν,∗(x · eq)
∂eνq
∂qµ
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q=q∗

. (E.7)
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The remaining derivative can be easily performed using the definition of eµq . The
result is

qν
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∂qµ

∣∣∣∣
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We can then write the eikonal impact parameter as

xµ⊥ = bµ − (x · e0)eµ0 −
[
(x · eq)Nqq

µ
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The scalar products x · e0 and x · eq, which can be viewed as Lagrange multipliers
for the phase which we are minimizing, are fixed by requiring the eikonal impact
parameter to be orthogonal to eµ0 and eµq . A straightforward calculation gives

xµ⊥ = bµ −
[
(eq · b)(Nqq

µ − eµq )
]∣∣

q=q∗
. (E.10)

Expressing eµq in terms of pµ1 , pµ2 and qµ we obtain

xµ⊥ = bµ −
[
(eq · b)

[
N0q(p

µ
1 + pµ2 )−Nq(p

µ
1 − pµ2 )

]]∣∣∣∣
q=q∗

, (E.11)

which agrees — when evaluated in the center of mass frame — with the expression
for the eikonal impact parameter in eq. (7.17), where Ñq = −(eq · b)Nq and Ñ0q =
(eq · b)N0q.
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Appendix F

Unitarity of the final state in the
eikonal approach

After stationary phase in qµ and xµ, the final state in the conservative sector is

S|ψ⟩ =
∫

dΦ(p′1, p
′
2)
∣∣p′1p′2〉 eiq∗(s)·x∗(s)/ℏeiχ(x∗,⊥(s);s)/ℏψb

(
p′1 − q∗(s), p

′
2 + q∗(s)

)
,

(F.1)
where q∗(s) and x∗(s) are solutions of the stationary phase condition depending on
the Mandelstam variable s = (p′1 + p′2)

2. To check unitarity of the final state we can
proceed by computing

⟨ψ|S†S|ψ⟩ =
∫

dΦ (p1, p2) |ψ (p1 − q∗(s), p2 + q∗(s)) |2 , (F.2)

where we have dropped the subscript b from the wavepacket, and the prime indices
on the momenta. We then introduce the following change of variable{

Pµ
1 = pµ1 − qµ∗ (s)

Pµ
2 = pµ2 + qµ∗ (s) .

(F.3)

Due to the dependence of q∗(s) on s, we obtain the Jacobian determinant of eq. (F.3)
as well as a dependence in the conserving momentum Dirac delta on q∗(s)

⟨ψ|S†S|ψ⟩ =
∫

d̂4P1d̂
4P2 δ̂

(+)(P 2
1 −m2

A+2P1 · q∗ + q2∗) δ̂
(+)(P 2

2 −m2
B − 2P2 · q∗ + q2∗)

× | det J(P1, P2)| |ψ (P1, P2) |2 .
(F.4)

At first sight, these two additional contributions seem to spoil the unitarity of the
final state. However, a closer look reveals that this is not the case. First of all, the
Dirac delta functions are trivial as a consequence of e0 · q∗ = eq · q∗ = 0:

2P1 · q∗ + q2∗ = 0 , 2P2 · q∗ − q2∗ = 0 . (F.5)

As for the Jacobian determinant, this can be evaluated in (p1, p2) variables as

| det J(P1, P2)|(p1, p2) =1 + Tr
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.

(F.6)
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Since the derivative of the Mandelstam variable s is symmetric with respect to p1 and
p2, we can conclude that eq. (F.6) is indeed equal to one. Thus,

⟨ψ|S†S|ψ⟩ =
∫

dΦ(P1, P2)|ψ (P1, P2) |2 = 1 (F.7)

as expected.
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Appendix G

Explicit six-point tree amplitude
calculation in scalar QED

We now compute the leading contribution in ℏ of the six-point tree amplitude. We
will discuss the computation explicitly in electromagnetism, and explain only the
mechanism for cancellation of apparent excess powers of ℏ in gravity.

Suppose particle 1 has charge Q1 while particle 2 has charge Q2. Then there are
three gauge-invariant six-point tree partial amplitudes:

A(0)
6 (p1 + q1, p2 + q2 → p1, p2, k) = Q3

1Q2A(3,1) +Q2
1Q

2
2A(2,2) +Q1Q

3
2A(1,3) . (G.1)

The “charge-ordered” partial amplitudes A(3,1), A(2,2), and A(1,3) are analogues of
color-ordered amplitudes in gauge theory, which motivates our choice of notation.

