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Abstract

A very powerful tool in Conformal Field Theories is the conformal block expansion, which plays a crucial

role in the conformal bootstrap programme. The goal of this thesis is to improve the understanding

and mathematical control over conformal block expansions for more than four external fields, studying

the so-called multipoint conformal blocks from the perspective of the differential equations these satisfy.

The results presented here stem from newly discovered relations between multipoint conformal blocks

and Gaudin integrable models. These allow the introduction of special limits for multipoint conformal

blocks which reduce them to some of their sub-components. Reduction to three-point blocks leads to

a further novel connection between conformal blocks and integrable Calogero-Moser-Sutherland models.

These results pave the way for future computations of multipoint conformal blocks, starting from certain

well-behaved limits.

Zusammenfassung

Ein sehr wirkungsvolles Werkzeug in konformen Feldtheorien ist die konforme Blockentwicklung, die

eine entscheidende Rolle im konformen Bootstrap-Programm spielt. Das Ziel dieser Arbeit ist es, das

Verständnis und die mathematische Kontrolle über konforme Blockentwicklungen für mehr als vier ex-

terne Felder zu verbessern, indem die sogenannten konformen Mehrpunktblöcke aus der Perspektive

der Differentialgleichungen, die diese erfüllen, untersucht werden. Die hier vorgestellten Ergebnisse stam-

men aus neu entdeckten Beziehungen zwischen konformen Mehrpunktblöcken und integrierbaren Gaudin-

Modellen. Diese ermöglichen die Einführung spezieller Grenzwerte für konforme Mehrpunktblöcke, die sie

auf einige ihrer Unterkomponenten reduzieren. Die Reduktion auf Dreipunktblöcke führt zu einer weit-

eren neuartigen Verbindung zwischen konformen Blöcken und integrierbaren Calogero-Moser-Sutherland-

Modellen. Diese Ergebnisse ebnen den Weg für zukünftige Berechnungen von Mehrpunkt-konformen

Blöcken, ausgehend von bestimmten gut gezogenen Grenzen.
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Chapter 1

Introduction

It is safe to say that Quantum Field Theories (QFTs) are the most successful framework for fundamen-

tal physics: the use of QFTs in particle physics led to an unprecedented level of agreement between

theoretical predictions and experimental data. Iconic in this sense is the determination, using quantum

electrodynamics, of the anomalous magnetic moment ge − 2 of the electron, representing the most accu-

rate verified prediction in the history of physics. The extraordinary robustness of this type of results is

suggestive that the view of the world painted by QFTs has deep roots in the quintessence of reality.

At the core of the QFT machinery lies the concept of symmetry. The basic symmetries of spacetime,

often complemented with additional “gauge” symmetries, constitute the foundations of any such theory,

and strongly constrain the space of possible Lagrangians that can be constructed. Most of the observables

are then computed and understood from the Lagrangian in a perturbative regime, when an expansion

for small values of certain physical parameters is possible. The prime example of this type of reasoning

is the expansion of correlators and scattering amplitudes in Feynman diagrams, on which numerous

phenomenological predictions have been built. One downside of the Feynman expansion, however, is that

it is often only an asymptotic one, i.e. it can approximate the complete result up to a certain order,

but it does not converge and can thus not be resummed to obtain results beyond perturbation theory.

Many theories do not even grant a full, non-perturbative picture, but can only be fully made sense of as

“effective” theories, which give a coarse-grained description of field interactions at certain energy scales,

but break down above a certain cutoff energy at which one starts to probe finer-grained structures.

In a Wilsonian paradigm [1], these theories can be interpreted as intermediate outputs of a renormalization

group (RG) flow, in which finer-grained degrees of freedom of an underlying, richer-in-detail theory are

integrated out to produce an effective low-energy description. In this picture, a special role is played

by those theories which are not modified by the action of the RG flow: these are the Conformal Field

Theories (CFTs) [2], the main framework of this thesis.

CFTs are thus theories that do not change when acted upon with scale transformations, and are rather

universal throughout different branches of physics. Scale invariance in these theories, combined with

Poincaré symmetry of spacetime, is promoted to the broader group of conformal symmetries which,

in addition to giving CFTs their name, supplies them with extremely powerful mathematical tools to

compute their observables, even non-perturbatively. CFTs are in fact the main class of interacting theories

for which a non-perturbative handle can be currently achieved and have thus been the prime example of

theories that can be exactly solvable [3], at least in certain two-dimensional cases.

The usefulness of CFTs is however not limited to the construction of well-behaved toy models for particle

physics, but is quite more far-reaching. For instance, any physical system that undergoes a second-order

phase transition is scale-invariant, and the critical exponents that characterize the behavior of certain

observables in these systems can be well understood and computed from a CFT approach. Furthermore,

thanks to holographic approaches such as the well-known AdS/CFT correspondence or the more recent
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Celestial Holography program, the study of CFTs can directly shed light on aspects of quantum gravity

that are still not understood. Two-dimensional CFTs also appear in the context of string theory as the

theories that describe the dynamics of the string worldsheet.

One of the first breakthroughs in the non-perturbative understanding of CFTs happened in the ’70s,

with the introduction of Polyakov’s conformal bootstrap program [4]. This consisted in the exploitation

of general features such as conformal symmetry, locality, and unitarity, to obtain systems of algebraic

equations for anomalous dimensions and coupling constants that could then be solved. The strength of

this approach was not only that it did not rely on any perturbative expansion, but it could even be used

without any information on a possible underlying Lagrangian. This led to the impressive results in two

dimensions we hinted to above, [3].

For years, however, this type of approach failed to extend beyond the realm of two-dimensional CFTs.

This until 2008, when the program was revived in a paper by Rattazzi, Rychkov, Tonni, and Vichi [5],

in which was shown that conformal consistency conditions can be used together with numerical methods

to obtain bounds on the parameters of CFTs. Since then, numerous numerical and analytic approaches

have been introduced and used [6–16], which allowed to gather an astounding amount of data on CFTs,

among which surely stands out the incredibly precise numerical estimate of the critical exponents in the

3D Ising model [9, 17].

In its modern version, the conformal bootstrap mainly revolves around the Operator Product Expansion

(OPE), which allows replacing the product of two fields in a correlator with an infinite sum over insertions

of one single field. Repeated application of the OPE allows for a full decomposition of correlators in

terms of kinematical functions, the conformal blocks, combined with some dynamical coefficients. The

associativity of the OPE implies that regardless of the order of the operations, also known as OPE

channel, the different conformal block expansions need to encode the same result and thus be equivalent.

This is translated to formulas as the crossing equations, which can be used as consistency conditions to

“bootstrap” non-perturbative data.

In the bootstrap approach is therefore of crucial importance to get good control over the conformal block

expansion. A seminal contribution in this direction was that of Dolan and Osborn [18, 19], who intro-

duced a technique based on Casimir operators and associated differential equations which allows efficient

computation of certain four-point conformal blocks. This paved the way for many results concerning

four-point conformal blocks [20–31], which themselves allowed to apply the bootstrap techniques for a

wide variety of four-point functions.

For many years these were almost the only type of correlators that attracted the focus of the bootstrap

community. This is because if one were to know all the possible four-point functions of a certain CFT,

one would then be able to compute any correlator with any number of external legs, thanks to the OPE.

In recent years, however, it has become more and more clear how the application of the bootstrap logic

to multipoint correlators, i.e. correlators with more than four external fields, could grant much easier

access to certain observables [32–35].

But, to reiterate, in order to do bootstrap it is crucial to have well under mathematical control the

conformal block expansion. This is not yet the case for general correlators, as the approaches established

for four points do not scale as easily to higher number of points, while new approaches targeted directly

to multipoint correlators have only recently started to gain traction [36–40]. This is the context of this

thesis, whose goal is to delve into the subject of multipoint conformal blocks from the point of view of the

differential equations these satisfy, in an extended version of the Dolan-Osborn approach to a higher-point

setting. The main results of this thesis have been published already in [41–44] by the author of this thesis

and collaborators, with contributions equally distributed among all the authors.

We will now outline the structure of this thesis. Chapter 2 is a general review of Conformal Field Theory,

which introduces most of the basic concepts and tools that are needed throughout the rest of the thesis.
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1. Introduction

Most of the results are rather standard and can be found in reviews such as [45]; the perspective with

which these results are examined is however atypical, tailored towards the use that will be made of in

later parts of this work. Particular focus is posed on the embedding space formalism – a tool which can be

used to greatly simplify CFT computations – and the constraints that conformal invariance imposes on

the correlators. This discussion leads to the introduction of the concept of conformal blocks, ubiquitous

in this thesis.

Chapter 3 reports the new findings of [41, 42], in which we introduced a novel connection between the

problem of (multipoint) conformal blocks and the integrable Gaudin models. This represents a natural

extension of the Dolan-Osborn set of Casimir differential operators, which are complemented with newly

introduced vertex differential operators to make the multipoint conformal block problem integrable.

Chapter 4, based on [44], targets the study of OPE limits for conformal blocks in the comb channel. A

novel type of conformally invariant coordinates is introduced, which allows a simple analysis of the leading

behaviour of blocks associated with a certain exchanged field. This leads to remarkable factorization

formulas, which make explicit how, when taking OPE limits, the conformal blocks are reduced to products

of its sub-components. This allows the reduction of the system of differential equations associated with a

multipoint conformal block, to smaller systems that characterizes blocks with a lower number of external

fields.

One such type of reduced system is then analyzed in chapter 5, where the focus is targeted towards three-

point functions with one associated degree of freedom. These systems correspond to any three-point

function that can be obtained from reduction of an N -point function in the comb channel. In particular,

we report the results of [43], where the single vertex differential operator that characterizes these systems

is analyzed, and is identified as the Hamiltonian of a crystallographic elliptic Calogero-Moser-Sutherland

model.

We finally wrap up in chapter 6 with some closing remarks and an outlook on future research.
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Chapter 2

Conformal Field Theory

Any theory compatible with Einstein’s special theory of relativity must be invariant under the the Poincaré

group of symmetry. This consists in all transformations that leave the flat metric of spacetime invariant:

ds′ 2 = gµνdx
′µdx′ ν = gµνdx

µdxν = ds2 , (2.1)

with gµν = ηµν = diag(−1, 1, . . . , 1) for Lorentzian signatures and gµν = δµν for Euclidean signature.

The individual transformations that make up this group are the Lorentz transformations

eL
µ
ν : xµ →Mµ

ν x
ν , MT gM = g =⇒ ds′ 2 =

(
gµνM

µ
ρM

ν
σ

)
dxρdxσ = gµνdx

µdxν (2.2)

and the translations

ea
µPµ : xµ → xµ + aµ =⇒ ds′ 2 = gµν d(x

µ + aµ) d(xν + aν) = gµνdx
µdxν . (2.3)

Theories which enjoy conformal symmetry are invariant under a larger group of symmetry which ex-

tends the Poincaré transformations above; these are all transformations that leave angles invariant or,

analogously, that leave the metric invariant up to an overall factor:

ds′ 2 = gµνdx
′µdx′ ν = Λ(x)2gµνdx

µdxν = Λ(x)2ds2 . (2.4)

A generic conformal transformation is spanned by the Poincaré transformations defined above, for which

Λ(x)2 = 1, plus two additional types. These are the dilatations

eλD : xµ → λxµ =⇒ ds′ 2 = λ2gµνdx
µdxν (2.5)

and the conformal inversion

I : xµ → xµ

x2
=⇒ ds′ 2 = (x2)−2gµνdx

µdxν , (2.6)

which is a unipotent transformation I2 = 1. This last transformation, the conformal inversion, is the

only one we introduced so far which is not connected to the identity. For many purposes it is often best

to also introduce the special conformal transformations, connected to the identity, which are obtained by

composing an inversion, a translation, and another inversion:

ea
µKµ = e−a

µIPµI = Ie−aµPµI : xµ → xµ − x2aµ
1− 2(a · x) + x2a2

. (2.7)

The infinitesimal version of the conformal transformations connected to the identity can be studied by

plugging x′µ = xµ + εµ(x) in (2.4), obtaining the Conformal Killing Equation (CKE)

∂µεν + ∂νεµ =
2

d
[∂ · ε(x)] gµν . (2.8)

In d > 2, the solutions to this equation correspond precisely to the infinitesimal version of the transfor-

mations (2.2), (2.3), (2.5), (2.7), from which it is also straightforward to obtain the expressions for the

generators:

17



2.1. States and fields in Conformal Field Theory

• Lorentz transformations:

εµ = ω[µν]xν =⇒ Lµν = −xµ∂ν + xν∂µ ; (2.9)

• Translations:

εµ = aµ =⇒ Pµ = ∂µ ; (2.10)

• Dilatations:

εµ = λxµ =⇒ D = xµ∂µ (2.11)

• Special conformal transformations:

εµ = 2xµ(b · x)− bµx2 =⇒ Kµ = 2xµ(x · ∂)− x2∂µ . (2.12)

These generators satisfy the following commutation relations

[D,Lµν ] = 0 , [Pµ, Pν ] = 0 , [Kµ,Kν ] = 0 ,

[D,Pµ] = Pµ , [D,Kµ] = −Kµ ,

[Kµ, Pν ] = 2gµνD − 2Lµν ,

[Lµν , Pρ] = gνρPµ − gµρPν ,
[Lµν ,Kρ] = gνρKµ − gµρKν ,

[Lµν , Lρσ] = gνρLµσ − gµρLνσ + gνσLρµ − gµσLρν ,

(2.13)

which form an so(d, 2) algebra in Lorentzian signature, or an so(d+ 1, 1) algebra for the Euclidean case.

To make this manifest, one can add the two null directions + and − to form a (d+2)-dimensional index

A = {+,−, µ}, with corresponding metric being

gAB =




0 − 1
2

− 1
2 0

02×d

0d×2 gµν


 (2.14)

and recombine generators in the following way

M−+ = 2D , M+µ = Pµ , M−µ = −Kµ , Mµν = Lµν , (2.15)

from which it is simple to check that the commutation relations acquire the form of a (generalized)

Lorentz algebra

[MAB ,MCD] = gBCMAD − gACMBD + gBDMCA − gADMCB . (2.16)

Quantum Field Theories which are invariant under the set of transformations described here are known

as Conformal Field Theories (CFTs), and are the main focus of this thesis. From now on, we will be

mainly working in Euclidean signature, referring back to Lorentzian signature only for some comments.

2.1 States and fields in Conformal Field Theory

The first important thing to describe in a quantum theory is its space of states, or in other words, its

Hilbert space. In Euclidean CFTs it is natural to foliate space with Sd−1 spheres, with leftover radial

direction representing Euclidean time. As “zero time” slice one can consider the unit sphere, on which

it is possible to construct the Hilbert space. This will admit a natural “time” evolution through the

action of the dilatation generator, which for positive scale factor maps spheres into larger and larger

ones, as schematically represented in Figure 2.1a. The dilatation operator assumes therefore the role

of the Hamiltonian in this type of quantization, known as radial quantization. A completely equivalent

visualization of this quantization, which also gives a perhaps more interpretation of the time coordinate,
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2. Conformal Field Theory

t = −∞
t = 0

r = 1 r = et
∗

r =∞
t =∞

et
∗D

(a) Radial quantization in flat space

t

t = 0

t = −∞

t =∞

et
∗D

(b) Mapping of radial quantization to a cylinder

Figure 2.1: (a) Radial quantization in Euclidean CFT, where equal time slices correspond to Sd−1

spheres. Time evolution is implemented by the action of the dilatation generator D, which for past and
future infinite times makes the Sd−1 degenerate into the point at the origin or the point at infinity. The
same configuration can be conformally mapped to a cylinder R×Sd−1 as in (b), where the time direction
is naturally interpreted as the R component of the cylinder.

is given by considering the conformal mapping from flat space to a cylinder – see Figure 2.1b – by which

the radial coordinate is logarithmically mapped to a Euclidean time direction on the cylinder

r → t = log r =⇒ ds2 = dr2 + r2ds2Sd−1 = r2
(
dt2 + ds2Sd−1

)
= r2ds2cyl

conf.≃ ds2 . (2.17)

In this type of quantization, Lorentzian conjugation corresponds to Euclidean time reflection:

(|ψ(tL)⟩)† =
(
etLD |ψ(0)⟩

)†
= ⟨ψ(0)| e−tLD = ⟨ψ(tL)|
⇓

(|ψ(tE)⟩)† = (|ψ(itL)⟩)† =
(
eitLD |ψ(0)⟩

)†
= ⟨ψ(0)| eitLD = ⟨ψ(−itL)| = ⟨ψ(−tE)| ,

(2.18)

which is actually the same operation as a conformal inversion:

xµ = rx̂µ = etx̂µ
t→−t−→ e−tx̂µ = r−1x̂µ =

xµ

|x|2
= I xµ , (2.19)

under which we know from (2.7) that Pµ generators are mapped to Kµ and vice versa. This implies that

in radial quantization we have the relation

P †
µ = Kµ , (2.20)

while for Lorentz/rotation generators we have the usual relation

L†
µν = LTµν = Lνµ = −Lµν . (2.21)

In this thesis we will consider only the case of unitary CFTs, with therefore a unitary time evolution

dictated by the Hamiltonian D, and with a positive semi-definite energy spectrum. It is therefore natural

in this case to consider as basis of states one which diagonalizes the Hamiltonian

D |∆, ϱ⟩ = ∆ |∆, ϱ⟩ , (2.22)

with eigenvalue ∆ known as the conformal dimension, and ϱ being equal to a set of labels that fully

specify the basis element being considered. Given the commutation relations of Pµ and Kµ with D, one

can see that states obtained by action of these generators increase or respectively decrease the conformal

dimension

D (Pµ |∆, ϱ⟩) = [D,Pµ] |∆, ϱ⟩+ Pµ (D |∆, ϱ⟩) = (∆ + 1) (Pµ |∆, ϱ⟩) , (2.23)

D (Kµ |∆, ϱ⟩) = [D,Kµ] |∆, ϱ⟩+Kµ (D |∆, ϱ⟩) = (∆− 1) (Kµ |∆, ϱ⟩) . (2.24)
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2.1. States and fields in Conformal Field Theory

To have a positive semi-definite spectrum in ∆, it is necessary that for some n:

(Kµ)
n |∆, ϱ⟩ = 0 . (2.25)

This implies the existence of a class of states which are highest-weight, namely that satisfy (2.25) with

n = 1. These are known as conformal primary states, while all the other states – obtained by acting

with Pµ on primaries – are known as their descendants. The set made by a primary state and all of its

descendants is also known as a conformal multiplet.

Requiring to have a positive semi-definite scalar product and therefore a Hilbert space, imposes constraints

on the ∆ spectrum of the CFT; for example for a scalar primary state |∆⟩ one has

0 ≤ ∥Pµ |∆⟩∥2 = ⟨∆|KµPµ|∆⟩ = ∆ , (2.26)

where in this case the repeated indices are not summed over. This instructs us on the fact that in a

unitary CFT the conformal dimension of the states has to be non-negative; the state that saturates the

bound, with ∆ = 0, can be naturally defined to be the vacuum state of the theory. A similar analysis

with the action of two translation generators on a scalar state gives an independent bound

0 ≤
∥∥P 2 |∆⟩

∥∥2 = ⟨∆|K2P 2|∆⟩ = 8 d∆

(
∆+ 1− d

2

)
, (2.27)

which instructs us that, if ∆ > 0, then

∆ ≥ d

2
− 1 . (2.28)

Acting with more than two translation generators turns out not to give independent inequalities, so scalar

fields in unitary CFTs only need to satisfy the unitarity bound (2.28). A similar analysis can be done for

states with non-trivial sod representation ϱ, obtaining bounds which depend on the additional labels of

the state.

Having introduced the space of states we are interested in, we can now introduce a crucial tool that CFTs

are equipped with: a one-to-one correspondence between states and fields (local operators) of the theory,

known as the state-operator map.

The map from operators to states is easily obtained by taking the path integral within a Sd sphere of

radius r∗ that contains the insertion point of the operator. If no operator is inserted (or analogously, if

only the identity operator is inserted), the path integral simply produces a unitary evolution from the

vacuum state at time t = −∞ to the vacuum state at time t = t∗. On the other hand, if we insert a

local operator with definite scaling dimension [D,O∆(0)] = ∆ inside a certain sphere, the path integral

produces a different well defined state at time t = t∗. If the initial operator is inserted at the origin, the

state that is produced is then an eigenstate of D

D (O∆(0) |0⟩) = [D,O∆(0)] |0⟩+O∆(0)D |0⟩ = ∆(O∆(0) |0⟩) , (2.29)

which is no longer the case if the operator is inserted at another point xµ ̸= 0. In this other case, the

state can be however written as a linear combination of the eigenstates above:

O∆(x) |0⟩ = ex·PO∆(0)e
−x·P |0⟩ = ex·P (O∆(0) |0⟩) =

∑

n

1

n!
(x · P )n (O∆(0) |0⟩) , (2.30)

where we used the fact that the vacuum state is invariant under translations.

The map from states to operators can be obtained by defining the field O∆,ϱ through the equation

⟨O1(x1)O2(x2) . . .O∆,ϱ(0)⟩ = ⟨0|O1(x1)O2(x2) . . .|∆, ϱ⟩ . (2.31)

In particular, states that are primary are mapped to operators which transform under conformal trans-

formations as

O∆,ϱ(x)→ Õ∆,ϱ(x
′) =

1

Λ(x)∆
ϱ[Lµν(x)]O∆,ϱ(x) , (2.32)

20



2. Conformal Field Theory

where Λ(x) is the scale factor that also appeared in (2.4) and ϱ[Lµν ] is a rotation generator that acts in

the representation ϱ.

Since the states that make up the CFT Hilbert space can be prepared by insertions of operators, the

characterization of states is equivalent to discussing which local operators can appear in the theory. From

this moment on we will therefore focus mainly on the field content of the CFT rather than the states.

Fields in CFT are representations of the so(d+ 1, 1) algebra and can be labeled using an so(1, 1) weight

∆, corresponding to the eigenvalue of D, together with n = ⌊d2⌋ (half-)integer labels associated with

Dynkin diagrams for the sod algebra, as in Figure 2.2.

Bn= so2n+1

λ1 λ2 λn−2 λn−1 λn

(a) Odd-dimensional case

Dn= so2n

λ1 λ2 λn−3 λn−2

λn−1

λn

(b) Even-dimensional case

Figure 2.2: Dynkin diagrams for the rotation algebra sod. The Lie algebra type depends on whether
the spacetime dimension is even or odd. Finite-dimensional representations are labeled by these Dynkin
diagrams, where a non-negative integer is assigned to every node.

For our purposes, it will be very convenient to introduce an analogous labeling system for sod with mi

as defined in Table 2.1.

d = 2n+ 1 d = 2n

j1 = λ1 + λ2 + · · ·+ λn

2 j1 = λ1 + λ2 + · · ·+ λn−1+λn

2

j2 = λ2 + · · ·+ λn

2 j2 = λ2 + · · ·+ λn−1+λn

2

...
...

jn−1 = λn−1 +
λn

2 jn−1 = λn−1+λn

2

jn = λn

2 jn = λn−1−λn

2

Table 2.1: Map from the Dynkin labels λi to the spins ji of sod representations.

Given that the λi are non-negative integers, the labels ji are therefore half-integers satisfying the inequal-

ities

j1 ≥ j2 ≥ j3 ≥ · · · ≥ jn−1 ≥ |jn| ≥ 0 , (2.33)

where the last equality becomes simply jn ≥ 0 in odd dimensions.

The results of this thesis concern mainly scalar and tensor representations, we will thus focus mostly on

these. We will name the ji labels the spins of the field O∆,j1,...,jL , and we will name such a field with ji

integers a Mixed-Symmetry Tensor with L spins, in short MSTL. We will refer to the number of spins

L as the (spin) depth of the sod representation. For the case of one single spin label – namely for depth

L = 1 representations – we will use the standard terminology of Symmetric Traceless Tensor, or STT.

When dealing with STTs or MST2 fields we will also often rename the spin variables to

l ≡ j1 , ℓ ≡ j2 , (2.34)

such that indices become more manageable when dealing with more than one field.

For tensor representations, the ji labeling has the advantage of making very manifest the symmetries in

the index structure of the fields, as these can now be represented as

O
(
µ
(1)
1 ... µ

(1)
j1

)(
µ
(2)
1 ... µ

(2)
j2

)
...

(
µ
(L)
1 ... µ

(L)
jL

)
(x) (2.35)
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2.2. The Operator Product Expansion

with each µ(i) group of indices being symmetrized, while exchanges of µ
(i)
k ↔ µ

(j)
p with (i) ̸= (j) produce

minus signs.

Note how the representation as (2.35) are not irreducible if d is even and jn ̸= 0, namely where the set

of nodes with nonzero Dynkin labels has the same topology as Figure 2.2b. In this peculiar case, in fact,

fields can be decomposed into self-dual part ⋆O = O and anti-self dual part ⋆O = −O; we will review

this case in more detail in section 2.3.2.

Having introduced the types of operators that our theories of interest are made of, we can now introduce

tools which very powerful tools that greatly simplify computations of correlators in Conformal Field

Theory: the operator product expansion and the embedding space formalism.

2.2 The Operator Product Expansion

In the previous section, we discussed how CFTs are supplied with a correspondence between local op-

erators and states. A natural question to ask in this context is what happens if we act with a second

operator Oi(x1) on a state produced by the action of an operator on the vacuum, such as in Oj(x2) |0⟩.
This operation in general will not produce an eigenstate of the dilatation generator, but the result can

be expanded on a basis of eigenstates, which we know are either primary or descendant:

Oi(x1)Oj(x2) |0⟩ =
∑

Ψ primary

cΨ |Ψ(∆k, ϱ, P
n)⟩ (2.36)

where Ψ is a state which for n = 0 is a primary and for n > 0 is a descendant, while cΨ is the coefficient

that multiplies the state |Ψ⟩. If we are radially quantizing around some point y, we know from the

state-operator map that the state |Ψ⟩ can be seen as being produced by the insertion of a single primary

operator Ok(y), possibly acted upon with some translation generators in case the state is a descendant.

In more explicit terms, this means that we can rewrite the product of two fields acting on the vacuum as

Oi(x1)Oj(x2) |0⟩ =
∑

k primary

λijkf̂ijk(x1, x2, y, ∂y)Ok(y) |0⟩ , (2.37)

which is valid in any Sd−1 sphere centered in y that contains only the two fields Oi(x1) and Oj(x2). It is
important to note that not all primaries can appear in this expansion, but rather only those that belong

to the tensor product representation of Oi(x1) and Oj(x2). Stripping away the states from (2.37), this

can be rewritten only in terms of fields as

Oi(x1)Oj(x2) =
∑

k primary

λijkf̂ijk(x1, x2, y, ∂y)Ok(y) (2.38)

which is known as the Operator Product Expansion, or OPE in short.

Expression (2.38) is understood to be valid inside of a correlator, and as long as there are no additional

fields inserted within the sphere of radius r∗ = max(|x1 − y|, |x2 − y|) centered at y, see Figure 2.3.

It can be checked that the form of the differential operators f̂ijk(x1, x2, y, ∂y) is completely fixed by

conformal invariance. This means that the theory-dependent content in the OPE is therefore only the

set of λijk, known as the OPE coefficients.

Using iteratively the OPE it is possible to decompose any N -point function to a linear combination of

two-point functions, whose form can be determined exactly. The coefficients that appear in this linear

combination are simply products of the OPE coefficients; this implies that with full knowledge of the

spectrum {∆, ϱ} of a theory and all of its OPE coefficients, it is possible to fully determine any correlator

and therefore any observable of the theory. For this reason the set of OPE coefficients and spectrum

quantum numbers is known as the CFT data, which constitutes the only dynamical content of a CFT.
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rconv

y

O1(x1)

O2(x2)

Oi2(xi2)Oi1(xcl.)

Oi3(xi3)

Oi4(xi4)

=
∑

λ12kf̂12k
k

rconv

Ok(y)

Oi2(xi2)Oi1(xcl.)

Oi3(xi3)

Oi4(xi4)

Figure 2.3: Schematic representation of an Operator Product Expansion between fields O1(x1) and
O2(x2), centered at y. This operation is possible as long as there are no additional operators within
a circle that encompasses both fields (the red circle in this figure is the smallest one). The radius of
convergence corresponds to the distance between y and the closest operator to it which is not involved
in the OPE (located at xcl. in this figure).

2.3 The Embedding Space Formalism

We saw with (2.15) that the conformal generators can be naturally lifted to Lorentz generators of a

(d+ 1, 1)-dimensional space. This is also known as the embedding space. In this section we would like to

make this mapping concrete also for coordinates, constructing an invertible map that relates vectors in d

dimensional Euclidean space to vectors in d+2 dimensional Lorentzian space subject to two constraints,

such that the number of degrees of freedom match.

To do so, one can consider vectors XA which are null and projective, such that the two constraints are

compatible with Lorentz transformations. These, given an index A = {+,−, µ} and a metric

ds2 = dXAdXA = −dX+dX− + δµνdX
µdXν , (2.39)

are related to the vectors xµ via

XA = λ
(
1, x2, xµ

)
∼
(
1, x2, xµ

)
, (2.40)

where ∼ stands for projective equivalence of these vectors.

In (2.40) we have picked as a reference a particular section of the null cone, which corresponds to the

RHS after the ∼ sign. This reference section, known as Poincaré section or Poincaré patch, is rather

important, as every time we manipulate expressions with embedding space vectors XA we always have to

project back to a Poincaré section of the form (2.40) with X+ = 1 to obtain meaningful results. This fact

is also the key to recover conformal transformations from Lorentz transformations in embedding space:

after transforming X →MX we have to rescale X by a factor λ(X) such that X+ = 1. This transforms

the metric as

ds′ 2 = d
(
λ(X)XA

)
d (λ(X)XA)

=
(
λ(X)dXA +XA∇λ · dX

)
(λ(X)dXA +XA∇λ · dX)

= λ(X)2dXAdXA (2.41)

where we used the fact that XA lives on the light-cone and thus X2 = X · dX = 0. Upon restriction to

X+ = 1, which in turn implies dX+ = 0, we obtain

ds′ 2 = λ(X)2dXAdXA
X+=1−→ λ(x)2gµνdx

µdxν (2.42)

which can be clearly interpreted as a conformal transformation of d-dimensional space with scale factor

Λ(x) ≡ λ(x).
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2.3. The Embedding Space Formalism

2.3.1 Scalar fields in embedding space

We now would like to understand how fields look like when lifted to the embedding space, starting with

the simplest case of scalar operators. A natural condition to require is that when the embedding space

field ϕ(X) is restricted to the Poincaré patch (2.40) it has to coincide with the field in physical space

ϕ(X)
∣∣
X+=1

≡ ϕ(x) . (2.43)

Furthermore, the field is required to have homogeneous dependence on X

ϕ(λX) = λ−∆ϕ(X) (2.44)

and the action of so(d+1, 1) transformations on it has to be implemented by usual Lorentz transformations

[MAB , ϕ(X)] = TABϕ(X) , TAB = XA
∂

∂XB
−XB

∂

∂XA
. (2.45)

The properties we just described imply that when taking a Lorentz transformation in embedding space,

we have

ϕ(x) ≡ ϕ(X)
∣∣∣
X+=1

Mµν−→ ϕ(X ′) = (X ′+)−∆ϕ
(
X ′∣∣

X′+=1

)
≡
(
X ′+)−∆

ϕ(x) (2.46)

where we recovered precisely the way primary operators transform, (2.32), with Λ(X) ≡ X ′+. The main

advantage of working with the embedding space fields, is that the conformal generators become linear

operators, and we can easily construct and manipulate the Lorentz invariant expressions, which will allow

us to construct with ease the conformal correlators. In fact, due to (2.44) we have that correlators are

homogeneous functions of all the Xi variables, with i = 1, . . . , N being an index that runs through all

external fields

⟨ϕ1(λ1X1) . . . ϕN (λNXN )⟩ = λ−∆1
1 · · ·λ−∆N

N ⟨ϕ1(X1) . . . ϕN (XN )⟩ . (2.47)

This homogeneity degree can only be composed by the invariant building blocks we have at our disposal,

which in this case are simply the scalar products

Xij ≡ Xi ·Xj = −
(xi − xj)2

2
, (2.48)

where we also specified their relation with the physical space coordinates xi. The simplicity of the

condition (2.47) together with the limited number of invariant building blocks simplifies dramatically the

construction of conformal correlators.

2.3.2 Tensor fields in embedding space

We saw in section 2.1 that spinning fields – those that have a non-trivial sod representation – are associated

with L indices j1, . . . , jL and, in case the ji are all integers, these correspond to tensor representations

MSTL. In this section we want to construct their lift to embedding space tensors and express them in a

bosonic index-free formalism.

For these tensor representations, the index structure can usually be repackaged in a Young diagram as

in Figure 2.4, where every box correspond to an index, every row to indices that are symmetrized, and

every column to indices that are antisymmetrized. This Young diagram representation is not irreducible

in the case d is even and the depth is maximal L = d/2, as fields can be further decomposed into a

self-dual part ⋆O = O and an anti-self-dual part ⋆O = −O. We will see the embedding space origin of

this decomposition later in this section, and we will explicitly work with it in section 5.2.2, with particular

focus on the d = 4 case.

When translating Young diagrams to explicit tensorial expressions with indices, one needs to focus either

on the symmetries or on the antisymmetries of the indices. In this thesis we will conventionally choose

the former, and express tensors as we did in (2.35):

O
(
µ
(1)
1 ... µ

(1)
j1

)(
µ
(2)
1 ... µ

(2)
j2

)
...

(
µ
(L)
1 ... µ

(L)
jL

)
(x) . (2.35)
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j1

j2
j3

|jn|

Figure 2.4: Young diagram representation of a tensor field. Rows represent indices that are symmetrized,
and columns represent indices that are antisymmetrized.

The promotion to embedding space tensors follows a similar procedure as the previous subsection, where

we lift the coordinate dependence to light-like vectors in embedding space

O∆,ϱ(x) → O∆,ϱ(X) ,
{
X ∈ R1,d+1|X2 = 0

}
, (2.49)

such that the tensor becomes a homogeneous function of X with degree −∆

O∆,ϱ(λX) = λ−∆O∆,ϱ(X) . (2.50)

The index structure, trivial in the previous case of scalars, is now subject to a promotion from physical

space indices µi to embedding space indices Ai, transforming (2.35) to

O
(
A

(1)
1 ... A

(1)
j1

)(
A

(2)
1 ... A

(2)
j2

)
...

(
A

(L)
1 ... A

(L)
jL

)
(X) (2.51)

with the added constraints of the tensor being transverse with respect to any index

X
A

(k)
i
O

(
A

(1)
1 ... A

(1)
j1

)
...A

(k)
i ...

(
A

(L)
1 ... A

(L)
jL

)
(X) = 0 , (2.52)

and traceless with respect to any pair of indices

η
A

(k1)
i1

A
(k2)
i2

OA
(1)
1 ...A

(k1)
i1

...A
(k2)
i2

...A
(L)
jL (X) = 0 . (2.53)

To avoid cluttering all expressions with many indices, it is often convenient to make use of an index-free

formalism, which allows to repackage all the index information into a polynomial dependence on some

auxiliary vectors. For STTs this has been known for a long time [46, 47], and has been restated in

embedding space in [48]. For MSTL with L ≥ 2, this can be obtained in two different ways, one which

focuses on the antisymmetry properties of the columns of Young tableaux as in [49], and one which

focuses on the symmetries of the rows as in [50]. In this thesis we will follow the latter convention and

introduce one type of “polarization vector” Zp ∈ Cd+2 for every row and thus in a number equal to the

depth L of the MST. A number jp of copies of Zp vectors are then contracted with the indices of the p-th

row to construct an index-free function in the following way:

O∆,ϱ (X,Z1, . . . , ZL) ≡ O
(
A

(1)
1 ...A

(1)
j1

)
...

(
A

(L)
1 ...A

(L)
jL

)
∆,ϱ (X)

(
Z
A

(1)
1

1 · · ·ZA
(1)
j1

1

)
· · ·
(
Z
A

(L)
1

L · · ·ZA
(L)
jL

L

)
. (2.54)

The properties of tracelessness and transversality of the tensor O∆,ϱ are translated into the conditions

X2 = X · Zp = Zp · Zq = 0 (2.55)

for the coordinates, and due to (2.54) the tensor will have a polynomial dependence on the Zp with

homogeneous degree jp, generalizing (2.50) to

O∆,ϱ(λ0X, {λpZp}) = λ−∆
0 λj11 · · ·λjLL O∆,ϱ(X, {Zp}) . (2.56)

Furthermore, the dependence on the auxiliary vectors respects the following set of gauge invariance

conditions

O∆,ϱ

(
X,

{
Zp + βp,0X +

∑

q<p

βp,qZq

})
= O∆,ϱ(X, {Zp}) , ∀βp,q ∈ C . (2.57)
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In this formulation, the generators act on fields as Lorentz transformations both on the X and Zp,

extending (2.45) to

TAB = XA
∂

∂XB
+
∑

p

ZpA
∂

∂ZBp
− (A↔ B) . (2.58)

Before we conclude this brief presentation of embedding space for tensor fields, we want to add some

comments. First, note that functions in the variables X,Zp can be assigned a multi-degree that has L+1

components, one for the variable X and then one for each of the L polarizations Zp. The assignment is

such that a field O with weight ∆ and spins jp has degree [−∆, j1, . . . , jL]. This degree is measured by

the independent rescalings of the variables that we have introduced, and any equation must be such that

this multi-degree is equal on both sides.

At this point, we have rephrased the concept of a tensor field of weight ∆ and spin jp in terms of

functions O∆,ϱ of the variables (X,Zp) subject to the conditions (2.55). These functions must satisfy the

homogeneity conditions (2.56), as well as the gauge invariance conditions (2.57). These two conditions

ensure that the differential operators (2.58) give rise to an irreducible representation of the conformal

algebra. Let us note that the homogeneity conditions (2.56) can also be continued to non-integer values

of jp in case one deals with representations with continuous spin.

It is important to notice how the gauge invariance conditions (2.57) constrain the way in which the

variables Zp can appear in expressions that involve the field O∆,ϱ. In fact, the only gauge invariant

tensors that can be formed from (X, {Zp}) are linear combinations or contractions of the wedge products

C
(0)
A = XA , C

(p)
A1...Ap+1

=

(
X ∧

p∧

q=1

Zq

)

A1...Ap+1

. (2.59)

Let us point out that the projective light ray contains d degrees of freedom. After imposing transversality

X ·Z1 = 0 and the gauge invariance (2.57), there remain d− 2 degrees of freedom in the polarization Z1.

Similarly, Z2 contains d− 4 degrees of freedom, etc. This implies that the variable ZL for tensor fields of

maximal depth L = rankd−1 = d/2 in even dimensions has no continuous physical degrees of freedom.

In the reduction from embedding space variables to gauge-invariant tensors, all C(0), . . . , C(L−1) are fixed

by X, . . . , ZL−1, while C
(L) = C(L−1) ∧ ZL. Up to gauge equivalence, this implies that Span(ZL) is

fixed to be one of two unique null directions in the complex plane orthogonal to Span(X, . . . , ZL−1). To

distinguish these two null directions, we can use the fact that C(L) is a (L+ 1)-form in C2(L+1) given by

the wedge product of L + 1 mutually orthogonal null vectors, and must therefore be either self-dual or

anti-self-dual with respect to the Hodge star,

⋆ C
(L)
A1...AL+1

=
1

(L+ 1)!
ϵA1...A2L+2

C(L)AL+2...A2L+2 = ±C(L)
A1...AL+1

. (2.60)

The above condition separates the space of gauge equivalence classes of (X,Z1, . . . , ZL) into two distinct

SO(d+1, 1) orbits: the self-dual orbit ⋆C(L) = C(L) with L-th polarization vector ZL and the anti-self-dual

orbit ⋆C
(L)

= −C (L)
with L-th polarization vector ZL. When contracting a tensor with polarization

vectors as in (2.54), we get that using vectors in the (anti-)self-dual orbit projects said tensor to its

(anti-)self-dual part, such that the two projections O∆,ϱ (X,Z1, . . . , ZL) and O∆,ϱ̄

(
X,Z1, . . . , ZL

)
define

an irreducible representation of so(d + 1, 1). Tensors in the anti-self-dual representation O∆,ϱ̄ will be

conventionally chosen to be those with negative spin jL.

Poincaré patches for polarization vectors

Let us conclude this subsection on embedding space tensors by having a more in-depth discussion on

the Poincaré patches for the polarization vectors Zp. Due to the orthogonality constraints (2.55), the

homogeneity conditions (2.56) and the gauge invariances (2.57), we know that the embedding space

tensors O∆,ϱ(X,Z1, . . . , ZL) are defined in a manifold which is more constrained than (L + 1) copies of

26
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the embedding space for X. If we then wish to consider only polarizations Zp that belong to the space

where tensors are defined, we will be supplied with additional equivalences between these vectors, that

translate into a more restrictive form of their Poincaré patches.

To make this less abstract and as a warm up for the general case, let us first consider the case of Z1;

the more restricted Poincaré patches for Zp, p > 1 will be constructed iteratively starting from this. As

before, the null and projectiveness constraints imply that we can write Z1 in the form

Z1 =
(
1, z21 , z

µ
1

)
. (2.61)

Using the gauge invariance

Z1 ∼ Z1 + αX

we can subtract X from (2.61) to get

Z1 ∼
(
0, z21 − x2, zµ1 − xµ

)
. (2.62)

Due to Z1 ·X = 0 we know that (z1 − x)2 = 0, which allows to recast the last expression as

Z1 ∼ (0, 2x · (z1 − x), zµ1 − xµ) , (2.63)

and shifting the definition of zµ1 by xµ, one can write the Poincaré patch as

Z1 = (0, 2x · z1, zµ1 ) . (2.64)

The projectiveness of Z1 is inherited by z1, which means that if we express the d-dimensional metric in

terms of complex coordinates

ds2d = dx+dx− + ds2d−2 (2.65)

we can express z1 in a way very similar to (2.40), but in two less dimensions in terms of a (d − 2)-

dimensional vector zµ
′

1,d−2:

zµ1 =
(
1,−z21,d−2, z

µ′

1,d−2

)
.

Starting from Z2, all the successive Zp with p ≥ 2 satisfy the same relations as Z1, plus extra orthogonality

and gauge invariances of the same type as above. This implies that the construction of the Poincaré

patches can be iterated; if we define

Z0 ≡ X , zp,d+2 ≡ Zp , zp,d ≡ zp , (2.66)

and we parametrize the (d−2n)-dimensional metric via complex coordinates by nesting the decomposition

(2.65), we get the iterative definitions

zp,d−2n =

{
(0, 2zn,d−2n · zp,d−2n, zp,d−2n) n ∈ {−1, 0, 1, . . . , p− 2} ,(
1, ζ2p,d+2−2p, ζp,d+2−2p

)
n = p− 1 ,

(2.67)

where p ∈
{
0, 1, . . . ,

⌊
d
2 − 1

⌋}
and ζp,m is an unconstrained m-dimensional vector.