Evidently there can be no cancellation of powers of ℏ between these partial am-
plitudes because of the different powers of the charges. Thus the problem reduces to
computing the leading-in-ℏ terms in these amplitudes. There are two partial ampli-
tudes to consider, since A(1,3) can be obtained from A(3,1) by trivially swapping the
labels 1 and 2.

We have performed two separate computations of these partial amplitudes. Firstly,
we made use of standard automated tools to directly compute the amplitude in full de-
tail. Specifically, we used FeynArt [379] to create a model for scalar QED, extracting
the Feynman rules directly from the Lagrangian. FeynCalc [380, 381] can automat-
ically generate all the topologies relevant for the calculation of A(0)

6 . There are 42
diagrams to be computed, and FeynCalc provided direct automatic expressions for
each of these. We processed our expressions further in Mathematica with the tensor
package xAct [317], which help to extract the classical limit. The final result for A(0)

6,0

is of order ℏ−4.
To gain further insight we performed a separate computation of the partial am-

plitudes A(3,1) and A(2,2) in a convenient gauge which greatly reduced the labour
necessary to see that two powers of ℏ cancel. The gauge we chose (referring to the
momentum routing in equation (G.1)) is

p1 · ε(ki) = 0 for i = 1, 2, (G.2)

where p1 is the momentum of particle 1 while ki is the outgoing momentum of photon
i.

The effect of this choice is twofold; it removes many diagrams from the calculation
and those that remain get an ℏ enhancement from each emission vertex. For example,
consider A(3,1): in this case, the emitted photon is radiated from particle 1. With our
momentum labelling convention the emission vertices will produce factors of the form
(2p1+ℏQ̄)·ε(ki), where Q̄ is some combination of wavenumbers. The first part vanishes
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Figure G.1: Diagrams in Q3
1Q2 sector.

leaving only the ℏ enhanced ε(ki) · Q̄ term. Any diagram with a photon emitted from
the outgoing line of particle 1 vanishes, as it is proportional to (2p1 + ℏk̄i) · ε(ki) = 0.
In what follows we will write ε(ki) = εi. We will also suppress the iϵ factors in the
propagators1; they all implicitly come with +iϵ. Finally we will refer to each diagram
contributing to the amplitude by, for example, D(3, 1) so that

iA(3,1) = iD(3,1)cubic + iD(3,1)quartic. (G.3)

Some of the sub-amplitudes are given by a single diagram, whereas others are made
up of multiple diagrams.

Our gauge choice is most powerful in the case of A(3,1), so we discuss this case in
most detail. The Feynman diagrams that constitute this amplitude can be split into
3 classes: the first involves single photon emissions coming from cubic vertices, the
second has precisely one photon emitted into the final state from a quartic vertex,
while the third class has two photons emitted from the same quartic vertex. These
classes are shown in Fig. G.1, after removing diagrams which vanish by gauge choice.
The first diagram is an example of the first class, the second an example of the second
class and the last two diagrams are in the third class.

We choose a particular ordering of k1 and k2 for the calculation, and include the
permuted case by swapping k1 ↔ k2. For the first class there is a single diagram to
compute after gauge fixing, and it is trivial to write down the leading term in the
amplitude and see that it has the desired scaling. This diagram is

D(3,1)|cubic =
1

ℏ4q̄22

[
2(ε2 · q̄1)(ε1 · (2q̄1 − k̄2))(2p2 + ℏq̄2) · (2p1 − ℏq̄2)
(−2p1 · q̄2 + ℏq̄22)(2p1 · (q̄1 − k̄1) + ℏ(q̄1 − k̄1)2)

]
=

1

ℏ4q̄22

[
4p1 · p2(ε2 · q̄1)(ε1 · (2q̄1 − k̄2))

2(−p1 · q̄2)(p1 · (q̄1 − k̄1)
+O(ℏ)

]
=
2p1 · p2
ℏ4q̄22

[
(ε2 · q̄1)(ε1 · (q̄1 − q̄2))

(p1 · (k̄1 + k̄2))(p1 · k̄1)

]
+O(ℏ−3).