For p =
⌊
d
2

⌋
, the way the iteration stops depends on whether the dimension is even or odd. For odd

dimensions we simply have

ζ⌊ d
2 ⌋,3 =

(
1,−ζ21 , ζ1

)
, ζ1 ∈ C (2.68)

while for even dimensions we end up with two possible two-dimensional projective null vectors:

ζ⌊ d
2 ⌋,2 = (0, 1) (2.69)

ζ⌊ d
2 ⌋,2 = (1, 0) . (2.70)

These two inequivalent solutions to the null and gauge invariance constraints correspond precisely to the

self-dual and anti-self-dual representations we discussed below (2.60), with (2.69) corresponding to the

last two components of Z⌊ d
2 ⌋ and (2.70) to those of Z⌊ d

2 ⌋.
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2.4 Correlation functions in CFT

We will now address the construction of generic correlation functions in CFT using the tools that we

introduced so far. Of great relevance are going to be the basic building blocks (2.59) as well as the

homogeneity constraints (2.56). These tools can be used to fully encode the constraints coming from

conformal symmetry and allow a simple determination of the structure of generic correlators.

2.4.1 One-point functions

One-point functions in CFT are extremely simple. Using the state-operator map we can write one-point

functions as the overlap between two states

⟨0|O(X)|0⟩ = ⟨0|Ψ⟩ , where |Ψ⟩ ≡ O(X) |0⟩ . (2.71)

Since the state |Ψ⟩ has the same degrees of homogeneity as the field O(X), but the vacuum ⟨0| has all zero
homogeneity degrees, the only way to have a nonzero overlap between the two states is if |Ψ⟩ = |0⟩, which
implies that the field we inserted is actually the identity 1. Since we consider states to be normalized to

1, we can summarize this as

⟨O(X)⟩ =
{
1 if O ≡ 1 ,

0 otherwise .
(2.72)

2.4.2 Two-point functions

The construction of two-point functions in embedding space is rather trivial, as these are completely fixed

by conformal invariance. In the scalar case the homogeneity constraint (2.47) is

⟨ϕ1(λ1X1)ϕ2(λ2X2)⟩ = λ−∆1
1 λ−∆2

2 ⟨ϕ1(X1)ϕ2(X2)⟩ (2.73)

and there is only one Lorentz invariant building block that can be used: X12. The fact that X1 and X2

only appear paired together implies that, for them to be present, their homogeneity degree needs to be

the same, i.e. ∆1 = ∆2. If instead the two fields have different conformal dimension, the only way to

satisfy (2.73) is to have a vanishing two-point function. This is summarized in the expression

⟨ϕ1(X1)ϕ2(X2)⟩ =
{
N12X

−∆
12 if ∆1 = ∆2 ≡ ∆ ,

0 if ∆1 ̸= ∆2 ,
(2.74)

where we introduced the normalization factor N12, which in the rest of this thesis we will consider to be

N12 = 1. If we want to project the correlator (2.74) back to physical space, we can use (2.48), which

gives us

⟨ϕ1(x1)ϕ2(x2)⟩ =
{
N12

(
x1−x2

2

)−2∆
if ∆1 = ∆2 ≡ ∆ ,

0 if ∆1 ̸= ∆2 .
(2.75)

Spinning case

For the more generic case of spinning fields O∆1,ϱ1 and O∆2,ϱ2 , we know that we can construct the

C(p) = C
(p)
A1...Ap+1

building blocks introduced in (2.59) up to p = Li for both fields, and correlation

functions need to be constructed out of Lorentz invariants obtained by contractions of these building

blocks. It is easy to see that with only two points at disposal, the only non-zero invariants that can be

constructed are contractions of C objects with the same amount of indices:

H
(p)
ij ≡

1

(p+ 1)!
C

(p)
i · C

(p)
j , (2.76)

where we added a subscript i = 1, 2 to indicate which of the two fields’ variables we are considering for the

C objects. Note that, by our previous definition of C
(0)
A = XA, we have H

(0)
ij = Xij . Other combinations
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of C tensors are bound to vanish, since if, assuming p > q, we take

(
C

(p)
i

)
A1...Ap+1

(
C

(q)
j

)A1...Aq+1

=
(
C

(p)
i · C

(q)
j

)
Aq+2...Ap+1

, (2.77)

we have that contracting this with something that includes Xi (as all the C
(p)
i do) will vanish due to

(2.55), while contracting with something that includes Xj will vanish due to the presence of two Xj

contracted with an antisymmetric tensor C
(p)
i .

In (2.76) we skipped over one special case, namely that for which we have maximal depth representations

in even dimensions p =
⌊
d
2

⌋
. In this case, we can construct four different objects by taking contractions

of C tensors in either self-dual or anti-self-dual representations

H
(d/2)
ij =

1(
d
2 + 1

)
!
C

(d/2)
i · C(d/2)

j , H
(d/2)
ı̄ȷ̄ =

1(
d
2 + 1

)
!
C

(d/2)

i · C(d/2)

j , (2.78)

H
(d/2)
ı̄j =

1(
d
2 + 1

)
!
C

(d/2)

i · C(d/2)
j , H

(d/2)
iȷ̄ =

1(
d
2 + 1

)
!
C

(d/2)
i · C(d/2)

j , (2.79)

two of which are actually vanishing in a way that depends on whether d is a multiple of four or not:

H
(d/2)
ij = H

(d/2)
ı̄ȷ̄ = 0 , (d = 4n) ,

H
(d/2)
ı̄j = H

(d/2)
iȷ̄ = 0 , (d = 4n+ 2) .

(2.80)

Since fields in (anti-)self-dual representation will only be contracted with the (Zd/2) Zd/2 vectors and

not their dual, we have that there is only one tensor structure H which can be used to make up the

homogeneity in (Zd/2) Zd/2. The same applies for the odd dimensional case, with only one H tensor

structure that can make up the homogeneity in the lowest spin j⌊d/2⌋. Once the dependence on the

maximal depth H(L) structure is fixed, there will be only one H structure that can be used to adjust the

homogeneity in the jL−1 spin, and the same applies iteratively until one fixes the ∆i,∆j homogeneity

using H
(0)
ij . This means that in order to satisfy the homogeneity constraints (2.56) for both fields in the

correlator, these need to have the same quantum numbers if d ̸= 0 mod 4, or need to have same quantum

numbers up to the last spin, which has to be opposite, if d = 4n. A general two-point function in CFT

can then be written as

⟨O∆1,ϱ1O∆2,ϱ2⟩ =





∏⌊d/2⌋
p=0

(
H

(p)
s1s2

)|jp|−|jp+1|
if





d ̸= 4n , ∆1 = ∆2 and ϱ1 = ϱ2 ,

or

d = 4n , ∆1 = ∆2 and ϱ1 = ϱ∗2 ,

0 otherwise ,

(2.81)

where jp = 0 for p > ⌊d/2⌋, the conjugate of a representation ϱ corresponds to

ϱ∗ = (∆, j1, . . . , j⌊d/2⌋−1, j⌊d/2⌋)
∗ = (∆, j1, . . . , j⌊d/2⌋−1,−j⌊d/2⌋) ,

the symbol si is defined as

si =

{
i if ji,⌊d/2⌋ ≥ 0 ,

ı̄ if ji,⌊d/2⌋ < 0 ,
(2.82)

and we redefine H
(p)
s1s2 to be simply H

(p)
12 for p < d/2.

2.4.3 Three-point functions

Scalar three-point functions are also completely fixed by conformal symmetry up to a constant. This

time the only conformal invariants that can be constructed in embedding space are

X12 , X23 , X13 . (2.83)
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This implies that scalar three-point functions have to be of the form

⟨ϕ1(X1)ϕ2(X2)ϕ3(X3)⟩ = Xα12
12 Xα23

23 Xα13
13 . (2.84)

The homogeneity condition in this case is

⟨ϕ1(λ1X1)ϕ2(λ2X2)ϕ3(λ3X3)⟩ = λ−∆1
1 λ−∆2

2 λ−∆3
3 ⟨ϕ1(X1)ϕ2(X2)ϕ3(X3)⟩ (2.85)

which leads to the system of equations

α12 + α13 = −∆1 , α12 + α23 = −∆2 , α23 + α13 = −∆3 , (2.86)

that is solved by

⟨ϕ1(X1)ϕ2(X2)ϕ3(X3)⟩ =
λ123

X
∆1+∆2−∆3

2
12 X

∆2+∆3−∆1
2

23 X
∆1+∆3−∆2

2
13

. (2.87)

Note that we used here the same notation as the OPE coefficients that appeared in (2.38). This is not an

accident, as requiring compatibility of the OPE with this form of the three-point function requires that

these three-point coefficients and the OPE coefficients are actually the same objects.

As before, the conversion of the correlator (2.87) to physical space becomes trivial using (2.48), which

gives

⟨ϕ1(x1)ϕ2(x2)ϕ3(x3)⟩ =
λ123

(x1 − x2)∆1+∆2−∆3 (x2 − x3)∆2+∆3−∆1 (x1 − x3)∆1+∆3−∆2
. (2.88)

Two scalars and one spinning operator

Three point functions start to be less and less trivial when introducing spinning fields. The simplest case

of an insertion of just one spinning operator, however, is still fixed up to a constant, as we will now show.

We know from (2.59) that the three-point function can only be made by Lorentz invariants constructed

from the C
(L+1)
A1...AL+1

tensors. We have L + 1 of these associated with the field O∆1,ϱ1(X1, Z1,1, . . . Z1,L),

while for the two scalar fields these correspond simply to the coordinates

(
C

(0)
2

)A
= XA

2 ,
(
C

(0)
3

)A
= XA

3 .

It is immediate to see that it is not possible to have a nonzero three-point function if we have L > 1, as

we do not have enough objects to contract with the C
(L)
A1...AL+1

tensors with more than two indices.

We here recovered the well-known fact that three-point function of two scalars and a spinning field are

nonzero only if the field with spin is an STT. This statement is normally proved using the OPE and the

fact that the tensor product representation of two scalars can only sit in an STT or a scalar representation

itself.

If we then restrict to the only non-trivial case, that of an STT and two scalars, we can now construct an

additional invariant compared to ones of the three-scalar case (2.83):

V1,32 =
X3 · (X1 ∧ Z1) ·X2

X23
. (2.89)

The invariant V1,32 is the only one that can carry the Z1 homogeneity weight, and its presence in the

three-point function is thus fully constrained by (2.56). Once the homogeneity constraint for Z1 is taken

care of, the three-point function can then be fully fixed in the same way as the scalar case, leading to the

result

⟨O∆1,j1(X1, Z1)ϕ2(X2)ϕ3(X3)⟩ = λ123
V j11,32

X
∆1+j1+∆2−∆3

2
12 X

∆2+∆3−∆1−j1
2

23 X
∆1+j1+∆3−∆2

2
13

. (2.90)
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General case: the space of three-point tensor structures

As soon as we add one second spinning operator, three-point functions are no longer fully constrained by

conformal symmetry, and the expression depends very much on the specific case one is interested in.

For example, if we have two STTs and one scalar, it is easy to see that so(d+ 1, 1) invariance combined

with the homogeneity constraints (2.56) is not enough to fix the correlator. We can in fact construct the

zero-homogeneity variable

X =
H

(1)
12

V1,32V2,13
(2.91)

whose dependence on the correlator is not constrained by conformal invariance. In light of similarities

with analogous objects we will construct for the four-point case, we will call variables such as the X we

constructed here cross ratios. The presence of a cross ratio implies that by imposing conformal invariance

and the homogeneity constraints we can only restrict such a correlator to a form of the type

⟨O1(X1, Z1)O2(X2, Z2)ϕ3(X3)⟩ =
V l11,32V

l2
2,13

X
∆1+∆2−∆3+l1+l2

2
12 X

∆2+∆3−∆1−l1+l2
2

23 X
∆3+∆1−∆2+l1−l2

2
31

t(X ) . (2.92)

We know however that the Z dependence need to be polynomial, and that Z appears both in the

H
(1)
12 and Vi,jk objects. This implies that the function t(X ) has to be a polynomial of maximal order

n12 = min(l1, l2), and can be thus expanded in any basis of polynomials up to that order, leading to an

expression of the form

⟨O1(X1, Z1)O2(X2, Z2)ϕ3(X3)⟩ =
V l11,32V

l2
2,13

X
∆1+∆2−∆3+l1+l2

2
12 X

∆2+∆3−∆1−l1+l2
2

23 X
∆3+∆1−∆2+l1−l2

2
31

n12∑

t=0

λt123 gt(X ) .

(2.93)

This last result instructs us on the fact that three-point function are in general not specified by one

single OPE coefficient, but are parametrized by a finite number of coefficients that span the space of

independent three-point tensor structures. Similarly, the OPE of two spinning fields or one scalar and one

spinning field will produce a certain field in multiple terms with different tensor structures, which will

have expansion coefficients λt123 equal to the ones present in (2.93).

When dealing with three spinning fields, or with fields with more than one single spin, it will be possible

to construct more and more cross ratios like X all of which will be associated with a discrete expansion of

similar type to the one in (2.93). For this reason a general expression for spinning three-point functions

would be rather heavy to set up, and we will only discuss in more detail the cases directly involved in

our analysis of [43] in section 5.

2.4.4 Four-point functions

Starting from four-point functions on, correlators are no longer fixed by conformal symmetry up to a

constant.

This can be easily understood by first introducing the concept of a conformal frame, which consists on

a reference configuration of points which can be achieved by acting with conformal transformations on

a generic configuration of points in physical space. This can be seen as some sort of gauge fixing for

conformal transformations.

The conformal frame we will consider can be achieved by taking the following successive transformations

• a special conformal transformation that maps point x3 to ∞, implemented by Ie−x
µ
3 Pµ/x2

3I, which
successively transforms the point as

xµ3
I−→ xµ3

e
−x

µ
3 Pµ/x2

3−→ 0
I−→ ∞ ;

• a translation that maps the transformed x2 point to the origin;
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x2

0

x1

z

θ x3

∞
x4

1

Figure 2.5: Conformal frame for four points in physical space. Any configuration of four points can
be gauge fixed to a plane, with only two leftover degrees of freedom that can be encoded in a complex
vector z.

• an SO(d) rotation that brings point x4 to a reference coordinate direction e⃗1;

• a dilatation that rescales x4 to have unit norm;

• an SO(d−1) rotation, orthogonal to the direction e⃗1, that brings the point x1 to the plane spanned

by directions e⃗1 and e⃗2;

up to this point, we used all conformal transformations except for an SO(d − 2) subgroup, which acts

as a stabilizer of the four-point configuration. We can therefore conclude that any configuration of four

points is conformally equivalent to the one we constructed here, represented in Figure 2.5. At this point,

it is rather easy to see that sets of two or three points do not have any conformally invariant degree

of freedom, as these can always be mapped to 0, ∞, or to 0, 1 and ∞. This agrees with the results

of the previous subsections. For four points, instead, we have a continuum of conformally inequivalent

configurations parametrized by the possible locations of x1 in the (e⃗1, e⃗2) plane
1.

This can also be seen by the fact that, given the basic invariant building blocks

X12 , X13 , X14 , X23 , X24 , X34 , (2.94)

it is possible to construct two independent conformally invariant cross ratios

u =
X12X34

X13X24
, v =

X14X23

X13X24
(2.95)

whose dependence on the correlator cannot be fixed by the homogeneity conditions (2.47) as these have

homogeneity degree zero with respect to all the Xi coordinates.

This implies that scalar four-point functions can therefore be written in the form

⟨ϕ1(X1)ϕ2(X2)ϕ3(X3)ϕ4(X4)⟩ = Ω
{∆i}
4 (X1, X2, X3, X4)F (u, v) (2.96)

where the prefactor Ω
{∆i}
4 is a function of the Xi that satisfies the correct homogeneity constraints (2.47).

The precise form of Ω
{∆i}
4 is a matter of convention, as one can always multiply that prefactor by some

function of the u and v cross ratios and it will still satisfy the homogeneity constraints2. In this thesis,

we will consider the prefactor

Ω
{∆i}
4 =

1

(X12)
∆1+∆2 (X34)

∆3+∆4

(
X24

X14

)∆1−∆2
2

(
X14

X13

)∆3−∆4
2

, (2.97)

which corresponds to the same conventions as [51].

1we are here assuming to be in d > 1 dimensions; in d = 1 the construction of the frame follows the same logic but is
deprived of any rotation and e⃗2 direction, leaving only one conformally invariant degree of freedom along e⃗1

2the definition of the function F (u, v) will of course change accordingly
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The conformal block expansion

We have not yet used all the tools we have at our disposal to obtain information on the four-point

correlators. We have seen in fact in section 2.2 that N -point functions in CFT can always be reduced

to linear combinations of lower-point ones through the use of the OPE. We will therefore now try to

understand what information this expansion can give us.

Let us start from the same four-point function as before. We can now imagine performing the OPE on

the pairs of fields (12) and (34), to get

〈
ϕ1(x1)ϕ2(x2)ϕ3(x3)ϕ4(x4)

〉
=

∑

k

λ12kλ34k

[
f̂12k(x1, x2, y1, ∂y1)f̂34k(x1, x2, y2, ∂y2) ⟨Ok(y1)Ok(y2)⟩

]
. (2.98)

Where we used the fact that the two-point function is non-zero only if the “exchanged” fields produced

in the two OPEs are the same. Alternatively, we could have also just taken one single OPE, e.g. (12), to

get

〈
ϕ1(x1)ϕ2(x2)ϕ3(x3)ϕ4(x4)

〉
=

∑

k

λ12k

[
f̂12k(x1, x2, y, ∂y) ⟨Ok(y)ϕ3(x3)ϕ4(x4)⟩

]

=
∑

k

λ12kλ34k


f̂12k(x1, x2, y, ∂y)

V lky,34

X
∆k−lk+∆4−∆3

2
y4 X

∆4+∆3−∆k+lk
2

43 X
∆k−lk+∆3−∆4

2
y3

∣∣∣∣∣∣
phys.


 (2.99)

which is bound to be the same expression as (2.98), but where we used the fact that three-point functions

with two scalars are completely fixed by conformal symmetry to the form (2.90), which can then be

reduced to physical space.

In both cases, the object in square brackets is completely fixed by conformal symmetry and is referred to

as a conformal partial wave. The conformal partial wave expansion can be combined with the constrained

form of the four-point correlator we had obtained in (2.96) to rewrite the expansion in terms of objects

that depend on the cross ratios only, the conformal blocks g∆12,∆34

∆k,lk
:

⟨ϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4)⟩ = Ω
{∆i}
4 (Xi)

∑

k

λ12kλ34k g
∆12,∆34

∆k,lk
(u, v) . (2.100)

The conformal blocks constitute thus a “basis” of functions on which one can expand the four-point

correlators, and where every individual block repackages all the contributions to a correlator that come

from a certain conformal multiplet (conformal primary operator plus all of its descendants). Note that this

type of expansion is very similar to the one we had in (2.93) for three-points, with the main difference

being that the expansion in four-point blocks comprises an infinite amount of terms. In light of this

analogy, we will be calling the basis of functions gt(X ) for three-point correlators three-point blocks.
The strength of the expansion (2.100) is that it provides a clear separation between dynamical theory-

dependent quantities, represented by the OPE coefficients λijk, and kinematical quantities which are

universal for any CFT, the conformal blocks. It is thus clear that the determination of conformal blocks

in CFT is of crucial importance to the writing of explicit expressions for four-point correlators.

OPE channels and crossing symmetry

There is nothing fundamental in the choice we made in (2.98) for how to decompose the correlator with

the use of the OPE; we could have analogously picked the two pairs of fields of which we computed the

OPE in a different way, and we would have obtained a different type of expansion for the same correlator.

These inequivalent ways in which correlators can be OPE decomposed are known as OPE channels, which

33



2.4. Correlation functions in CFT

are in one-to-one correspondence with trivalent tree diagrams that connect N points, as in Figure 2.6.

The choice we made in (2.98) corresponds to the so-called s-channel expansion of Figure 2.6a, but there

in total two more inequivalent ways to decompose that correlator: the t-channel of Figure 2.6b and the

u-channel of Figure 2.6c.

O∆k,lk

φ1

φ2 φ3

φ4

(a) s channel

O∆k,lk

φ1 φ4

φ3φ2

(b) t channel

O∆k,lk

φ1 φ4

φ3φ2

(c) u channel

Figure 2.6: All the possible OPE decompositions of four-point correlators. These are obtained by taking
OPEs of pairs of fields until one has reduced the correlator to a sum over two-point functions of a certain
“exchanged” operator O∆k,lk .

The fact that all these different expansions give rise to the same correlator can be seen as an exchange

symmetry for the correlator, known as crossing symmetry, which gives rise to some non-trivial equalities.

For example, exchanging the fields ϕ2 and ϕ4, an s-channel expansion gets transformed into a t-channel

one, while the cross ratios u and v get exchanged. This translates into a crossing equation of the form:

v
∆2+∆3

2

∑

k

λ12kλ34kg
∆12,∆34

∆k,lk
(u, v) = u

∆3+∆4
2

∑

k′

λ23k′λ41k′g
∆23∆41

∆k′ ,lk′ (v, u) . (2.101)

This type of equation is at the core of the conformal bootstrap program, an approach which reverses the

logic of determining N -point functions from knowledge of lower-point ones using the OPE, to that of

using symmetry constraints such as crossing on N -point functions to extract information on the allowed

CFT data of a theory.

Four-point conformal blocks and the Casimir equations

Since the four-point functions are the simplest type of correlators for which one can write crossing

equations, the focus of the CFT and bootstrap community has been mainly targeted towards these,

which lead to a very strong insight on four-point blocks. First powerful results were obtained initially in

[18], where the authors, Dolan and Osborn, directly analyzed the OPE expansion and found a recurrence

relation which could be explicitly solved in d = 2 or d = 4 dimensions to determine four-point blocks

with scalar external legs. It was however not until their later work [19], that a much more efficient way to

determine blocks was found. In this paper, they used the fact that fields in CFT, including the primaries

exchanged in the diagrams of Figure 2.6, satisfy eigenvalue equations associated with Casimir operators;

this simple fact can actually be used to obtain differential equations for conformal blocks as we will now

discuss.

Casimir operators are elements of the universal enveloping algebra of a Lie algebra that commute with all

elements of the algebra. For this reason, Casimirs are used to label representations, and the number of

independent Casimirs that can be constructed for our case of interest, so(d+ 1, 1), corresponds precisely

to the number of labels we introduced in section 2.1:
⌊
d
2 + 1

⌋
. These Casimir operators are constructed

starting from tensors κ
α1...αp
p , with α indices in the adjoint representation, which are invariant tensors

under the action of the Lie algebra. These tensors are then contracted with the conformal generators

to form the Casimirs. If we restrict our attention to STTs labeled by (∆, l ≡ j1), the two only relevant
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2. Conformal Field Theory

Casimir operators are

Cas2 = καβ2 MαMβ =
1

2
MABM

BA (2.102)

Cas4 = κα1α2α3α4
4 Mα1Mα2Mα3Mα4 =

1

2
MABM

BCMCDM
DA (2.103)

which acting on irreps evaluate to

Cas2 |O∆,l⟩ = [∆(∆− d) + l(l + d− 2)] |O∆,l⟩ ≡ c(2)∆,l |O∆,l⟩ (2.104)

Cas4 |O∆,l⟩ =
[
∆

2

(
d2 (3∆ + 1)− d3 − d∆(4∆ + 1) + 2∆3

)

+
l

2

(
2l3 + 4(d− 2)l2 +

(
3d2 − 13d+ 12

)
l + d3 − 7d2 + 14d− 8

)]
|O∆,l⟩ ≡ c(4)∆,l |O∆,l⟩ ,

(2.105)

where we introduced the constants c
(p)
∆,l.

Note that if we act on a state generated by two fields, we obtain

Caspϕ1(X1)ϕ2(X2) |0⟩ = Dp12ϕ1(X1)ϕ2(X2) |0⟩ (2.106)

with

D2
12 =

1

2
(T12)AB (T12)BA , D4

12 =
1

2
(T12)AB (T12)BC (T12)CD (T12)DA , T12 = T1 + T2 ,

(2.107)

and Ti being the action of conformal generators as differential operators on the i-th field.

Let us now consider a conformal partial wave expansion, e.g. in the s-channel. This can be seen as a

summation of four-point correlators where certain projection operators P∆,l are inserted in the middle:

∑

∆,l

⟨0|ϕ1(X1)ϕ2(X2)P∆,lϕ3(X3)ϕ4(X4)|0⟩ . (2.108)

If we focus on one single term of the expansion and act on this with the differential operator Dp12, we can
see this as a four-point function with an additional insertion of a Casimir operator

Dp12 ⟨0|ϕ1(X1)ϕ2(X2)P∆,lϕ3(X3)ϕ4(X4)|0⟩ = ⟨0|ϕ1(X1)ϕ2(X2)CaspP∆,lϕ3(X3)ϕ4(X4)|0⟩ . (2.109)

At this point, the Casimir operator can be made act on the projection on the right, obtaining the

differential equation

Dp12 ⟨0|ϕ1(X1)ϕ2(X2)P∆,lϕ3(X3)ϕ4(X4)|0⟩ = c
(p)
∆,l ⟨0|ϕ1(X1)ϕ2(X2)P∆,lϕ3(X3)ϕ4(X4)|0⟩ . (2.110)

The expectation values in (2.110) are the conformal partial waves, which from (2.100) we know correspond

to the conformal blocks multiplied by the prefactor Ω
{∆i}
4 (Xi). By extracting this, it is possible to

rewrite this as a differential equation for conformal blocks, the so-called Casimir equation, which therefore

depends only on the cross ratios:

(
Ω

{∆i}
4 (Xi)

)−1

Dp12
(
Ω

{∆i}
4 (Xi)g

∆12,∆34

∆,l (u, v)
)
≡ D′ p

12g
∆12,∆34

∆,l (u, v) = cp∆,lg
∆12,∆34

∆,l (u, v) . (2.111)

Later on in this thesis we will often abuse the notation and remove the prime symbol on the differential

operators D′ p
(ij) that act in cross-ratio space. For more concrete expressions, we refer the reader to

section 4.2.1 and, in particular, equation (4.8).

Note how by looking for solutions of (2.111) for p = 1, 2 we are looking for a basis of functions

g∆12,∆34

∆,l (u, v) in two variables which simultaneously diagonalizes two operators Dp12. In other words

we could say that the number of “conserved charges” of the system equals the number of degrees of
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2.4. Correlation functions in CFT

freedom in it, which makes the determination of four-point conformal blocks an integrable problem. This

instructs us on the fact that solving (2.111) is enough to fully determine four-point conformal blocks.

What we just exposed in this subsection is the type of approach introduced by Dolan and Osborn in

[19], which requires the solution of the Casimir equations, in particular of the quadratic one, to efficiently

determine four-point conformal blocks for scalar external legs. Thanks to this, scalar blocks are known

in closed form for even dimension d, while they can be written as series expansions for odd dimensions.

Stemming from this original idea, many efficient approaches have been established for general four-point

blocks including those with spinning external legs, see e.g. [20–31].

2.4.5 Higher-point functions

Analogously to the four-point case, scalar conformal correlators for N > 4, known as multipoint correla-

tion functions or higher-point functions, have a number of invariant degrees of freedom left unconstrained

by conformal symmetry, the cross ratios. The number of cross ratios increases with N in a way that

depends on the dimension d, and which is easy to understand starting from the four-point conformal

frame picture we explained in the previous section. There, we understood that four-point configurations

in Euclidean space are all conformally equivalent to the one where three points are at fixed positions

(x2, x3, x4) = (0,∞, e⃗1) and x1 is located in the e⃗1e⃗2 plane. Furthermore, an SO(d − 2) subgroup acts

as a stabilizer of the four-point configuration. Every time we introduce an i-th point, 4 < i ≤ d+ 2, we

introduce a d-dimensional vector which can be acted upon with the stabilizer subgroup of i − 1 points,

SO(d + 2 − i). This reduces the number of degrees of freedom that are introduced at any step to i − 2.

This happens until the number i reaches d+ 2, after which with every additional point one introduces d

unconstrained degrees of freedom. The total number of cross ratios for an N -th point function amounts

therefore to

ncr(N, d) =

{ 1
2N(N − 3) N ≤ d+ 2

Nd− 1
2 (d+ 2)(d+ 1) N > d+ 2

. (2.112)

From conformal symmetry alone, using analogous statements as the lower-point cases, we can constrain

the form of higher-point correlators to be

⟨ϕ1(X1) · · ·ϕN (XN )⟩ = Ω
{∆i}
N (X1, . . . , XN )F (u1, . . . , uncr

) (2.113)

where Ω
{∆i}
N is again a prefactor constructed out of scalar products Xij such that it is homogeneous of

degree −∆i with respect to all of the variables Xi.

Once more, the expression (2.113) can be further decomposed using the OPE, which allows writing down

conformal block decompositions. The number of OPE channels/diagrams increases dramatically with N ,

as for N external points there are (2N − 5)!! possible trivalent diagrams that can connect them. The

individual diagrams will also become more complex, see e.g. Figure 2.7.

In order be able to write formulas for multipoint blocks and to set up grounds for later parts of this

thesis, let us first introduce some notation. Given an OPE channel we enumerate internal lines by indices

r = 1, . . . , N − 3 and vertices by indices v = 1, . . . , N − 2. Any ordering will do, as there is no general

rule on how to enumerate these. In addition to the labels associated with exchanged fields in an OPE

diagram – the conformal dimensions ∆r and sod representations ϱr – the multipoint OPE expansion is

also labeled by integers tv that parametrize the space of independent tensor structures constructed around

every non-trivial vertex v of the diagram (i.e. vertices to which are attached two or three spinning fields).

The use of the OPE allows in fact to write the general expression

⟨ϕ1(X1) · · ·ϕN (XN )⟩ = Ω
{∆i}
N (X1, . . . , XN )

∑

∆r,ϱr,tv

(∏

v

λtv...

)
g∆i

{∆r,ϱr,tv}(u1, . . . , uncr
) , (2.114)

where the g∆i

{∆r,ϱr,tv} functions are themselves the multipoint conformal blocks, which will be the main

target of attention for the remaining part of this thesis.
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φ1
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Figure 2.7: Choice of an OPE channel for a 10-point function. The bigger blue vertices are associated
with non-trivial tensor structures.

The conformal block expansion (2.114) is much more complicated than the one we observed for four

points in (2.100). However, despite the increased difficulty, the computation of multipoint blocks might

be worth the cost, as a solid understanding of these blocks has the potential to bring in techniques

and results that are much more efficient and powerful. This can be understood, for instance, from the

following observations:

• a single multipoint correlator contains information equivalent to that of infinitely many four-point

functions;

• OPE coefficients of spinning operators are accessible also when dealing only with external scalars

in a multipoint setting;

• by understanding how to take OPE limits, it is possible to reduce multipoint correlators to spinning

lower-point ones, and have an orthogonal perspective on how these can be computed;

• for the N ≥ 6 case, light-cone limits of multipoint correlators are related to Wilson loops and

scattering amplitudes of theories which enjoy dual conformal invariance such as N = 4 super

Yang-Mills; for these theories a nice interplay between conformal bootstrap and modern amplitudes

techniques is therefore possible [32, 33].

It is not then surprising to know that in recent years more and more attention has been put in the

understanding of multipoint conformal blocks [36, 37, 39, 40, 52–60], leading to concrete determination

of many one- and two-dimensional multipoint conformal blocks, as well as determination of certain light-

cone limits of d ≥ 3 conformal blocks and recursion relations for five-point blocks. For long time, however,

it has not been clear how to extend the differential equation approach of Dolan and Osborn we reviewed

at the end of 2.4.4, to a multipoint setting in d ≥ 3. This is due to an initial roadblock that we will now

outline.

It is natural to expect that multipoint conformal blocks associated with a certain OPE diagram need

to satisfy a number of Casimir equations for every internal leg of said diagram. However, the number

of internal Casimir operators does not grow with the same rate as the number of degrees of freedom of

the system ncr(N, d), counted in (2.112). This is already apparent from the case of N = 5 conformal

blocks, whose 15 channels all have the same topology as that in Figure 2.8. In this case there are two

internal legs which correspond to two exchanges of an STT, each labeled by a conformal dimension ∆r

and spin lr, which can be measured by diagonalization of a quadratic and a quartic Casimir operator.

The total number of Casimir operators is therefore four, which does not match the number of cross ratios
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v

φ1

φ2 φ3 φ4

φ5

Figure 2.8: Choice of OPE diagram for 5-point correlator.

ncr(5, d ≥ 3) = 5. This implies that the problem is not yet integrable, as it requires the diagonalization

of an additional operator to have equal number of conserved charges and degrees of freedom. The same

type of problem manifests for correlators with more than five legs, as increasing the number of external

fields by one adds, for N large enough, d degrees of freedom, while the extra internal leg that is formed

can only account for a maximum of ⌊d2⌋+ 1 additional Casimir operators.

This issue can be rephrased in the fact that the diagonalization of the exchanged Casimir operators does

not specify a basis for the independent tensor structures at every non-trivial vertex of an OPE diagram. To

make the determination of multipoint conformal blocks an integrable problem, it is therefore necessary to

introduce a set of differential operators that are conformally invariant, that commute with the exchanged

Casimir operators, and that allow a decomposition of the space of invariant tensor structures at every

vertex. This is precisely the problem we addressed in [41] and completed in [42] with the help of Gaudin

models; we will review this approach in the next chapter.
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Chapter 3

Gaudin Models and Multipoint
Conformal Blocks

The goal of this chapter is to report our results of [41, 42], where we discussed how to measure simultane-

ously a complete set of quantum numbers for multipoint conformal blocks through a sufficiently large set

of commuting differential operators. This discussion applies to any d, any number N of external points

and any OPE channel.

3.1 Setup and Summary of Results

As we highlighted already at the end of the previous chapter, when dealing with higher-point correlation

functions is easy to see that the quantum numbers of fields exchanged in the intermediate channels are

not sufficient to fully characterize the conformal blocks. The precise number of such intermediate field

labels does depend on the channel topology, at least for N > 5, but it is always strictly smaller than the

number ncr of cross ratios. The quantum numbers we will discuss are measured by acting with differential

operators in the cross ratios. The latter divide into two families. First, differential operators that measure

the quantum numbers of intermediate fields are associated with the links of the OPE diagram and are

referred to as Casimir differential operators, since they are straightforward generalizations of the Casimir

differential operators constructed for N = 4 by Dolan and Osborn. Second, differential operators that

measure choices of tensor structures, the first example of which was introduced in [41], are referred to as

vertex differential operators. Let us note that for scalar blocks, the choice of tensor structures and hence

the vertex differential operators are relevant as soon as multiple non-scalar exchanges are involved. These

types of blocks have only been considered recently in [40] and [37, Appendix E] for five-point blocks, and

in a certain limit in [32–34] for five or six scalar legs.

To enumerate elements of an OPE diagram CNOPE we will use the notation we introduced in section 2.4.4,

with indices r = 1, . . . , N − 3 for internal legs and v = 1, . . . , N − 2 for internal vertices. OPE diagrams

are (plane) trees and hence by cutting any internal line with label r we separate the diagram into two

disconnected pieces. Hence, r is associated with a partition of the external fields into two disjoint sets,

N = {1, . . . , N} = Ir,1 ∪· Ir,2 . (3.1)

Similarly, any vertex v gives rise to a partition of N into three disjoint sets

N = Iv,1 ∪· Iv,2 ∪· Iv,3 . (3.2)

Given any subset I ⊂ N we can define the following set of first order differential operators in the insertion

points xi,

T (I)
α =

∑

i∈I
T (i)
α . (3.3)
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Let us note that for two disjoint sets I1, I2 ⊂ N we have

T (I1∪· I2)
α = T (I1)

α + T (I2)
α , [ T (I1)

α , T (I2)
β ] = 0 . (3.4)

Casimir differential operators. With this notation it is very easy to construct the differential operators

that measure the quantum numbers of the intermediate fields,

Cas pr = Dpr,1 = κα1,...,αp
p

[
T (Ir,1)
α1

· · · T (Ir,1)
αp

]
|G

= Dpr,2 . (3.5)

Here κp denotes symmetric conformally invariant tensors of order p and the superscript p runs through

p = 2, 4, . . .

{
d+ 1 = 2rd for d odd

d = 2rd − 2 for d even
(3.6)

The number rd = [(d + 2)/2] denotes the rank of the conformal Lie algebra. In even dimensions d, the

symmetric invariant tensor κp of order p = 2rd = d + 2 actually possesses a square root of order p = rd

that also commutes with all generators of the conformal algebra. This so-called Pfaffian differential

operator has the same form as in (3.5), but with a symmetric invariant tensor κp of order p = d/2 + 1,

Pf r = Dd/2+1
r,1 = κ

α1,...,αd/2+1

d/2+1

[
T (Ir,1)
α1

· · · T (Ir,1)
αd/2+1

]
|G

= −(−1)d/2Dd/2+1
r,2 . (3.7)

When d = 4k+2, the symmetric invariants of order p = d/2+1 are twofold degenerate and we should use

two different symbols for these two invariants of order d/2+1. In order not to clutter notation too much,

we decided to ignore this distinction. In other words, we will consider κd/2+1 as a pair of symmetric

invariants when d = 4k + 2.

In our formulas for the differential operators we have placed a subscript |G to stress that they are defined

as operators acting on correlations functions, i.e. on functions G that satisfy the conformal Ward identities

GN (xi,∆i) := ⟨0|ϕ1(x1) · · ·ϕN (xN )|0⟩ , T (N)
α GN (xi,∆i) = 0 . (3.8)

In our construction of the differential operators we have favored the set Ir,1 over Ir,2. But from the

conformal Ward identities we can conclude that

T (Ir,1)
α GN (xi,∆i) = −T (Ir,2)

α GN (xi,∆i) .

Though some caution is needed when we apply this relation to the evaluation of the Casimir differential

operator, see Subsection 3.2.1 for details, it is not difficult to see that all differential operators of even

order come out the same if we pick Ir,2 rather than Ir,1. There is only one family for which the set matters,

namely for the Pfaffian operators when d is a multiple of four. In that case the operator flips sign when we

change the set. Of course, overall factors are a matter of convention and hence of no concern. Therefore,

we shall drop the reference to the set we use in the construction of Casimir differential operators, writing

Dpr instead of Dpr,1.
An important point to note is that the Casimir differential operators need not be independent. To

illustrate this, consider the case N = 4 for d > 2. Since all external fields are assumed to be scalar,

the single intermediate field is a symmetric traceless tensor and is hence characterized by two numbers

only, its weight ∆ and spin l. These can be measured by the Casimir differential operators D2 and D4.

But starting from d = 4, the conformal algebra possesses Casimir elements of higher order which are

independent in general, but become dependent on the lower order ones when evaluated on symmetric

traceless tensors. More generally, the number of independent Casimir differential operators at a given

internal line r is given by

dr(CNOPE, d) = d(Ir,1, d), where d(I, d) = min(|I|, N − |I|, rd), (3.9)
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and |I| denotes the order of the set I. In this chapter we shall refer to the number d(I, d) as the depth

of the index set I and to dr as the depth of the link r. This is not to be confused with the spin depth

L of MSTL fields we introduced in section 2.1, which we will not be using in this chapter1. Note that

dr = d(Ir,1, d) = d(Ir,2, d) is independent of which of the two index sets we choose to compute it with.

By summing the depths of all internal links, we can determine the total number of independent Casimir

differential operators to be

ncdo(CNOPE, d) =

N−3∑

r=1

dr(CNOPE, d) . (3.10)

Let us note that the total number of Casimir differential operators does depend on the topology of the

OPE channel, not just on the number N of points. In the case of N = 6 and d ≥ 4, for example, there

are ncdo(CN=6
comb, d) = 7 Casimir differential operators in the comb channel, while the snowflake channel

admits only ncdo(CN=6
snowflake, d) = 6 of such operators.

Vertex differential operators. What we have described so far is nothing new, and can be established by

elementary means. But as we have explained, starting from N = 5 the Casimir differential operators do

not suffice to resolve all quantum numbers of the conformal blocks, i.e. ncdo is strictly smaller that ncr

for all OPE channels. Our main task is to construct additional differential operators that can measure

the choice of tensor structures at the vertices independently of the weights and spins of the intermediate

fields, i.e. we need to find a complete set of vertex differential operators that commute with the Casimir

differential operators and among themselves. In this chapter we describe how to accomplish this task,

for any number N of external scalar fields and any OPE topology. One central claim is that these vertex

differential operators take the form

Dp,νv,12 = κα1,...,αν ,αν+1,...,αp
p

[
T (Iv,1)
α1

· · · T (Iv,1)
αν

T (Iv,2)
αν+1

· · · T (Iv,2)
αp

]
|G

(3.11)

where ν = 1, . . . , p− 1 and p = 2, 4, . . . , 2rd = d+1 when d is odd. For even d, we let p run through even

integers until we reach d and add a set of Pfaffian vertex operators Pf νv,12, ν = 1, 2, . . . d/2 which are

constructed with a symmetric invariant tensor κp of order p = d/2+ 1. Let us note that the definition of

all these vertex differential operators also makes sense for ν = 0 and ν = p. The corresponding objects

coincide with Casimir differential operators for the links that enter the first and second leg of the vertex.

This is why we have excluded them from our list. The remaining operators still allow us to reconstruct

the Casimir operators for the link that enters the third leg. Therefore, there is one linear relation for

each value that p can assume, i.e. we have rd linear relations in total. One may use these relations to

eliminate e.g. the operator with ν = p/2.

Let us note that the definition of the vertex operators Dp,νv,ij depends on the choice of labeling of the subsets

Iv,j forming the partition N = Iv,1 ∪· Iv,2 ∪· Iv,3 associated with the vertex v, which is arbitrary. However,

the algebra generated by the vertex operators Dp,νv is in fact independent of this choice: more precisely,

the vertex operators constructed from another choice of labeling of the Iv,j ’s are linear combinations of

the operators Dp,νv,12, modulo the use of the conformal Ward identities (3.8), see section 3.2.2.

The number of vertex differential operators at a given vertex is now easy to count. Taking into account

that one additional linear relation among the operators listed in eq. (3.11), one finds

nv(d) =

{
1
4 (d

2 − 4) for d even

1
4 (d

2 − 1) for d odd
(3.12)

The first key result of [42] is that these vertex differential operators commute among themselves and

with the Casimir differential operators. Commutation between Casimir and vertex differential operators

is obvious. Similarly, it is easy to show that two vertex operators commute if they are associated with

different vertices v ̸= v′. The deepest part of our claim concerns the fact that also vertex operators

1the two quantities are very much related, as dr = Lr + 1. In this chapter, however, we find more useful to use the
definition of depth as the dr above, which here allows to often avoid shifts by one unit in formulas.
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associated with the same vertex commute. It does not seem straightforward to prove this statement by

elementary manipulations. Below we shall use an indirect strategy in which we identify these vertex

differential operators with Hamiltonians of some Gaudin integrable system defined on a 3-punctured

sphere. For the latter, commutativity has already been established.