(G.4)

We used momentum conservation q1+q2 = k1+k2 to write our expressions in terms of
just the ki or the qi. The choice here is most natural for obtaining a similarly simple
expression for the amplitude with k1 and k2 swapped.

The second class is actually tractable without fixing a gauge, as there is only a
single cancellation to show. However with our gauge fixing this class becomes trivial,
and there is only a single diagram to compute. This is

D(3,1)|cubic/quartic =
4(p2 · ε2)(q̄1 · ε1)

ℏ4q̄22p1 · k̄1
. (G.5)

1The iϵ factors are often important — and indeed play an important role in appendix G — but
in this computation they are spectators.
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The final class is unaffected by our choice of gauge as it is proportional to ε1 · ε2.
After gauge fixing this is naively ℏ−5, so we must find a single cancellation. The
mechanism of the cancellation is identical to the case of the five-point tree amplitude.
This is done in [95, 166], but we shall review it here for completeness. The key step
is to make use of the on-shell conditions

(p1 + q1)
2 = m2

A, (p2 + q2)
2 = m2

B, (G.6)

which allows us, after the ℏ rescaling, to replace 2pi · q̄i → −ℏq̄2i in the propagators.
Lastly, we Taylor expand. There are two diagrams to compute which are,

D(3,1)|quartic,1 =− 2ε1 · ε2
ℏ5q̄22

[
(2p1 + ℏ(2q̄1 + q̄2)) · (2p2 + ℏq̄2)
2p1 · (k̄1 + k̄2) + ℏ(k̄1 + k̄2)2

]
=− 2ε1 · ε2

ℏ5q̄22

[
4p1 · p2

2p1 · (k̄1 + k̄2)

+ℏ
(
4p2 · q̄1 + 2p1 · q̄2
2p1 · (k̄1 + k̄2)

− 4p1 · p2(k̄1 + k̄2)
2

(2p1 · (k̄1 + k̄2))2

)] (G.7)

and

D(3,1)|quartic,2 =− 2ε1 · ε2
ℏ5q̄22

[
4p1 · p2

−2p1 · (k̄1 + k̄2)

+ ℏ
(

4p1 · q̄2
−2p1 · (k̄1 + k̄2)

+
4p1 · p2((k̄1 + k̄2)

2 − q̄21)

(2p1 · (k̄1 + k̄2))2

)]
.

(G.8)
Notice the most singular terms are equal up to a sign, and so cancel. Combining the
remaining terms we obtain

D(3,1)|quartic = −ε1 · ε2
ℏ4q̄22

[
4(p1 · p2)(q̄2 · (k̄1 + k̄2))

(p1 · (k̄1 + k̄2))2
+

4p2 · q̄1 + 2p1 · q̄2
p1 · (k̄1 + k̄2)

]
. (G.9)

These can be combined as A(3,1) = D(3,1)cubic +D(3,1)quartic yielding,

A(3,1) =
1

ℏ4q̄22

[
4p1 · p2(ε2 · q̄1)(ε1 · (q̄1 − q̄2))
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+

4p1 · p2(p2 · ε2)(q̄1 · ε1)
p1 · k̄1

− (ε1 · ε2)
(
4(p1 · p2)(q̄2 · (k̄1 + k̄2))

(p1 · (k̄1 + k̄2))2
+

4p2 · q̄1 + 2p1 · q̄2
p1 · (k̄1 + k̄2)

)]
+ (k1 ↔ k2).

(G.10)

The story is very similar for A(2,2). We can split into the same 3 classes, use gauge
fixing to get rid of one factor of ℏ and then massage using the on-shell constraints
to show the final cancellation. Here we just quote the result and give details in the
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appendix. The result is

A(2,2) =
4

ℏ4(q̄2 − k̄2)2

[
4ε1 · ε2 +

(ε1 · p2)(ε2 · q̄2)
p2 · k̄2

− (ε2 · p2)(ε1 · (q̄2 + q̄1))

2p2 · k̄2
p1 · p2(ε1 · q̄1)(ε2 · q̄2)

(p2 · k̄2)(p1 · k̄1)
− (p1 · k̄2)(ε1 · q̄1)(ε2 · p2)

(p2 · k̄2)(p1 · k̄1)

− (ε1 · p2)(ε2 · p2)(q̄2 · k̄2)
(p2 · k̄2)2

− p1 · p2(ε1 · q̄1)(ε2 · p2)q̄2 · k̄2
(p2 · k̄2)2(p1 · k̄1)

]
+ (k1 ↔ k2).