Of course the vertex differential operators we listed may not all be independent, as for the Casimir

operators, see discussion above. In order to count the number of independent vertex differential operators,

we shall employ the depth function d(I, d) we introduced in eq. (3.9). For a given vertex v inside an OPE

channel CNOPE, the number of independent vertex differential operators is expected to be equal to the

degrees of freedom associated with this vertex

nvdo,v(CNOPE, d) = ncr(

3∑

i=1

dv,i, d)−
3∑

i=1

dv,i(dv,i − 1) ≤ nv(d) (3.13)

where dv,i = d(Iv,i, d) with i = 1, 2, 3. The inequality is saturated for vertices v with dv,i = rd. For the

special vertices that can appear in the comb channel and in which one of the legs is scalar, the formula

becomes

nvdo,vm
= m− 1 , nvdo,vrd

= rd − 1− δd,even

for m = 1, . . . , rd − 1. Here vm is a vertex with dvm,1 = m, dvm,2 = 1 and dvm,3 = m+ 1, see Figure 3.1,

and vd is the maximal comb channel vertex with dvrd
,1 = rd = dvrd

,3. The total number nvdo(CNOPE, d)

of vertex differential operators is obtained by summing over all N − 2 vertices, i.e.

nvdo(CNOPE, d) =

N−2∑

v=1

nvdo,v(CNOPE, d) .

At least for the comb channel, it is easy to verify that the number of independent Casimir and vertex

differential operators coincides with the number of cross ratios,

ncdo(CNOPE, d) + nvdo(CNOPE, d) = ncr(N, d) .

The formula holds of course for all OPE channels. Below we shall exhibit the relations among vertex

φ1

φ2 φ3 φ4 φ5 φ6 φ7

φ8ρ1 ρ2 ρ3 ρ3 ρ2 ρ1
1 2 3 3 3 2 1

1 1 1 1 1 1

Figure 3.1: OPE diagram in the comb channel for a scalar eight-point function in d = 4. The edge
labels correspond to the depth d of the associated links. When taking an OPE with a scalar field, the
depth always increases by one until the maximal allowed depth d = rd is reached.

differential operators that are responsible for the reduction from the nv(d) operators in our list (3.11)

(with ν = p/2 removed) to the nvdo,v(CNOPE, d) independent vertex differential operators that are needed

to characterize the vertex v. This is the second key result of this chapter. It will allow us in particular

to determine the precise order of each independent vertex differential operator.

While Gaudin models for the 3-punctured sphere only enter the discussion as a convenient tool to construct

commuting vertex differential operators at the individual vertices, the relation between conformal blocks

and Gaudin models turns out to reach much further. In fact, is is possible to embed the whole set of

Casimir and vertex differential operators for arbitrary scalar N -point functions into Gaudin models on

the N -punctured sphere. The latter contains N additional complex parameters that are not present in

correlation functions. In the Gaudin integrable model these parameters correspond to the poles of the

Lax matrix and they enter all Gaudin Hamiltonians. By considering different limiting configurations of
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3. Gaudin Models and Multipoint Conformal Blocks

these parameters is is possible to recover the full set of Casimir and vertex differential operators for scalar

N -point functions in all the OPE channels. This construction not only embeds our differential operators

into a unique Gaudin integrable model, but also shows that operators in different channels are related by

a smooth deformation.

Let us finally outline the content of the following sections. Section 3.2 is mostly devoted to the study

of the individual vertices. After a brief discussion of commutativity for Casimir differential operators

and also vertex differential operators assigned to different vertices, we shall zoom into the individual

vertices for most of section 3.2. In section 3.2.2 we construct the vertex differential operators in terms of

the commuting Hamiltonians of a 3-site Gaudin integrable system. Section 3.2.3 addresses the relations

between these operators for restricted vertices. The main purpose of section 3.3 is to embed the whole

set of Casimir and vertex differential operators for arbitrary scalar N -point functions into Gaudin models

on the N -punctured sphere. In section 3.4 we discuss one concrete example, namely we construct all five

differential operators that characterize the blocks of a scalar 5-point function in any d ≥ 3. Two of these

operators are of order two while the other three are of fourth order.

3.2 The Vertex Integrable System

The aim of this section is to address the key new element in the construction of multi-point conformal

blocks for d ≥ 3: the vertices. In the first subsection we shall show that the construction of commuting

differential operators for scalar N -point blocks can be reduced by rather elementary arguments to the

construction of commuting differential operators for 3-point functions of spinning fields. Recall that the

dependence on spin degrees of freedom can be encoded in auxiliary variables from which one is often able

to construct non-trivial cross ratios, even in the case of a 3-point function. Constructing sufficiently many

commuting vertex differential operators that act on such cross ratios of the 3-point function requires more

powerful technology from integrability which we shall turn to in the second subsection. There we construct

commuting differential operators for vertices from the Gaudin integrable model for the 3-punctured sphere.

The basic construction provides nv(d) of such commuting operators and hence sufficiently many even for

the most generic vertices. For special vertices, such as those appearing in the comb channel with external

scalars, there exist linear relations between these operators. These are the subject of the third subsection.

3.2.1 Reduction to the vertex systems

Our goal here is to prove that Casimir and vertex operators constructed around different vertices of an

OPE diagram commute. More precisely we shall show that

[Dpr , Dqr′ ] = 0 , [Dpr , Dq,νv,a ] = 0 (3.14)

for every pair (r, p), (r′, q) of Casimir operators and any choice (v, q, ν) of a vertex operator, including

the Pfaffian Casimir and vertex operators that appear at order p, q = d/2 + 1 when the dimension d is

even. Note that the individual vertex differential operators also depend on the choice a ∈ {12, 23, 13} of
a pair of legs. In addition, we shall also establish that vertex operators associated with different vertices

commute,

[Dp,νv,a , Dq,µv′,b ] = 0 for v ̸= v′ (3.15)

and all triples (p, ν, a) and (q, µ, b). This leaves only the commutativity of operators attached to the same

vertex which is deferred to the next subsection.

The properties (3.14) and (3.15) are in fact elementary. They require global conformal invariance, the tree

structure of OPE diagrams and the commutativity property (3.4). To begin with, let us recall that we

associated two disjoint sets Ir,1 and Ir,2 to every link. As we pointed out before, the Casimir differential

operators (3.5) do not depend on whether we used the generators T (Ir,1)
α or T (Ir,2)

α to construct them. Let
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3.2. The Vertex Integrable System

us briefly discuss the details of the proof. Note that we think of D as an operator acting on correlation

functions G. This is signaled by the subscript |G in the definition of the Casimir differential operators. In

evaluating products of first order differential operators, one can only apply the Ward identity (3.8) to the

rightmost operator, which acts directly on the correlation function, and not on some derivative thereof.

But once we have converted the rightmost operators T (Ir,1) into −T (Ir,2), they will commute with all

operators to their left, such that we can freely move them all the way to the left and proceed to apply

the Ward identity to the next set of first order operators, and so on. If we finally take into account that

the invariants κ of the conformal Lie algebra are symmetric, we arrive at an expression for the Casimir

differential operators in terms of T (Ir,2).

A similar analysis can be carried out for vertex operators, see also Subsection 3.2.2. Without loss of

generality we can assume that we have constructed our vertex operators in terms of the generators

T (Iv,1) and T (Iv,2) and want to switch to constructing them from T (Iv,1) and T (Iv,3) instead. To do so

we make use of the invariance condition

[
T (Iv,2)
α

]
|G

= −
[
T (Iv,1)
α − T (Iv,3)

α

]
|G

(3.16)

that follows from relations (3.2) and (3.8). After we apply this to the rightmost operator in the vertex

differential operator, we use the commutativity property (3.4) to move the generators T (Iv,1) and T (Iv,3)

to the left of T (Iv,2). We continue this replacement process until all the generators T (Iv,2) are removed

and using symmetry of the tensor κ we find

Dp,νv,12 = (−1)p−ν
p−ν∑

µ=0

(
p− ν
µ

)
Dp,ν+µv,13 (3.17)

along with a similar relation for the Pfaffian vertex operators for p = d/2 + 1 and d even. Since the

last term in this sum with µ = p − ν is just a Casimir operator, we have managed to express all vertex

differential operators that are constructed from the generators associated with Iv,1 and Iv,2 as a linear

combination of the vertex operators associated with the pair Iv,1 and Iv,3 and a Casimir operator. This

is the main input in proving the commutativity statements (3.14) and (3.15).

Let us start with a pair of links r, r′. Each of these links divides the set of external points into the two

disjoint sets Ir,1, Ir,2 and Ir′,1, Ir′,2 respectively. Since the OPE diagram is a tree, it is always possible to

find a pair i, j = 1, 2 such that Ir,i ∩ Ir′,j = ∅. For this choice

[Dpr , Dqr′ ] = [Dpr,i , Dqr′,j ] = 0 (3.18)

because of the commutativity property (3.4). This proves our first claim. Note that the same arguments

also apply to the case in which r = r′ and also if one or both operators are Pfaffian, i.e. if d is even and

p, q = d/2 + 1.

v

Ti1+1

Ti2

Ti2+1

Tn

Iv,2

Iv,3

Iv,1

Ti1

T1

Figure 3.2: Schematic representation of a generic OPE diagram with focus on one vertex. The choice
of a vertex automatically divides the diagram into three branches.
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3. Gaudin Models and Multipoint Conformal Blocks

Let us now extend this argument to include vertex differential operators. In order to prove that the

Casimir operators associated to a link r commute with the vertex operators associated to any vertex v

we recall that any choice of a vertex v on an OPE diagram divides the diagram into the three distinct

branches that are glued to the vertex, and we denote these by Iv,j as in Figure 3.2. A quick glance at

Figure 3.2 suffices to conclude that given r and v it is possible to find a pair i ∈ 1, 2 and j ∈ 1, 2, 3 such

that Ir,i ⊂ Iv,j , since the link r must be in one of the three branches. It follows that Ir,i∩(Iv,j1 ∪ Iv,j2) = ∅
for j1 ̸= j ̸= j2. Commutativity of Casimir and vertex differential operators then follows since we can

construct the Casimir differential operators in terms of the generators for Ir,i while using the generators

for Iv,j1 and Iv,j2 for the vertex differential operators.

v v′

T1

Ti1

Ti1+1

Ti2

Ti2+1 Ti3

Ti3+1

Ti4

Ti4+1

Ti5

Ti5+1TnIv,1

Iv,2 Iv′,1

Iv′,2

C

Figure 3.3: Schematic representation of a generic OPE diagram with focus on two internal vertices.
Operators supported around distinct vertices trivially commute, as they can be written in terms of
generators that belong to different branches.

Let us finally consider any two distinct vertices v and v′ on an OPE diagram. As we highlight in

Figure 3.3, any configuration of two vertices divides the diagram into five parts: four external branches

Iv,j , Iv′,j , j = 1, 2, attached to only one vertex, and the central part C of the diagram that is attached

to both vertices v and v′. Following what we just claimed with focus on one vertex, we can use diagonal

conformal symmetry to rewrite the operators around v and v′ to depend on disjoint sets of legs Iv,j ,

Iv′,j with j = 1, 2. Since generators associated to these sets commute (3.4), it follows automatically that

operators constructed around different vertices must commute as well.

This implies that to prove commutativity of our set of operators, we can just focus on operators that live

around one single vertex. To prove the commutativity of these vertex operators we will now make use of

the integrability technology that is provided by Gaudin models.

3.2.2 The vertex system and Gaudin models

In this section, we will explain how the operators (3.11) associated with a vertex v in the OPE diagram

naturally arise from a specific Gaudin model, which in particular will provide us with a proof of their

commutativity. Let us start by reviewing briefly how Gaudin models are defined [61, 62]. They are inte-

grable systems naturally constructed from a choice of a simple Lie algebra g. Having in mind applications

of these systems to conformal field theories, we will choose g to be the conformal Lie algebra so(d+1, 1)

of the Euclidean space Rd, with basis Mα as in the previous section. The Gaudin model depends in

general on m complex numbers wj , called its sites, to which are attached m independent representations

of the algebra g. To obtain the vertex system we address in this section, we restrict our attention here

to the case m = 3 and associate with these three sites the representations of g corresponding to the

three fields attached to the vertex v. More precisely, using the notation defined in section 3.1 and in

particular the partition N = Iv,1 ∪· Iv,2 ∪· Iv,3 constructed from the vertex v, we will attach to the three

sites wj , j = 1, 2, 3, of the Gaudin model the generators T (Iv,j)
α which define representations of g in terms

of first-order differential operators in the insertion points xi.
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A key ingredient in the construction of the Gaudin model is its so-called Lax matrix, whose components

in the basis Mα are defined here as

Lv
α(z) =

3∑

j=1

T (Iv,j)
α

z − wj
, (3.19)

where z is an auxiliary complex variable called the spectral parameter. In the above equation, we have

denoted the Lax matrix as Lv
α(z) to emphasize that this is the matrix corresponding to the vertex v.

For any elementary symmetric invariant tensor κp of degree p on g, there is a corresponding z-dependent

Gaudin Hamiltonian of the form

H(p)
v (z) = κα1···αp

p Lv
α1
(z) · · · Lv

αp
(z) + . . . , (3.20)

where . . . represent quantum corrections, involving a smaller number of components of the Lax matrix

Lv
α and their derivatives with respect to z. These corrections are chosen specifically to ensure that the

Gaudin Hamiltonians commute for all values of the spectral parameter and all degrees:

[
H(p)

v (z),H(q)
v (w)

]
= 0, ∀ z, w ∈ C, ∀ p, q . (3.21)

The existence of such commuting Hamiltonians was first proven in [63], using some previously established

results [64] on the so-called Feigin-Frenkel center of affine algebras at the critical level. The explicit

expression for the quantum corrections was obtained in [65, 66] for Lie algebras of type A and in [67] for

types B, C, D, which is the case we are concerned with here (indeed, g = so(d + 1, 1) is of type B for d

odd and of type D for d even). We refer to [68] for a summary of these results. The properties of the

Feigin-Frenkel center were further studied in the recent work [69], the results of which imply that the

quantum corrections in H(p)
v (z) are sums of terms of the form

τα1···αq ∂r1−1
z Lv

α1
(z) · · · ∂rq−1

z Lv
αq
(z), (3.22)

where q < p, τα1···αq is a completely symmetric invariant tensor of degree q on g and r1, · · · , rq are

positive integers such that r1 + · · · + rq = p. For what follows, it will be useful to consider the leading

part of the Hamiltonian (3.20) alone, without quantum corrections, which we will denote as

Ĥ(p)
v (z) = κα1···αpLv

α1
(z) · · · Lv

αp
(z) . (3.23)

Let us finally note that the quantum corrections are absent for both the quadratic Hamiltonian H(2)
v (z)

and the Pfaffian HamiltonianH(d/2+1)
v (z) that exists for d even, such that these two Hamiltonians coincide

with their leading parts.

To make the link with the vertex operators defined in section 3.1, we will make a specific choice of the

parameters wj of the Gaudin model. More precisely, we set

w1 = 0, w2 = 1 and w3 =∞ . (3.24)

In particular, the Lax matrix (3.19) reduces to

Lv
α(z) =

T (Iv,1)
α

z
+
T (Iv,2)
α

z − 1
. (3.25)

Let us now study the Gaudin Hamiltonians H(p)
v (z) for this particular choice of parameters. We will first

focus on their leading part Ĥ(p)
v (z). Reinserting the above expression of the Lax matrix in eq. (3.23), we

simply find

Ĥ(p)
v (z) =

p∑

ν=0

(
p

ν

) Dp,νv,12

zν(z − 1)p−ν
, (3.26)

where Dp,νv,12 is the vertex operator defined in eq. (3.11). To obtain this expression, we have used the fact

that T (Iv,1)
α and T (Iv,2)

β commute to bring all T (Iv,1)
α ’s to the left, as well as the symmetry of the tensor
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κ
α1···αp
p to relabel the Lie algebra indices as in eq. (3.11). Noting that the fractions z−ν(z − 1)ν−p for

ν = 0, · · · , p are linearly independent functions of z, it is then clear that one can extract all the vertex

operators Dp,νv,12 from Ĥ(p)
v (z). Note that the “extremal” operators Dp,0v,12 and Dp,pv,12 coincide with the

Casimir operators of the fields at the branches Iv,1 and Iv,2 of the vertex. The same equation also holds

for the Pfaffian operators H(d/2+1)
v (z).

Our goal in this section is to prove the commutativity of the vertex operators Dp,νv,12 using known re-

sults on Gaudin models. This would follow automatically from the commutativity (3.21) of the Gaudin

Hamiltonians H(p)
v (z) if these Hamiltonians contained the operators Dp,νv,12. But we have already proven

above that the latter are naturally extracted from the leading parts Ĥ(p)
v (z) of the Gaudin Hamiltonians,

without the quantum corrections. These quantum corrections are in general crucial for the commutativity

of the Hamiltonians. However, we shall prove below that the quantum corrections of the specific Gaudin

model considered here can always be expressed in terms of lower-degree Hamiltonians, and can thus be

discarded without breaking the commutativity property. In this case, the non-corrected Hamiltonians

Ĥ(p)
v (z) pairwise commute for all values of the spectral parameter and all degrees, thus demonstrating

the desired commutativity of the vertex operators Dp,νv,12.

Let us then analyze these quantum corrections. Recall that they are composed of terms of the form

(3.22). Reinserting the expression (3.25) of the Lax matrix for the present choice of parameters wj in

this equation, we find that the quantum corrections contain only terms of the form

τα1···αq T (Iv,1)
α1

· · · T (Iv,1)
αν

T (Iv,2)
αν+1

· · · T (Iv,2)
αq

, (3.27)

with prefactors composed of powers of z and z−1, and where τα1···αq is a completely symmetric invariant

tensor on g of degree q < p, as in eq. (3.22). In particular, τα1···αq decomposes as a product of elementary

symmetric invariant tensors κk, symmetrized over the indices αi, with k ≤ q < p. The correction in the

above equation can thus be re-expressed as an algebraic combination of lower-degree vertex operators

Dk,νv,12. Since these are the coefficients of the non-corrected Hamiltonian Ĥ(k)
v (z), recursion on the degrees

shows that the quantum corrections can indeed be expressed in terms of lower-degree Hamiltonians, as

anticipated.

Let us end this subsection with a brief discussion on the role played by the choice of labeling of the

branches Iv,1, Iv,2 and Iv,3 attached to the vertex v. As mentioned in section 3.1, this choice is arbitrary

but enters the definition (3.11) of the vertex operators Dp,νv,12, which in this case contain only the generators

T (Iv,1)
α and T (Iv,2)

α . In the context of the 3-sites Gaudin model considered in this subsection, this is related

to the choice of positions wj of the sites made in eq. (3.24). In particular, the absence of generators

T (Iv,3)
α in the Gaudin Hamiltonians H(p)(z) is due to the fact that we sent the site w3 to infinity. One

could have made another choice of labeling and constructed vertex operators Dp,νv,23 from the generators

T (Iv,3)
α and T (Iv,2)

α , for instance. The corresponding choice of positions of the sites would then be related

to the initial one by the Möbius transformation that exchanges 0 and ∞ and fixes 1, i.e. the inversion

z 7→ 1
z . More precisely, under such a transformation of the spectral parameter, the Lax matrix of the

Gaudin model behaves as a 1-form on the Riemann sphere and satisfies

− 1

z2
Lv
α

(
1

z

)
= −T

(Iv,1)
α + T (Iv,2)

α

z
+
T (Iv,2)
α

z − 1
. (3.28)

Acting on the correlation function GN , which satisfies the Ward identities (3.8), this Lax matrix then

becomes

− 1

z2
Lv
α

(
1

z

)

|G
=

[
T (Iv,3)
α

z
+
T (Iv,2)
α

z − 1

]

|G

, (3.29)

and thus coincides with the Lax matrix from which one would build the vertex operators Dp,νv,23 with

generators T (Iv,3)
α and T (Iv,2)

α . This proves that the operators Dp,νv,23 can naturally be extracted from the
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generating functions
(−1)p
z2p

Ĥ(p)
v

(
1

z

)

|G
. (3.30)

Using the expression (3.26) of Ĥ(p)
v (z) in terms of the initial vertex operators Dp,νv,12, we thus get that the

Dp,νv,23’s are linear combinations of the Dp,νv,12’s, as was demonstrated by direct computation in the previous

subsection. Let us note that the use of the Ward identities was a crucial step in the above reasoning,

as highlighted for instance by the subscript G in eq. (3.30). This step should be performed with care,

in particular when using the Ward identities to replace −T (Iv,1)
α − T (Iv,2)

α by T (Iv,3)
α in the Hamiltonians

(3.30). Indeed, one can use the Ward identities only for generators on the right. In order to do so, one

thus has to commute generators to bring them to the right, replace them through the Ward identities

and commute them back to their original place. Although this procedure can in general create non-trivial

corrections, it can in fact be done freely in the case at hand: indeed, commuting operators T (Iv,j)
αk and

T (Iv,j)
αl within the Hamiltonian Ĥ(p)

v creates a term proportional to the structure constant f β
αkαl

, which

vanishes when contracted with the symmetric tensor κ
α1···αp
p . This ensures that the Hamiltonian (3.30)

indeed serves as a generating function of the operators Dp,νv,23 built from T (Iv,3)
α and T (Iv,2)

α . A similar

reasoning applies for the other choices of labeling, by considering the appropriate Möbius transformations

that permute the sites 0, 1 and ∞ of our 3-site Gaudin model.

3.2.3 Restricted vertices and relations between vertex operators

In the previous subsection we have shown that all of the operators listed in eq. (3.11) commute with each

other. As we have pointed out before, we did not include operators with ν = 0 and ν = p in the list since

these coincide with Casimir differential operators,

Dp,0v,12 = Dpr1 , Dp,pv,12 = Dpr2 . (3.31)

Here ri denotes the link that is attached to the ith leg of the vertex v, i.e. for which Iri,j = Iv,i with

either j = 1 or j = 2. The remaining p− 1 operators satisfy one more linear relation since

p∑

ν=0

(
p

ν

)
Dp,νv = Dpr3 . (3.32)

Let us note that this relation also applies to the Pfaffian vertex operators that exist for p = d/2 + 1

when d is even. We have used this relation to drop one of the vertex differential operators. Once these

obvious relations are taken care of, the total number of commuting vertex differential operators is given

by eq. (3.12) and matches precisely the maximal number of cross ratios that can be associated to a single

(generic) vertex, see upper bound of eq. (3.13) in the introduction. But restricted vertices carry fewer

variables, so their corresponding differential operators (constructed in the previous section) must obey

further relations. It is the main goal of this subsection to discuss these relations. We will also check

that, once these are taken into account, the number of remaining vertex differential operators matches

the number (3.13) of cross ratios at restricted vertices.

Our arguments are based on an important auxiliary result concerning the differential operators T (I)
α that

are associated to some subset I ⊂ N of order |I| ≤ N/2. To present this requires a bit of preparation.

Up to this point there was no need to spell out the precise form of the symmetric invariant tensors κp

that we used to construct our differential operators. Now we need to be a bit more specific. As is well

known, such tensors can be realized as symmetrized traces,

κα1···αp
p = tr

(
M (α1 · · ·Mαp )

)
= str (Mα1 · · ·Mαp) . (3.33)

HereMα denote the generators of the conformal Lie algebra and (. . . ) signal symmetrization with respect

to the indices. In the following we shall use the symbol str to denote this symmetrized trace. The
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trace can be taken in any faithful representation. The simplest of such choices is to use the fundamental

representation. In order to construct the associated symmetric invariants more explicitly, we shall replace

the index α that enumerates the basis of the conformal algebra by a pair α = [AB] where A,B are

embedding space indices such as those we introduced in section 2.3 and M [AB] = −M [BA]. In the

fundamental representation, the matrix elements of these generators take the form

(
M

[AB]
f

)C
D

= ηAC δBD − ηBC δAD ,

where ηAB is the Minkowski metric with signature (d + 1, 1) and ηAB is its inverse. This makes it now

easy to compute κp explicitly. The only issue arises in even d. In this case the symmetrized traces in the

fundamental representation do not generate all the invariants. In order to obtain the missing invariant,

one has to include the trace in a chiral representation. The standard construction employs the spinor

representation in which generators M [AB] are represented as

(
M [AB]
s

)σ
τ
=

1

4
[ γA , γB ]στ ,

where γA are the d+ 2-dimensional γ matrices and the matrix indices are σ, τ = 1, . . . , 2d/2+1. One can

then project to a chiral spinor representation with the help of γc ∼ γ0 · · · γd+1.

Let us now introduce the symbol T (I) to denote the following Lie-algebra valued differential operators

T (I) =Mα · T (I)
α =

1

2
M [AB] · T (I)

[AB] .

Upon evaluation in some finite-dimensional representation, such as the fundamental or the spinor repre-

sentation, these become matrix valued differential operators. With this notation we write our set (3.11)

as

Dp,νv,12 = strf


T (Iv,1)...T (Iv,1)︸ ︷︷ ︸

ν

T (Iv,2)...T (Iv,2)︸ ︷︷ ︸
p−ν




|G

(3.34)

when d is odd and the parameters p and ν assume the values p = 2, 4, . . . , d + 1 and ν = 1, . . . , p − 1,

as usual. For even dimension d, on the other hand, we use the symmetrized trace in the fundamental

representation for p = 2, 4, . . . , d and construct the missing Pfaffian vertex differential operators as

Dd/2+1,ν
v,12 = strs


T (Iv,1)...T (Iv,1)︸ ︷︷ ︸

ν

T (Iv,2)...T (Iv,2)︸ ︷︷ ︸
d/2+1−ν

γc




|G

(3.35)

where we take the trace in the spinor representation and include the factor γc in the argument.

In finding relations between the vertex differential operators for restricted vertices we actually work with

the total symbols of the differential operators rather than the operators themselves. This means that we

replace the partial derivatives ∂
(i)
µ with commuting coordinates piµ. The associated matrices of functions

of xµi and piµ will be denoted by T̄ (I). As before we shall add a subscript f, s to denote the matrices

in the fundamental and the spinor representation. After passing to the total symbol the entries of the

matrices commute and we can drop the symmetrization prescription when taking traces. As a result, the

total symbols of the vertex differential operators are simply traces of powers of the matrices T̄ (I).

We are now ready to state the main result needed to elucidate the relations between vertex differential

operators. It concerns the matrix elements of the nth power of the matrices T̄ (I)
f,s for the fundamental and

the spinor representations. In both cases, these matrix elements are functions of xµi and piµ with i ∈ I.
Our main claim is that these matrix elements can be expressed in terms of lower order ones of the same

form whenever n > 2dI , where dI = d(I, d) is the integer defined in eq. (3.9). More precisely, for each

matrix element AB there exist coefficients ϱ
(n,m)
AB such that

(
T̄ (I)n
f

)
A
B =

2dI∑

m=0

ϱ
(n,m)
f ;AB

(
T̄ (I)m
f

)
A
B . (3.36)
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Note that there is no summation over A,B on the right hand side. The coefficients ϱAB depend only on

the external conformal weights ∆i and the total symbols D̄p(I) of the Casimir operators associated with

the index set I. If the index set I has depth dI = 1, for example, i.e. if the T̄ (I) describe the action of

the conformal algebra on a single scalar primary, then starting from n = 3 all matrix elements can be

expressed in terms of lower order ones. In the case of the spinor representation one has a very similar

relation

(
T̄ (I)n
s

)
σ
τ =

dI∑

m=0

ϱ(n,m)
s;σ,τ

(
T̄ (I)m
s

)
σ
τ . (3.37)

which now applies for n > dI and involves a summation over m that ends at dI = d(I, d), see definition

(3.9). So if dI = 1, for example, the matrix elements of the square are expressible in terms of the matrix

elements of T̄ (I)
s . We verify both statements (3.36) and (3.37) in Appendix A.3 using embedding space

formalism.

We are now prepared to discuss relations between vertex differential operators. Let us consider a vertex

v inside our OPE diagram. As we have explained before, v splits the set N into three subsets Iv,i with

i = 1, 2, 3. Each of these sets determines an integer di = d(Iv,i, d). Let us suppose that we construct the

vertex differential operators using T (Iv,i) for i = 1, 2 as in eq. (3.34). If one of the integers d1 or d2 is

smaller than rd we immediately obtain relations among the vertex differential operators. In fact, when

applied to the matrices T̄ (Iv,1), our claim (3.36) implies that all operators we obtain when ν > 2d1 can

be expressed in terms of Casimir and vertex differential operators of lower order. The same is true when

p − ν > 2d2, as follows again from eq. (3.36), but this time applied to T̄ (Iv,2). Consequently, for any

p ≥ 2d1, 2d2, we can restrict the range of the index ν to be p− 2d2 ≤ ν ≤ 2d1, with ν = 0, p excluded as

before.

But this does not yet include the full set of relations that appears whenever d3 is smaller than min(d1 +

d2, rd). One of the simplest examples of this occurs in the 6-point snowflake channel in d > 3, see

Figure 3.4, where two symmetric traceless tensor operators on two branches are combined at the central

vertex v to form another symmetric traceless tensor on the third branch.

φ1

φ2

φ3 φ4

φ5

φ6

ρ

Figure 3.4: Snowflake OPE diagram. Here the tensor product of any two branches around the vertex
v would allow a mixed symmetry tensor of depth d = 4 to appear in d ≥ 6, but diagonal conformal
symmetry constrains this to match with the symmetric traceless tensor produced on the third branch.

To take restrictions from the third branch I3 into account, it is sufficient to use the total symbol of eq.

(3.16) and impose once more our dependence statement (3.36) for product matrices, this time for T (Iv,3).

This tells us that the matrix elements of powers

(
T̄ (Iv,1) + T̄ (Iv,2)

)n A
B

(3.38)

with n > 2d3 can be written in terms of lower order terms. In order to convert this observation into

relations among the vertex differential operators of order p, we can multiply the expression (3.38) with

50
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some appropriate powers of T̄ (Iv,i), i = 1, 2, and consider the matrix elements of the products

(
T̄ (Iv,1) + T̄ (Iv,2)

)n (
T̄ (Iv,2)

)ν (
T̄ (Iv,1)

)p−n−ν
(3.39)

for n > 2d3, any allowed value of p > n and ν = 0, . . . , p − n. By binomial expansion, we can write the

expression (3.39) as a linear combination of our basic vertex differential operators. After taking relations

on the branches Iv,1 and Iv,2 into account, we obtain an additional nontrivial relation from the third

branch Iv,3. For example, in the cases where n is odd, contracting (3.38) with
(
T (Iv,2)

)B
A

leads to a

relation between vertex and Casimir operators of order n + 1 and further lower order operators. This

effectively reduces the amount of vertex operators at order p by up to p − 2d3 − 1, though the actual

number can be lower in case there are less than p−2d3−1 vertex operators at order p left after imposing

the constraints from the first two branches. If we are interested in counting the number of vertex operators

at a given even order p, the procedure we just outlined is summarized in the following counting formula

n
(p)
vdo,v = max

[(
(p− 2)−

3∑

i=1

Θ0(p− 2di)(p− 2di − 1)

)
, 0

]
, (3.40)

where Θ0 is the Heaviside step function with Θ0(0) = 0, the factor (p− 2) gives the maximal amount of

vertex operators at order p, the factor (p−2di−1) corresponds to the number of relations introduced for

every di < p/2, and the maximum enforces the number to be 0 if there are more than (p− 2) relations in

total.

Our description of relations between vertex differential operators exploited the auxiliary statement (3.36)

and did not include the Pfaffian vertex differential operators. It is clear, however, that precisely the same

reasoning also applies to the latter using eq. (3.37) instead of eq. (3.36). The counting formula (3.40)

gets also slightly modified for this Pfaffian case

n
(p=d/2+1)
vdo,v = max

[(
(p− 2)−

3∑

i=1

Θ0(p− di)(p− di − 1)

)
, 0

]
. (3.41)

Note that the arguments we have outlined here exhibit relations between vertex operators, but we have

not shown that these relations are complete, i.e. that the remaining vertex differential operators are in fact

independent. A priori, it could in fact happen that the exceeding relations we get from here, or additional

relations obtained from a different reasoning, could provide additional dependencies. We checked however

that summing the counting formulas (3.40) and (3.41) for all allowed orders p in a given dimension d, gives

rise to a number of vertex differential operators equal to the number of cross ratios (3.13) associated with

every allowed vertex. This provides strong evidence in favor of the independence of our vertex differential

operators. In some particularly relevant cases in lower dimensions we can also prove independence.

Example: The N = 6 snowflake channel for d = 7. Let us see how all of this works in the example of a

snowflake channel in d = 7, presented in Figure 3.4. We enumerate the internal links by r = 1, 2, 3. The

associated index sets Ir,i are I1,1 = {1, 2}, I2,1 = {3, 4}, . . . . Here we have two symmetric traceless tensors

associated with r = 1, 2. In a more general OPE diagram these could produce a mixed symmetry tensor

with maximal depth d = rd = 4, but in the snowflake diagram the field on the third link must also be a

symmetric traceless tensor of depth d(I3, d = 7) = 2. Our prescription tells us to consider operators (3.34)

up to p = 8. Eliminating powers of T1 = T (12) and T2 = T (34) higher than 4, it immediately follows that

there are no vertex operators of order 8

���T 7
1 T2 , �

��T 6
1 T 2

2 , �
��T 5

1 T 3
2 , �

��T 3
1 T 5

2 , �
��T 2

1 T 6
2 , ���T1T 7

2 , (3.42)

while there could be up to two operators of order 6

���T 5
1 T2 , T 4

1 T 2
2 , T 2

1 T 4
2 , ���T1T 5

2 , (3.43)
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and two operators of order 4

T 3
1 T2 , T1T 3

2 . (3.44)

Here and in the following steps we are using notation for which stroked terms are dependent on lower

order operators. Let us also recall that the operators with ν = p/2 have been omitted to account for

the relation between the vertex and Casimir differential operators for the third leg. The reduction of

T3 = T (56) to a symmetric traceless tensor implies the existence of p− 2d3 − 1 relations between p order

monomials. The only useful relation in this case is the one produced for p = 6, coming from the expansion

�����
(T1 + T2)5 = T 5

1 + 5T 4
1 T2 + 10T 3

1 T 2
2 + 10T 2

1 T 3
2 + 5T1T 4

2 + T 5
2 , (3.45)

which can be contracted with either T1 or T2 and traced over to get a relation between the sixth order

monomials (including the one associated to the Casimir of the third leg):

������
(T1 + T2)5 T2 =���T 5

1 T2 + 5T 4
1 T 2

2 + 10T 3
1 T 3

2 + 10T 2
1 T 4

2 + 5���T1T 5
2 +��T

6
2 . (3.46)

This reduces the amount of independent vertex operators by one, bringing us to a total of three indepen-

dent operators, which matches with the number of associated cross ratios.

3.3 OPE channels and limits of Gaudin models

At this point we have defined a set of differential operators associated with the intermediate fields and

the individual vertices of a given OPE diagram with N external fields. The new vertex operators were

constructed in Subsection 3.2.2 from a Gaudin model with three sites, which was crucial in proving

their commutativity. Our construction of the vertex operators has been local in its focus on a particular

building block, namely a single vertex that is associated to a local element of the OPE diagram. The

purpose of this section is to adopt a more global perspective by showing that the whole set of Casimir

and vertex differential operators for any N -point OPE channel can be obtained by taking an appropriate

limit of an N -site Gaudin model. The N -site Gaudin model itself makes no reference to the choice of

OPE channel. The latter enters only through the choice of limit. We will therefore refer to these limits as

OPE limits of the N -site Gaudin model. These OPE limits are generalizations of the so-called bending

flow and caterpillar limits that have been considered in the mathematical literature, see e.g. [70–72].

The same limit of a 4-site Gaudin model - which may be identified with the elliptic Inozemtsev model

[73] - has also appeared in the physics literature recently [74]. Eberhardt, Komatsu and Mizera have

shown that the limit theory coincides with the hyperbolic Calogero-Sutherland model, which is known to

describe the Casimir equations of 4-point conformal blocks.

3.3.1 N sites Gaudin model and OPE limits

Let us first define the Gaudin model that we will use in this section. Since this construction is similar to

the one of the 3-sites Gaudin model considered in section 3.2.2, we refer to that section for details and

references. As before, we consider a Gaudin model based on the conformal Lie algebra g = so(d+1, 1) but

now with N sites, whose positions w1, · · · , wN ∈ C are for the moment arbitrary. We naturally associate

these sites with the N external fields in the correlation function under consideration and more precisely

attach to each site i ∈ {1, · · · , N} the representation of g defined by the generators T (i)
α , which describe

the action of the conformal transformations on the scalar field ϕi(xi) in terms of first-order differential

operators. Then we define the (components of the) Lax matrix of the model as

Lα(z, wi) =
N∑

i=1

T (i)
α

z − wi
. (3.47)

The associated Gaudin Hamiltonians H(p)(z, wi) of degree p are given by the same equation (3.20) that

we used for the 3-site case. Recall that κp denotes the conformally invariant symmetric tensor of degree p
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and . . . represent quantum corrections. The latter have the same form as in the 3-site case, see eq. (3.22).

It is well known that these N -site Gaudin Hamiltonians commute, just as their three site analogues, i.e.

they satisfy eq. (3.21). At the same time, it is easy to verify that they are invariant under diagonal

conformal transformations,

[
H(p)(z, wi), T (N)

α

]
= 0, ∀ z ∈ C, ∀ p, (3.48)

where T (N)
α =

∑N
i=1 T

(i)
α are the diagonal conformal generators that also appear in the Ward identities

(3.8). This means that Gaudin Hamiltonians descend to correlation functions G.
The Hamiltonian H(p)(z, wi) of the N -site Gaudin model depends on the N complex parameters wi that

specify the poles of the Lax matrix. These parameters have no a priori interpretation in the context of

correlation functions. Note that we can always apply Möbius transformations on the z-variable to fix

three of the wi. This is what allowed us in the previous section to set the parameters of the 3-site Gaudin

model to the specific values (3.24), in which case the Lax matrix (3.25) and its corresponding differential

operators contain no extra parameters. Our main claim is that we can reconstruct the entire set of 3-site

Lax matrices Lv
α(z), as well as the associated vertex Hamiltonians H(p)

v (z), one set for each vertex v,

from the N -site Lax matrix and the associated Gaudin Hamiltonians H(p)(z) = H(p)(z, wi) by taking

appropriate scaled limits of the complex parameters wi.

In order to make a precise statement, we need a bit of preparation. The limits we are about to discuss

must depend on the choice of the OPE channel. So let us assume we are given such a channel C. In

order to define the limits we pick an (arbitrary) external edge in the diagram, which will serve as a

reference point and which, up to reordering, we can suppose to have label N . As this edge is external,

it is attached to a unique vertex, which we will denote by v∗. Such a choice of reference vertex defines

a so-called rooted tree representation of the diagram. We then draw the OPE diagram on a plane, with

the vertex v∗ situated at the top and with each vertex having two downward edges attached. Such a

representation on a plane forces us to make a choice of which edges are pointing towards the left and

which edges are pointing towards the right: this choice is arbitrary, and gives rise to what is called a

plane (or ordered) representation of the underlying rooted tree. We give an example of such a plane

rooted tree representation for an 8-point OPE diagram in Figure 3.5 below.

1 2

3 4 5 6 7

8

Figure 3.5: Plane rooted tree representation of an OPE diagram with 8 external fields.

Recall from section 3.1 that each vertex v of the OPE diagram defines a partition N = Iv,1 ∪· Iv,2 ∪· Iv,3,
with the sets Iv,j formed by the labels of the external fields attached to the three branches of the vertex.

Although the choice of labeling of these branches was arbitrary in section 3.1, we will now fix it using

the plane rooted tree representation of the diagram picked above: choose the branch Iv,1 to be the

one pointing to the bottom left and the branch Iv,2 to be the one pointing to the bottom right. By

construction, the last branch Iv,3 then always points to the top and contains the reference point N .
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Each vertex v in the diagram is thereby associated with a sequence sv = (sv1, s
v
2, . . . , s

v
nv
) of elements

sva ∈ {1, 2}. This sequence sv encodes the path from v∗ to v. It tells us whether we have to move to

the left (for sva = 1) or right (for sva = 2) every time we reach a new vertex until we arrive at v after nv

steps. We shall also refer to the length nv of the sequence as the depth of the vertex and to sv as the

binary sequence of v. Note that the top vertex v∗ has depth nv∗ = 0. Let us point out that the notion

of depth used in this section refers to the distance from the root v∗ and is very different from the depth

d introduced in eq. (3.9) of the introduction.

In order to construct the limit of the Gaudin model that we are interested in, we will need to assign

a polynomial gv(ϖ) to each vertex v. If sv is the binary sequence associated with the vertex v, the

polynomial gv is defined as

gv(ϖ) =

nv∑

a=1

ϖa−1δsva,2 . (3.49)

Obviously the top vertex v∗ is assigned to gv∗(ϖ) = 0. The vertices of depth nv = 1 are associated with

gv1
(ϖ) = 0 or gv2

(ϖ) = 1, depending on whether they are reached from v∗ by going down to the left (v1)

or to the right (v2).

Similarly, we can assign polynomials fi(ϖ) to each external edge 1 ≤ i < N at the bottom of the plane

rooted tree. Once again, we can encode the path from v∗ down to the edge i by a binary sequence

si = (si1, s
i
2, . . . , s

i
ni
). The length ni of the sequence si is also referred to as the depth of the edge i. Now

we introduce

fi(ϖ) =

ni∑

a=1

ϖa−1δsia,2 +ϖniδsini
,1 . (3.50)

and set

fN (ϖ) = ϖ−1 (3.51)

for the external edge of the reference field at the top of the plane rooted tree. Thereby we have now set

up all the necessary notation that is needed to construct the relevant scaling limits of the N -site Gaudin

model.

We can now move on to the main result of this section, namely how to reconstruct the vertex Hamiltonians

H(p)
v (z) of the 3-site Gaudin model of the previous section from the N -site Hamiltonians H(p)(z) =

H(p)(z, wi). To this end, we will first construct the vertex Lax matrices (3.25) from the Lax matrix

(3.47) before studying the associated Hamiltonians (3.20) in the limit. As it turns out, we can recover

the parameter free Lax matrix Lv that is associated with the vertex v as

Lv
α(z) =

T (Iv,1)
α

z
+
T (Iv,2)
α

z − 1
= lim
ϖ→0

ϖnvLα
(
ϖnvz + gv(ϖ), wi = fi(ϖ)

)
. (3.52)

Let us note that in the limit, the site wN = ϖ−1 associated with the reference field N goes to infinity,

while the sites of the other external fields approach z = 0 or z = 1 depending on whether they are located

at the right or left branch of the the plane rooted tree, i.e. whether their binary sequence sv starts with

sv1 = 1 or sv1 = 2. We shall prove eq. (3.52) in the third Subsection 3.3.3 through a recursive procedure

that will also offer insight into the construction of the polynomials gv and fi.

Let us now turn to the limit construction for the Gaudin Hamiltonians. We claim that the Hamiltonians

H(p)(z, wi) of the N -sites Gaudin model give rise to the Hamiltonians H(p)
v (z) of the different 3-sites

vertex Gaudin models defined in section 3.2.2 as

H(p)
v (z) = lim

ϖ→0
ϖpnvH(p)

(
ϖnvz + gv(ϖ), wi = fi(ϖ)

)
. (3.53)

The fact that this statement holds for the leading part of the Hamiltonians, without quantum corrections,

follows directly from the corresponding limit (3.52) of the Lax matrix

ϖpnvκα1···αp
p Lα1

(
ϖnvz + gv(ϖ)

)
· · · Lαp

(
ϖnvz + gv(ϖ)

) ϖ→0−−−→ κα1···αpLv
α1
(z) · · · Lv

αp
(z) .
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But it requires a bit of work to argue that the quantum corrections also have the required behaviour

under the limit. Consider a term of the form (3.22) in the correction: by appropriately distributing the

powers ϖpnv , using the fact that r1 + · · · + rq = p, and performing the change of spectral parameter

z 7→ z′v(ϖ) = ϖnvz + gv(ϖ) in the derivatives, we find that

ϖpnvτα1···αq ∂r1−1
z′v(ϖ)Lα1

(
z′v(ϖ)

)
· · · ∂rq−1

z′v(ϖ)Lαq

(
z′v(ϖ)

)

= τα1···αq∂r1−1
z

(
ωnvLα1

(
ϖnvz + gv(ϖ)

))
· · · ∂rq−1

z

(
ωnvLαq

(
ϖnvz + gv(ϖ)

))

ϖ→0−−−→ τα1···αq ∂r1−1
z Lv

α1
(z) · · · ∂rq−1

z Lv
αq
(z),

such that this correction term reduces in the OPE limit to the corresponding correction in H(p)
v (z).