(G.11)

Finally A(1,3) can be obtained by swapping the labels 1 ↔ 2 in the expression for A(3,1)

(written in the gauge where p2 · εi = 0. Of course the partial amplitudes themselves
are gauge-invariant.) In all cases, the ℏ scaling is as required from negligible variance.
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Appendix H

One loop factorisation of the
five-point amplitude in scalar QED

We now turn to verifying eq. (4.66). For simplicity we focus on the case of scalar QED,
though the general nature of our arguments indicates that the result should also hold
in gravity and in Yang-Mills theory. In order to keep the computational labour to
the minimum necessary, we take advantage of lessons we learned in the context of
the six-point tree amplitude in appendix H. First, we note that the scalar QED five-
point amplitudes can be reduced to gauge-invariant partial amplitudes analogous to
colour-ordered amplitudes in Yang-Mills theory. In particular we write

A(0)
4,0(p1, p2 → p1 + w1, p2 + w2) = Q1Q2A(1,1) ,

A(0)
5,0(p1, p2 → p1 + q1, p2 + q2, k) = Q1Q

2
2A(1,2) +Q2

1Q2A(2,1) ,

A(1)
5,0(p1, p2 → p1 + q1, p2 + q2, k) = Q2

1Q
3
2A(2,3) +Q3

1Q
2
2A(3,2) .

(H.1)

In view of the symmetry between A2,3 and A3,2 we may compute just one choice: we
choose to focus on the charge sector Q2

1Q
3
2.

Second, we find it useful to choose an explicit gauge, namely

εσ(k̄) · p2 = 0 . (H.2)

This choice drastically reduces the relevant number of terms in the ℏ expansion. It is
trivial to determine the tree partial amplitudes in this gauge, which are

A(1,1) = e2
4p1 · p2
w̄2
1

, (H.3)

and

A(1,2) =
4e3

q̄21

(
p1 · εσ(k) +

p1 · p2 εσ(k) · q̄1
p2 · k̄

)
. (H.4)

The anatomy of eq. (4.66) is that the leading-in-ℏ fragment of the one-loop five-
point amplitude A(2,3) will organise itself into a product of A(1,1) times the four terms
that constitute A(1,2). Our strategy will be to isolate these terms one by one. Let us
start gathering the relevant diagrams of A(2,3). At one loop, and in the classical limit,
we need to consider the transfer expansion of the following five-point diagrams with
a photon emitted in the final state:
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p1 + q1

p1 p2

p2 + q2

l

l − q1

p2 − l
p1 + l

p2 − l − k

Figure H.1: Momentum routing for the pentagon contribution to the
five-point one-loop amplitude.

p1 + q1 p2 + q2
k

p1 p2

=

+ + +

+ +

+

+

+ + + · · ·

The ellipsis indicate purely quantum diagrams which are not relevant for us.
As in appendix H we tidy our expressions up by making use of the on-shell condi-

tions. Using the momentum labelling in the figure above these read

p1 · q̄1 = p2 · q̄2 = O(ℏ). (H.5)

Keeping this in mind we start to compute the diagrams. It is helpful to compute
the first six diagrams in the figure above, which involve only three-point vertices,
separately from the rest of the diagrams (which involved contact four-point vertices).
We therefore write

A(2,3) = A3pt
(2,3) +A4pt

(2,3) . (H.6)

We focus first on the six diagrams which constitute A3pt
(2,3). For clarity, let us begin by

describing the contribution from the pentagon diagram, in our gauge of eq. (H.2) in
detail. We choose the momentum routing shown in Fig. H.1. On the support of the
momentum-conserving delta function δ̂4(q1 + q2 + k), its contribution to A(2,3) is

ie5
∫

d̂4 l̄

l̄2(l̄ − q̄1)2
(4p1 · p2)2(−2 εσ(k) · l̄)

(2p1 · l̄)(−2p2 · l̄)(−2p2 · (k̄ + l̄))
. (H.7)

The sum of the cubic diagrams yields
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A3pt
(2,3) = ie5

∫
d̂4 l̄

l̄2(l̄ − q̄1)2
(4p1 · p2)2

×
(

−2εσ(k) · l̄
(2p1 · l̄)(−2p2 · l̄)(−2p2 · (k̄ + l̄))

− 2εσ(k) · q̄1
(2p1 · l̄)(−2p2 · l̄)(2p2 · k̄)

+
2εσ(k) · (l̄ − q̄1)

(2p1 · l̄)(2p2 · (k̄ + l̄))(2p2 · l̄)
− 2εσ(k) · q̄1

(2p1 · l̄)(2p2 · (k̄ + l̄))(2p2 · k̄)

)
.

(H.8)

Note that the signs in the linearised propagators are important! We use them to
indicate the hidden iϵ’s,

1

±p · l̄
≡ 1

±p · l̄ + iϵ
̸= ± 1

p · l̄
=

1

±p · l̄ ± iϵ
. (H.9)

which allows us to make use of the following identity

−iδ̂(p · l̄) = 1

p · l̄
+

1

−p · l̄
. (H.10)

In order to make use of this identity we apply a change of variables l → q̄1 − l in the
last two terms in eq. (H.8). This, along with the on-shell conditions, allows pairs of
terms to take an almost identical form — denominators differ only by a sign in the
p1 · l term which is precisely what is needed to apply eq. (H.10). The amplitude then
reduces to

A3pt
(2,3) = 4e5(p1 · p2)2

∫
d̂4 l̄

l̄2(l̄ − q̄1)2
δ̂(p1 · l̄)
−p2 · l̄

(
−εσ(k) · q̄1

p2 · k̄
− εσ(k) · l̄

−p2 · (k̄ + l̄)

)
. (H.11)

It is possible to expose a second delta function in this expression by writing −εσ(k) ·
q̄1 = εσ(k) · (l̄ − q̄1) − εσ(k) · l̄. The two terms involving εσ(k) · l̄ under the integral
sign can be simplified by a partial fraction, yielding

A3pt
(2,3) = 4e5(p1 · p2)2

∫
d̂4 l̄

l̄2(l̄ − q̄1)2
δ̂(p1 · l̄)
p2 · k̄

(
εσ(k) · (l̄ − q̄1)

−p2 · l̄
− εσ(k) · l̄

−p2 · (l̄ − q̄1)

)
= 4ie5(p1 · p2)2

∫
d̂4 l̄

l̄2(l̄ − q̄1)2
δ̂(p1 · l̄)δ̂(p2 · (l̄ − q̄1))

εσ(k) · l̄
p2 · k̄

.

(H.12)
To obtain the second of these equalities, we redefined the variable of integration to
l̄′ = −(l̄ − q̄1) in the first term, and dropped the prime.

Next, we address the remaining diagrams contributing to A(2,3) which now involve
four-point vertices. After a straightforward computation, we find

A4pt
(2,3) = 4ie5p1 · p2 εσ(k) · p1

∫
d̂4 l̄

l̄2(l̄ − q̄1)2
δ̂(p1 · l̄)δ̂(p2 · (l̄ − q̄1)) . (H.13)

At this stage we can see the structure of the required factorisation — we have exposed
the delta functions present in eq. (4.66).

Combining the contact terms of eq. (H.13) with the rest of the diagrams, eq. (H.12),
we find that the total expression for the amplitude fragment is

A(2,3) = 4ie5 p1 · p2
∫

d̂4 l̄

l̄2(l̄ − q̄1)2
δ̂(p1 · l̄)δ̂(p2 · (l̄ − q̄1))

(
εσ(k) · p1 + p1 · p2

εσ(k) · l̄
p2 · k̄

)
.

(H.14)
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The final step is to compare this result with the prediction for A(2,3) from eq. (4.66).
Using the amplitudes of eq. (H.1), it is easy to see that the prediction is

A(2,3) =

∫
d̂4w̄1d̂

4w̄2 δ̂(2p1 · w̄1)δ̂(2p2 · w̄2)δ̂
4(q̄1 + q̄2 − w̄1 − w̄2)

× 4e3

w̄2
1

(
p1 · εσ +

p1 · p2 εσ(k) · w̄1

p2 · k̄

)
4e2

(q̄1 − w̄1)2
p1 · p2 .

(H.15)

Upon performing the integral over w̄2 using the four-fold delta function, relabelling
w̄1 = l̄ and recognising that k̄ = −q̄1 − q̄2, we immediately recover eq. (H.14).
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