As the vertex operators Dp,νv and the Casimir operators Dpr of the intermediate fields attached to the

vertex v are naturally extracted from the Hamiltonian H(p)
v (z), the property (3.53) shows that the full set

of operators defined in section 3.1 can be obtained from the limit of the N -sites Gaudin model considered

here. Before the limit ϖ → 0, The commutativity property (3.21) of the N -site Gaudin Hamiltonians

can be written as

[
H(p)

(
ϖnvz + gv(ϖ)

)
,H(q)

(
ϖnvw + gv(ϖ)

)]
= 0, ∀ z, w ∈ C, ∀ p, q, ∀ v, v′. (3.54)

for arbitrary ϖ, and is therefore preserved in the limit ϖ → 0,

[
H(p)

v (z),H(q)
v′ (w)

]
= 0, ∀ z, w ∈ C, ∀ p, q, ∀ v, v′. (3.55)

This provides an alternative proof of the commutativity of all Casimir operators Dpr and vertex operators

Dp,νv . Moreover, this statement now holds without needing to use conformal Ward identities. The proof

relies on a specific choice of labeling of the edges at vertices, given by a plane rooted tree representation

of the OPE diagram. Different such representations of the diagram correspond to different limits of

the same underlying N -sites Gaudin model and give rise to different sets of commuting operators, which

however generate the same algebra when acting on solutions of the conformal Ward identities. Finally, let

us note that the above construction automatically ensures the compatibility of these operators with the

conformal Ward identities, since taking appropriate limits of eq. (3.48) demonstrates that they commute

with the diagonal conformal generators T (N)
α .

3.3.2 Examples

Before we prove our main result, let us illustrate the construction of the operators from limits of Gaudin

models with two examples. The first one addresses the so-called comb channel OPE diagrams for which

we have already outlined the limit in [41]. The second example deals with the snowflake OPE channel of

the N = 6-point function.

Comb channel. Let us consider the comb channel OPE diagram with N external fields. To apply

the construction of the present section, we first need to pick a plane rooted tree representation of this

diagram. We will choose to represent it with all internal edges pointing towards the bottom left. We then

label the external edges of the tree as follows: we let N be the top edge of the tree, 1 be edge furthest to

the left and label by 2, · · · , N − 1 the external edges pointing to the bottom right at each vertex, from

the bottom to the top. Moreover, we enumerate the vertices v = [r] by an integer r = 1, . . . , N − 2, from

bottom to top. We represent this plane rooted tree in Figure 3.6, with external edges indicated in black

and vertices in blue. One can compute the limit of the Gaudin model associated with this tree using the

construction outlined in the previous subsection. For the polynomials fi that determine the parameters

wi of the Gaudin model, one finds from eq. (3.50) that

wi = fi(ϖ) = ϖN−1−i, ∀ i ∈ {1, · · · , N} . (3.56)
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1 2

3

N−2

N−1

N

[N−2]

[N−3]

[2]

[1]

Figure 3.6: Choice of plane rooted tree representation of the comb channel OPE diagram with N points.

Let us now consider the vertices v = [r], with r = 1, . . . , N − 2. From the general construction, and

formula (3.49) in particular, we find

n[r] = N − 2− r and g[r](ϖ) = 0, ∀ r ∈ {1, · · · , N − 2} . (3.57)

Note in particular that for this choice of plane rooted tree, the polynomial functions gv are all zero, since

all vertices v = [r] sit on the leftmost branch of the tree. The limit of the Gaudin Lax matrix

Lα(z, wi = fi(ϖ)) =

N∑

i=1

T (i)
α

z −ϖN−1−i (3.58)

associated with the vertex [r] then reads

ϖN−2−rLα
(
ϖN−2−rz

) ϖ→0−−−→ L[r]
α (z) =

T (1)
α + · · ·+ T (r)

α

z
+
T (r+1)

z − 1
. (3.59)

In sum, the vertex Gaudin Hamiltonians of the comb channel OPE limit are

ϖp(N−2−r)H(p)
(
ϖN−2−rz

) ϖ→0−−−→ H(p)
[r] (z). (3.60)

Snowflake channel. The results of the present section allow us to discuss more general topologies of

OPE diagrams than the comb channel. The first example of such a topology is the snowflake channel of

6-point functions. We represent this OPE diagram as a plane rooted tree following the conventions of

Figure 3.7, where the external edges are labeled in black from 1 to 6 and the vertices are labeled in blue

from [1] to [4]. Note in particular that the internal vertex of the diagram corresponds here to the label

[3].

1 2 3 4

5

6

[1] [2]

[3]

[4]

Figure 3.7: Choice of plane rooted tree representation of the snowflake OPE diagram.
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We can immediately read off the depth of the four vertices as

n[1] = n[2] = 2, n[3] = 1, n[4] = 0. (3.61)

We can now encode the positions of all four vertices in a binary sequence and apply the formulas (3.49)

to construct the polynomials gv, yielding

g[1](ϖ) = g[3](ϖ) = g[4](ϖ) = 0 and g[2](ϖ) = ϖ. (3.62)

Similarly, one can encode the five external edges at the bottom of the diagram in binary sequences and

apply eq. (3.50) to determine the positions of the N = 6 sites,

w1 = ϖ3, w2 = ϖ2, w3 = ϖ +ϖ3, w4 = ϖ +ϖ2, w5 = 1, w6 =
1

ϖ
. (3.63)

Inserting this parameterization of the complex parameters wi in terms of ϖ back into the Lax matrix of

the 6-sites Gaudin model, we obtain

Lα(z) =
T (1)
α

z −ϖ3
+
T (2)
α

z −ϖ2
+

T (3)
α

z −ϖ −ϖ3
+

T (4)
α

z −ϖ −ϖ2
+
T (5)
α

z − 1
+
ϖ T (6)

α

ϖ z − 1
. (3.64)

Given this expression and our formulas for nv and gv, it is now straightforward to check the limits (3.52)

for all four vertices,

ϖ2Lα(ϖ2z)
ϖ→0−−−→ T

(1)
α

z
+
T (2)
α

z − 1
, ϖ2Lα(ϖ2z +ϖ)

ϖ→0−−−→ T
(3)
α

z
+
T (4)
α

z − 1
, (3.65)

ϖLα(ϖz) ϖ→0−−−→ T
(1)
α + T (2)

α

z
+
T (3)
α + T (4)

α

z − 1
, Lα(z) ϖ→0−−−→ T

(1)
α + T (2)

α + T (3)
α + T (4)

α

z
+
T (5)
α

z − 1
.

These indeed give the expected vertex Lax matrices Lv
α = L[r]

α for the vertices labeled by r = 1, 2, 3, 4.

These two examples suffice to gain a first intuition into how we take limits of Gaudin models and thereby

manage to embed the vertex Lax matrices into the full N -sites model. We will now explain the derivation

of our results for general OPE diagrams.

3.3.3 Recursive proof of the limits

Subtrees. Our goal in this subsection is to prove that our limit construction is indeed able to recover

all vertex Lax matrices, as we have claimed. Let us consider some OPE channel C represented by a plane

rooted tree T . The approach that we follow is recursive. Let us consider the top vertex v∗ of the tree,

which is by construction attached to the external edge N . We denote by e′ and e′′ the left and right

downward edges attached to v∗ (which can correspond to either external or intermediate fields depending

on the topology of the diagram). We can then see the tree T as being composed of the vertex v∗ and of

two (plane rooted) subtrees with reference edges e′ and e′′, which we will call T ′ and T ′′ respectively. In

Figure 3.8 below, we illustrate the two subtrees obtained in the example of Figure 3.5.

1 2

3 4 5

e′

T ′

6 7

e′′
T ′′

Figure 3.8: Subtrees of the tree 3.5.
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We will now prove that if the limit construction of Subsection 3.3.1 holds for the subtrees T ′ and T ′′,

then it also holds for the initial tree T , thus proving that it holds for any tree by induction. Let us first

introduce some useful notation. We will denote by E′ and E′′ the external edges of T that belong to the

subtrees T ′ and T ′′ respectively. Note that if T ′ is not trivial, i.e. if e′ is not an external edge of the

initial tree T , then the full set of external edges of T ′ is E′ ∪· {e′} (since e′ is external in T ′ but not in

T ). On the other hand, if e′ is external in T , then we simply have E′ = {e′} and the subtree T ′ is trivial.

Let us also denote by V , V ′ and V ′′ the set of vertices of T , T ′ and T ′′, such that V = V ′ ∪· V ′′ ∪· {v∗}.

Recursion relations. Recall the polynomial gv(ϖ) defined in eq. (3.49) for any vertex v ∈ V of T

in terms of the binary sequence sv = (sv1, · · · , svnv
). Let us suppose that this vertex is contained in the

subtree T ′ and thus belongs to V ′: it is then associated with a binary sequence s′ v = (s′ v1 , · · · , s′ vn′
v
) in

T ′. By construction, the depth n′v of v in T ′ is given by nv − 1. Moreover, it is clear that the binary

sequence of v in T is related to that in T ′ by sv = (1, s′ v1 , · · · , s′ vnv−1). Indeed, since v belongs to T ′,

the path from v∗ to v starts by going to the bottom left (sv1 = 1), and is then given by the path from

e′ to v, encoded by s′ v. It is then clear that the polynomial gv(ϖ) defined by eq. (3.49) is related to

the corresponding polynomial g′v(ϖ) defined for T ′ by gv(ϖ) = ϖg′v(ϖ). Similarly, if v belongs to V ′′,

we have sv = (2, s′′ v1 , · · · , s′′ vnv−1) and thus gv(ϖ) = 1 +ϖg′′v (ϖ). In conclusion, the polynomials gv(ϖ)

satisfy the recursion relation

gv(ϖ) =





ϖg′v(ϖ) if v ∈ V ′,
1 +ϖg′′v (ϖ) if v ∈ V ′′,
0 if v = v∗.

(3.66)

A similar analysis can be performed for the sites wi = fi(ϖ) associated with the external edges i ∈ N
through eq. (3.50), distinguishing three cases. If i = N is the top reference edge, then we recall that

wN = fN (ϖ) = ϖ−1. If i ∈ E′ is an edge belonging to the subtree T ′, then one can relate the binary

sequences si and s′ i describing i in T and T ′ in a similar way as for the vertices in the paragraph above.

We then find that the polynomial fi(ϖ) satisfy the recursion relation

fi(ϖ) =

{
ϖ if e′ is external in T,
ϖf ′i(ϖ) else.

(3.67)

Note that in the first case, the subtree T ′ is trivial and the index i is then necessarily equal to e′, while in

the second case i is different from e′ and the subtree T ′ is therefore non-trivial. Finally, if i ∈ E′′ belongs

to the subtree T ′′, then we similarly find

fi(ϖ) =

{
1 if e′′ is external in T,
1 +ϖf ′′i (ϖ) else.

(3.68)

Here, i = e′′ in the first case and i ̸= e′′ in the second one.

Induction hypotheses. We will now suppose that the limit procedure defined in Subsection 3.3.1

holds for the subtrees T ′ and T ′′. To phrase these induction hypotheses more precisely, let us focus first

on the subtree T ′. If it is non-trivial, i.e. if e′ is not external in T , the external edges of T ′ are E′ ∪· {e′}.
We then introduce the Gaudin Lax matrix associated with T ′ as

L′
α(z) =

∑

i∈E′∪· {e′}

T (i)
α

z − f ′i(ϖ)
, (3.69)

where the sites associated with the external edges E′ ∪· {e′} are set to the positions f ′i(ϖ) prescribed by

the limit procedure of Subsection 3.3.1. Here, the generators T (i)
α associated with external fields i ∈ E′

are defined by their expression in the initial tree T , while the generators associated with e′ are defined

by T (e′)
α = T (N\E′)

α . By construction, the latter satisfy the commutation relations of g and commute

with the other generators T (i)
α , i ∈ E′, as required. Moreover, this definition ensures that the diagonal
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3. Gaudin Models and Multipoint Conformal Blocks

conformal generators
∑
i∈N T

(i)
α of the tree T coincides with the ones

∑
i∈E′∪· {e′} T

(i)
α of T ′ (however, as

we will see, the definition of T (e′)
α is in fact irrelevant for the recursive proof).

As T ′ is assumed to be non-trivial here, its vertex set V ′ is non-empty. The induction hypothesis that

we make in this subsection is then that eq. (3.52) holds for the subtree T ′, that is to say

Lv
α(z) =

T (Iv,1)
α

z
+
T (Iv,2)
α

z − 1
= lim
ϖ→0

ϖn′
vL′

α

(
ϖn′

vz + g′v(ϖ)
)
, ∀v ∈ V ′. (3.70)

In this equation, we used the Lax matrix Lv
α(z) associated with the vertex v as defined in the initial tree

T : indeed, it is clear that this vertex Lax matrix coincides with the one associated with v in the subtree

T ′ (in particular, the subsets of external edges Iv,1 and Iv,2 associated with the left and right branches

of v are the same when defined for T as when defined for T ′).

Similarly, if T ′′ is non-trivial, we consider the associated Lax matrix

L′′
α(z) =

∑

i∈E′′∪· {e′′}

T (i)
α

z − f ′′i (ϖ)
, (3.71)

and suppose that it satisfies the induction hypothesis

Lv
α(z) =

T (Iv,1)
α

z
+
T (Iv,2)
α

z − 1
= lim
ϖ→0

ϖn′′
vL′′

α

(
ϖn′′

vz + g′′v (ϖ)
)
, ∀v ∈ V ′′. (3.72)

Proof of the induction. We are now in a position to prove that the induction carries from the subtrees

T ′ and T ′′ to T . For that, we will show that the limit (3.52) holds for every vertex v ∈ V , with three

cases to distinguish. If v ∈ V ′ belongs to the subtree T ′, we will use the induction hypothesis (3.70) and

the recursion relations (3.66), first case, and (3.67). Similarly, if v ∈ V ′′ belongs to T ′′, we will use the

induction hypothesis (3.72) and the recursion relations (3.66), second case, and (3.68). Finally, if v is the

reference vertex v∗, then the limit will follow without having to use any induction hypothesis. As these

proofs are rather technical, we gather them in Appendix A.1.

3.4 Example: 5-point conformal blocks

As an example of our construction of commuting differential operators, let us consider a correlator of five

scalar fields

⟨ϕ1ϕ2ϕ3ϕ4ϕ5⟩ (3.73)

and fix the OPE decomposition as in Figure 2.8.

This correlator can be be written schematically using (2.113), which for the five-point case becomes

⟨ϕ1ϕ2ϕ3ϕ4ϕ5⟩ = Ω
(∆i)
5 (xi)F

(∆i)(u1, . . . , u5) . (3.74)

As usual, Ω
(∆i)
5 (xi) is a prefactor that takes into account the covariance of the correlator with respect to

conformal transformations, while F (∆i)(u1, . . . , u5) is a conformally invariant function which depends on

five cross ratios and admits a conformal block decomposition. In order to obtain differential equations for

5-point conformal blocks, one first needs to determine which Casimir and vertex operators characterize

these blocks, and then compute their action on the space of cross ratios ui.

For the OPE decomposition of Figure 2.8, the recipe of section 3.2 instructs us to construct four Casimir

operators, two for each internal leg

D2
(12) =(T1 + T2)[AB] (T1 + T2)

[BA]
, (3.75)

D2
(45) =(T4 + T5)[AB] (T4 + T5)

[BA]
, (3.76)

D4
(12) =(T1 + T2)[AB] (T1 + T2)

[BC]
(T1 + T2)[CD] (T1 + T2)

[DA]
, (3.77)

D4
(45) =(T4 + T5)[AB] (T4 + T5)

[BC]
(T4 + T5)[CD] (T4 + T5)

[DA]
, (3.78)
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3.4. Example: 5-point conformal blocks

and one vertex operator

D4,3
v,(12)3 = (T1 + T2)[AB] (T1 + T2)

[BC]
(T1 + T2)[CD] (T3)

[DA]
. (3.79)

Note that – in agreement with the general recipe – the vertex operator is not uniquely defined and (3.79)

can be shifted by terms proportional to (T1 + T2)2(T3)2 or to the Casimir operators.

To make explicit computations, we will use the embedding space formalism we introduced in section 2.3,

which allows for much faster computations given the simple form of conformal generators in this setting.

Note here that the dimension of spacetime only appears in our computations as a parameter when

contracting Kronecker deltas δAA = d+ 2, and can be therefore kept generic.

The first step is the choice of prefactor Ω
(∆i)
5 and cross ratios ui. We chose to use the same conventions

as [36], where the author computed 5-point blocks in the case of scalar exchange; the expression for Ω
(∆i)
5

in physical space coordinates can be easily translated into one in embedding space through the simple

relation

Xij ≡ Xi ·Xj = −
(xi − xj)2

2
, (2.48)

and one obtains (up to an overall normalization) the prefactor

Ω
(∆i)
5 =

(
X23

X13

)∆1−∆2
2

(
X24

X23

)∆3
2
(
X35

X34

)∆4−∆5
2

(X12)
∆1+∆2

2 (X34)
∆3
2 (X45)

∆4+∆5
2

. (3.80)

Regarding the cross ratios, it is natural to build four of these using the same construction of the standard

4-point cross ratios (u, v) introduced in [18], but supported on two different sets of points

u1 =
X12X34

X13X24
, v1 =

X14X23

X13X24
,

u2 =
X23X45

X24X35
, v2 =

X25X34

X24X35
,

(3.81)

while an interesting choice for the fifth cross ratio is

U
(5)
1 =

X15X23X34

X24X13X35
. (3.82)

In comparison with a potentially more natural parameterization using five independent 4-point cross

ratios, as in e.g. [32, 54], this parameterization of cross ratio space has the advantage of presenting

all of our differential operators with polynomial coefficients in the ui. We will discuss this feature of

polynomiality more in detail in section 4.2.2.

Using the scalar representation for generators in the embedding space (2.45), the operators (3.75)–(3.79)

can be easily expressed as objects D(Xi) acting on the coordinates XA
i . To obtain their action on the

space of cross ratios D(ui), one simply conjugates the D(Xi) by the prefactor as in (2.111), which for the

five-point case becomes

D(ui)g
(∆i)
∆r,lr,t

(
u1, v1, u2, v2, U

(5)
1

)
=

1

Ω
(∆i)
5

D(Xi)

(
Ω

(∆i)
5 g

(∆i)
∆r,lr,t

(
u1, v1, u2, v2, U

(5)
1

))
. (3.83)

In practical terms, the RHS above is expressed in terms of the generators (2.45) and the expressions (3.80)–

(3.82) of Ω
(∆i)
5 and the ui’s in terms of scalar products. The LHS is then obtained by solving (3.81–3.82)

for five different scalar products and substituting them in the RHS after the conjugation has been done;

the remaining scalar products will drop out and the final answer for the LHS will be expressed only in

terms of the cross ratios.

As an attempt to simplify the analytic expressions for the differential equations, it is natural to try to

extend the 4-point change of coordinates of Dolan and Osborn [19, 51]

u = zz̄ , v = (1− z)(1− z̄) (3.84)
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3. Gaudin Models and Multipoint Conformal Blocks

to the 5-point case. A very good candidate for this purpose is the change of coordinates

u1 = z1z̄1 , v1 = (1− z1)(1− z̄1) ,
u2 = z2z̄2 , v2 = (1− z2)(1− z̄2) ,

U
(5)
1 = w(z1 − z̄1)(z2 − z̄2) + (1− z1 − z2)(1− z̄1 − z̄2) ,

(3.85)

which leads to the simplest expressions for the quadratic Casimirs that we could find. Indeed, by intro-

ducing the notation

ϵ =
d− 2

2
, (3.86)

a =
∆1 −∆2

2
, ã =

∆5 −∆4

2
, b = −∆3

2
, (3.87)

U (k)
i = zki ∂zi − z̄ki ∂z̄i (3.88)

Vi,j =
ziz̄i
zi − z̄i

(
U (0)
i − U (1)

i +
1

zi − z̄i

(
1 + w(zi + z̄i − 2) +

ziz̄j − zj z̄i
zj − z̄j

)
∂w

)
(3.89)

Wi,j =
zj + z̄j
zj − z̄j

U (2)
i +

2ziz̄i
zi − z̄i

U (1)
j +

2ziz̄i
zi − z̄i

(
1

zi − z̄i
− wzj + z̄j

zj − z̄j
+

ziz̄j − zj z̄i
(zi − z̄i)(zj − z̄j)

)
∂w (3.90)

and the expression for the d = 1 quadratic Casimirs

D(a,b)
z1,z2 = z21(1− z1)∂2z1 − (a+ b+ 1)z21∂z1 − abz1 − z21z2∂z1∂z2 − az1z2∂z2 (3.91)

one obtains the following compact expressions for the quadratic Casimirs in arbitrary dimension2

D2
(12)=D

(a,b)
z1,z2+D

(a,b)
z̄1z̄2 +2ϵV1,2 + w(1− w) (z2 − z̄2)

1+a

(z1 − z̄1)a
W1,2

(z1 − z̄1)a
(z2 − z̄2)1+a

∂w +
w

(z1z̄1)a
U (2)
1 (z1z̄1)

aU (1)
2 ,

(3.92)

D2
(45)=D

(ã,b)
z2,z1+D

(ã,b)
z̄2z̄1 +2ϵV2,1 + w(1− w) (z1 − z̄1)

1+ã

(z2 − z̄2)ã
W2,1

(z2 − z̄2)ã
(z1 − z̄1)1+ã

∂w +
w

(z2z̄2)ã
U (2)
2 (z2z̄2)

ãU (1)
1 .

(3.93)

We have also attempted similar types of factorizations for the quartic Casimirs and the vertex operator,

in the spirit of the decomposition in equation (4.14) of [51]; so far to no great avail.

2these expressions differ with what one would get from (3.75) and (3.76) by an overall factor of (−2).
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Chapter 4

Limits of multipoint conformal
blocks and OPE factorization

The goal of this chapter is to report our results of [44], where we discussed the construction of multipoint

cross ratios and managed to obtain a set of cross ratios for N -point functions in the comb channel that

is perfectly adapted to OPE factorizations into lower point blocks. The explicit formulas are developed

for d ≤ 4 dimensions but the ideas are more general and should admit an extension to higher d.

4.1 Setup and Summary of Results

To set up some notation we consider the comb channel for M fields in d = 4, see Figure 4.1.1

φ1

φ2 φ3 φM−2 φM−1

φM

Figure 4.1: Schematic representation of an M -point comb channel OPE diagram in d = 4. All the
external legs at the interior of the comb are scalars, while we allow fields ϕ1 and ϕM to sit in a generic
representation.

In general, we can insert arbitrary spinning fields at the external legs, but we shall assume that the fields

ϕj on the external legs j = 2, . . . ,M − 1 in the interior of the comb are scalar fields of conformal weight

∆· j . Here we introduced a dot inside the ∆ symbol to distinguish external conformal dimensions from the

ones that can appear in the internal legs of the comb. The two fields ϕ1 and ϕM at the two sides of the

comb are allowed to carry any spin, i.e. they can be symmetric traceless tensors (STTs) or even mixed

symmetry tensors (MSTs). We denote the quantum numbers of these fields by φ1 = [∆L, lL, ℓL] and

φM = [∆R, lR, ℓR]. Here the subscripts L and R stand for ‘left’ and ‘right’, respectively, corresponding

to the position in the OPE diagram. Note that STTs correspond to fields with ℓ = 0 and scalar fields are

obtained if we also set l = 0. The intermediate fields that appear along the horizontal lines of the comb

are labeled by [s] with s = 1, . . . ,M − 3. We may think of [s] = {s + 1, s + 2} as a pair of consecutive

integers that enumerate the two external scalar fields we attach on the two sides of the internal link.

The associated intermediate fields O[s] possess quantum numbers φ[s] = [∆s, ls, ℓs] with non-vanishing

ℓs in generic cases. Only ϕ1 being scalar enforces ℓ1 = 0 at the first internal leg and similarly we have

ℓM−3 = 0 in case ϕM is scalar. When M > 4 the total number of cross ratios for M -point functions with

1The following discussion is later applied to subdiagrams of an N -point comb channel OPE diagram which is why we do
not set M = N and will also allow for two of the external fields to carry spin.
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M − 2 scalar and two spinning insertions is given by

nMcr = 4(M − 3) + 1− 2δlL=0=ℓL − 2δlR=0=ℓR . (4.1)

The subtractions correspond to the cases in which either one or both of the fields ϕ1, ϕM are scalar. An

M = 3-point function (vertex) with one scalar external field has no cross ratios unless the other two fields

are both spinning in which case there is a unique cross ratio, see the discussion in section 5.2. For M = 4

points with at least two scalar insertions one has

nM=4
cr = 5− 2δlL=0=ℓL − 2δlR=0=ℓR + δlL=0=ℓLδlR=0=ℓR . (4.2)

Note that the application to a four-point function of four scalar fields gives nM=4
cr = 5 − 4 + 1 = 2, i.e.

there are two cross ratios in this case as we saw in section 2.4.4.

The comb channel Hamiltonians are relatively easy to construct, at least in principle. In order to do so,

we employ the first order differential operators Tj,α, j = 1, . . .M, that describe the behaviour of a primary

field ϕj(xj) under the conformal transformation generated by the generatorsMα of the conformal algebra.

In addition, let us also define

T[s],α ≡ T
(I[s],1)
α =

s+1∑

k=1

Tk,α . (4.3)

The Casimir differential operators Dps , s = 1, . . . ,M − 3 are given by the pth-order Casimir element in

terms of the first-order operators T[s],α. For generic comb channel links in d = 4, the integer p assumes

the values p = 2, 3, 4. In case the field ϕ1 is a scalar, the first link only carries two quantum numbers and

hence there must be one relation between the three Casimir elements so that one can restrict to p = 2, 4.

A similar statement holds in case the field ϕM is scalar. In addition, we also have fourth order vertex

differential operators which can be written in the form

V4
s = κα1...α4

4 Ss,α1
· · · Ss,α4

, Ss,α = Ts+1,α − T[s−1],α (4.4)

for s = 1, . . . ,M − 2. The operators V4
1 and V4

M−2 can be expressed in terms of the Casimir differential

operators whenever ϕ1 and ϕM are both scalar. So the number of differential operators we have con-

structed here coincides with the number nMcr of cross ratios, in accordance with what we discussed in

Chapter 3, whose arguments instruct us that these operators are all independent and mutually commut-

ing. In our discussion of the 6-point function we will work with a set that is slightly different from the

one we described here, maximizing efficient computations over symmetry of formal expressions.

The joint eigenfunctions of these operators depend on the weights ∆· j , j = 2, . . . ,M − 1 of the external

scalar fields as well as the quantum numbers φ1 = [∆L, lL, ℓL] and φM = [∆R, lR, ℓR] of the two fields ϕ1

and ϕM , respectively. Of course, they also depend on the eigenvalues of the differential operators. We

parametrize these eigenvalues through the quantum numbers φ[s] = [∆s, ls, ℓs], s = 1, . . . ,M − 3 of the

internal primaries as well as the eigenvalues ts, s = 1, . . . ,M − 2, of the vertex differential operators Vs4 .
The latter correspond to a choice of tensor structures at the vertices. These wave functions are denoted

by

g
φ1,∆· j ,φM

[∆s,ls,ℓs;ts]
= g

φ1,∆· j ,φM

[∆s,ls,ℓs;ts]
(u) (4.5)

where u denotes any set of nMcr independent cross ratios. While the construction of the ncr differential

equations these functions satisfy is fully algorithmic, see previous paragraph, the resulting expressions are

rather lengthy in general. On the other hand, there are a few cases for which one obtains well-known dif-

ferential operators. ForM = 3 with two spinning fields ϕ1, ϕ3, the unique vertex differential operator was

shown in [43] to coincide with the lemniscatic elliptic Calogero-Moser-Sutherland Hamiltonian discovered

by Etingof, Felder, Ma and Veselov in [75], see the discussion in Chapter 5. The most well-known system

appears for M = 4 when all the fields ϕi are scalar. In this case the resulting Hamiltonians famously co-

incide with those of a 2-particle hyperbolic Calogero-Sutherland model of type BC2, [76]. The associated
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eigenvalue equations turn out to be equivalent to the Casimir equations for scalar four-point blocks that

were calculated and analyzed by Dolan and Osborn [19]. The corresponding eigenfunctions have been

studied extensively. In mathematics this was initiated by the work of Heckman and Opdam [77]. The

most relevant mathematical results were later re-derived independently in physics, starting with the work

of Dolan and Osborn [18, 19, 51]. Continuing with M = 4 the next step is to include cases in which one

or both of the fields ϕ1 and ϕ4 carry spin. Systems of this type have been studied in the physics literature

by [20, 48, 78]. In particular so-called seed conformal blocks in d = 4 dimensions have been characterized

through a set of Casimir differential equations. The solution for these special blocks was developed in

the same papers and extensions to more general blocks in [28]. Alternatively, it is also possible to derive

Casimir differential equations within the context of harmonic analysis of the conformal group [79–81].

More universally, it is also possible to construct spinning 2-particle Calogero-Sutherland Hamiltonians

for any choice of spin representations of ϕ1 and ϕ4, using Harish-Chandra’s radial component map [82] as

will be discussed in [83]. The radial component map provides Casimir equations for spinning four-point

blocks with external fields of arbitrary spin and in any dimension, thereby generalising vastly the current

status in the physics literature. In spite of being so general, the resulting expressions for the universal

spinning Casimir operators turn out to be surprisingly compact. Nevertheless, a universal solution theory

has not yet been developed.

After this preparation we are now able to state the main results of [44]. These concern conformal blocks

for correlation functions of N scalar fields. Obviously, the explicit form of the differential operators

depends very much on the coordinates/cross ratios that are being used. Below we shall start with one

relatively simple choice that consists of 2(N − 3) four-point cross ratios, N − 4 five-point cross ratios and

N −5 six-point cross ratios. The total number is 4N −15 which coincides with the number of cross ratios

of a scalar N -point function in d = 4 when N > 4. These initial cross ratios are depicted in Figures 4.2a

and 4.3. They turn out to be relatively well adapted to performing explicit computations. In particular,

one can verify that all the coefficients of the differential operators are polynomials in these cross ratios.

For this reason we shall refer to them as ‘polynomial’ cross ratios.

The key to the work of this Chapter is contained in subsection 4.2.4 where we introduce a new set of

independent conformal invariants, first for N = 6 and then more generally for any number N of insertions.

The 2(N −3) four-point cross ratios mentioned above give rise to N −3 pairs (zr, z̄r), r = 1, . . . , N −3, of

invariants, one for each internal edge. These are direct generalisations of the usual invariants z, z̄ that are

used to parametrize four-point cross ratios. The five-point cross ratios are then employed to build N − 4

invariants wr, r = 2, . . . , N−3, one for each non-trivial vertex. The construction of the wr is an immediate

extension of the variable w that we introduced in (3.85) to complement the variables z1, z̄1, z2, z̄2. But

starting with N = 6, there exists N − 5 additional independent invariants that involve the six-point

cross ratios we described above. From these we define new conformal invariants Υr, r = 2, . . . , N − 4,

one for each internal edge in which an MST can propagate. This invariant is first constructed for the

unique intermediate MST exchange in a six-point comb channel diagram for scalar external fields, see eq.

(4.29), and then extended to higher numbers N ≥ 6 of insertions at the end of section 4.2.4. In the same

subsection we also provide a nice geometrical interpretation for all the new conformal invariants which

we shall refer to as comb channel OPE coordinates.

The association of these invariants with specific links and vertices is much more than mere counting.

Consider a link r ∈ {2, . . . , N − 4} in which an MST propagates. This link comes with a set of three

invariants zr, z̄r,Υr. Our central claim concerning OPE factorization of multipoint blocks can now be

formulated after rewriting the blocks g in terms of the OPE coordinates g = g(zr, z̄r,Υr;ws). When

these functions are expanded around zb = z̄b = 0 = Υb
2 for one particular value of b ∈ {2, . . . , N − 4} the

2Note that the three limits do not commute. We take the limit z̄b → 0 first before taking zb and Υb to zero. Once taken
the first limit, the order of limits for the last two two variables does not matter.
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leading term is claimed to be of the form

g∆· i

[∆r,lr,ℓr;tr]
(zr, z̄r,Υr;ws) = z

1
2 (∆b+lb+ℓb)

b z̄
1
2 (∆b−lb−ℓb)
b Υℓbb × (4.6)

×
(
g
∆· i≤b+1,[∆b,lb,ℓb]

[∆r,lr,ℓr;ts]
(zr, z̄r,Υr;ws)

r<b
s<b × g

[∆b,lb,ℓb],∆· i>b+1

[∆r,lr,ℓr;ts]
(zr, z̄r,Υr;ws)

r>b
s≥b +O(zb, z̄b,Υb)

)
.

In the first line we have displayed the leading exponents in any of the three variables. Note that these are

determined by the quantum numbers of the exchanged intermediate field ϕ[b]. In case the latter is an STT,

i.e. iff ℓb = 0, this leading term is familiar from the theory of blocks for four-point functions of scalars.

Once this term in the first line of the expression is factored out, the remaining function admits a power

series expansion in the three variables zb, z̄b and Υb. The constant term in this power series expansion

turns out to factorize into a product of two eigenfunctions of Gaudin Hamiltonians with M1 = b + 2

and M2 = N − b sites, respectively. The sub- and superscripts we have placed on the eigenfunctions

apply to both the dependence of quantum numbers and conformal invariants. Let us note that this OPE

factorization also holds for b = 1 and b = N − 3 except that in these two cases the quantum number

ℓb = 0 so that the prefactor in the first line only contains powers of zb and z̄b. In addition, one of the

two blocks in the second line is simply a constant. One can actually verify such factorization formulas

whenever explicit formulas for the blocks are available, e.g. for d = 1 comb-channel blocks which have been

constructed in [36]. We have included one such explicit check for a six-point function in Appendix B.4.

To prove the remarkable result (4.6) beyond those cases in which the blocks are known, the differential

operators play a decisive role. Strictly speaking, our central claim remains somewhat conjectural for

N > 6. But in the case of N = 6 we are able to establish it rigorously. A scalar six-point function in d = 4

dimensions depends on nine cross ratios. We parametrize these through the variables zr, z̄r, r = 1, 2, 3,

Υ = Υ2 and ws, s = 1, 2. When we perform the limit on the variables (z2, z̄2,Υ) that are associated with

the internal MST exchange along the central link, the block factorizes into a product of two spinning

M = 4-point blocks with a single spinning field and three scalars in each of them. Such spinning four-

point blocks depend on three variables each. In our special parametrization these are given by (z1, z̄1;w1)

and (z3, z̄3;w2), respectively. As we recalled above, spinning four-point blocks may be characterized as

solutions of a specific set of differential equations that has been worked out at least for some examples in

the CFT literature, see in particular [78]. The full set of these differential equations can been obtained

with the help of Harish-Chandra’s radial component map [83]. The strategy to prove our factorization

result is to evaluate the limit of the six-site Gaudin Hamiltonians as z2, z̄2,Υ are sent to zero and to map

the resulting operators to the differential operators for spinning four-point blocks through an appropriate

change of variables. Similarly, one can also consider the limit in which the pairs (z1, z̄1) and (z3, z̄3) are

both sent to zero. Our OPE factorization states that the leading term in the resulting expansion is given

by a spinning four-point block for two scalar and two spinning fields. Once again, it is possible to verify

this claim by mapping the relevant differential operators onto each other.

Let us now briefly outline the content of each section. The next section is entirely devoted to a discussion

of cross ratios. After a brief review of the two most commonly used sets of cross ratios for four-point

functions, we will extend both of them to multipoint functions. The usual cross ratios u, v can be

generalised to higher numbers N of insertion points in such a way that the Casimir differential operators

for comb channel blocks have polynomial coefficients, at least for N ≤ 10. The relevant polynomial

cross ratios for multipoint functions are defined in section 4.2.2. While these cross ratios have some nice

features, they are not well adapted to taking OPE limits. For this reason we shall introduce a second

set of conformal invariants which we dub OPE cross ratios. We do so for N = 5 and N = 6 points first

before discussing the case N > 6, using a nice geometric/group theoretic interpretation of these variables.

Section 4.3 is devoted to a study of the OPE limits. The discussion focuses on N = 6-point functions.

After a brief review of the Gaudin Hamiltonians that characterize comb channel blocks, we derive the

asymptotic behaviour in the first line of eq. (4.6) and show that the leading term indeed factorizes into
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4. Limits of multipoint conformal blocks and OPE factorization

a product of functions of the respective variables. These functions may be characterized through certain

differential operators which can be obtained by studying the limiting behaviour of the original Gaudin

Hamiltonians. In particular, it turns out that the Gaudin Hamiltonians split into two sets of operators

that act on a disjoint subset of cross ratios. In section 4.4 we will identify these limiting differential

operators with the Casimir operators of spinning four-point blocks. To this end we briefly sketch the

results of [83] on the universal spinning Casimir operators. We cast these results in the form of universal

spinning Calogero-Sutherland Hamiltonians before we compare these operators with those we obtained in

section 4.3 when taking the OPE limit of multipoint functions. It turns out that the two sets of operators

coincide. This establishes our result (4.6), including the identification of the leading term with a product

of lower point conformal blocks.

4.2 Cross ratios for multipoint correlation functions

As we have explained in the introduction, there is much freedom in introducing sets of independent

conformally invariant variables. In this section we introduce two such sets for multipoint correlation

functions. The first one is referred to as polynomial cross ratios and it is a direct generalisation of the

common four-point cross ratios u and v to scalar correlators with N > 4 field insertions. When written

in these cross ratios, all the N − 3 quadratic Casimir differential operators that characterize the comb

channel multipoint blocks in sufficiently large dimension d turn out to possess polynomial coefficients, at

least for N ≤ 10. The second set of conformal invariants we introduce in this section is fundamental to all

of our subsequent discussion. These new coordinates are akin to the variables z and z̄ that are widely used

for four-point functions. They possess a large number of remarkable properties. Most importantly for us,

they behave well under dimensional reductions and when taking OPE limits, which is why we shall also

refer to them as OPE cross ratios. In addition, these variables possess a nice geometric interpretation.

In the first subsection, the case of N = 4 will be briefly reviewed to highlight some of the properties of

the cross ratios u, v and z, z̄ that make them so useful and are desirable to maintain as we go to higher

number N of insertions. The polynomial cross ratios are then introduced in the second subsection. Next,

in the third subsection, we discuss the OPE coordinates for N = 5 where there is a single qualitatively

new invariant that was introduced in [43] already. The fourth subsection contains the construction of a

new invariant that is attached to the central link of the six-point comb channel diagram. We introduce

this invariant and provide a geometrical interpretation. The latter is then used to extend the construction

of comb channel invariants in d = 4 to N > 6 insertion points.

4.2.1 Prologue: Cross ratios for four-point blocks

In order to enter the discussion of cross ratios for correlation functions of scalar fields, we will begin with

the well known case of N = 4 operators. As we saw in section 2.4.4, there exist two cross ratios one can

build from the four insertions points xi, i = 1, . . . , 4,

u =
X12X34

X13X24
, v =

X14X23

X13X24
, (4.7)

where we used the embedding space vectors Xi associated with the xi coordinates, see section 2.3. These

cross ratios can be represented schematically as in Figure 4.2a, where we disposed the four points along a

square and every colored edge corresponds to a scalar product present in the associated cross ratio, with

lines that intersect being present in the denominator. When written in these four-point cross ratios u, v,

the second order Casimir operator takes the form, see eq. (2.10) in [51],

1

2
D2

(12) = (1−u−v)∂v (v∂v + a+ b)+u∂u (2u∂u − d)−(1+u−v) (u∂u + v∂v + a) (u∂u + v∂v + b) , (4.8)

with the two parameters 2a = ∆· 2 − ∆· 1 and 2b = ∆· 3 − ∆· 4 determined by the conformal weights ∆· i
of the four external scalar fields. We observe that in these coordinates, the Casimir operator takes a
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4.2. Cross ratios for multipoint correlation functions

relatively simple form in which all the coefficient functions possess a polynomial dependence on the two

cross ratios u and v. But it also has some less pleasant features. In particular, it is not directly amenable

to a power series solution in the variables u, v. In order to formalize this a bit more, let us introduce the

notion of a grade in some variable w. We say that a differential operator of the form cwn∂mw has w-grade

grw(cw
n∂mw ) = n−m. When the grade is applied to some linear combination of such simple ‘monomial’

differential operators it returns a set of grades, one element for each term. For the grades of the Casimir

operator (4.8) we find

gru

(
D2

(12)

)
= {0, 1} , grv

(
D2

(12)

)
= {−1, 0, 1} . (4.9)

While the u-grade of the individual terms is non-negative, this is not the case for the v-grade. In other

words, when written in the variables u, v, the quadratic Casimir operator contains simultaneously terms

that lower and terms that raise the degree of a polynomial in v.

In order to analyze the eigenfunctions of four-point Casimir operators, Dolan and Osborn switched to

another parametrization of the cross ratios through the complex variables z and z̄,

u = zz̄ , v = (1− z)(1− z̄) . (4.10)

We point out that the change of variables is not one-to-one since u and v are invariant under the action of

Z2 whose non-trivial element exchanges z with z̄. Hence, functions of the cross ratios u and v correspond

to Z2 invariant functions of z, z̄. The invariants z, z̄ possess a nice geometric interpretation. As we saw in

the discussion around Figure 2.5, conformal transformations can be used to move the insertion points to

the special positions x2 = 0, x4 = e⃗1, x3 =∞ where e⃗1 denotes the unit vector along the first coordinate

direction of the d-dimensional Euclidean space. This choice of a conformal frame is stabilised by a

subgroup SO(d − 1) ⊂ SO(d) of the rotation group that describes rotations around the first coordinate

axis. These rotations can be used to move x1 into the plane spanned by e⃗1 and e⃗2. The invariants z, z̄

are the complex coordinates of x1 in this plane. Let us note that in these coordinates it is very easy to

implement the restriction to d = 1 for which there exists only one cross ratio, namely z = z̄.

The geometric interpretation of the z, z̄ coordinates, and in particular the simplicity of the reduction to

d = 1, also manifests itself in another property. It turns out that the so-called Gram determinant of N

insertion points takes a particularly simple form when written in z, z̄. This is constructed starting from

the embedding space coordinates Xi ∈ R1,d+1 associated with the N insertion points xi. The determinant

of the matrix of scalar products Xij = ⟨Xi, Xj⟩ is then what is usually called the Gram determinant,

which encodes information on independence of the xi. These vectors are in fact linearly dependent if

and only if the associated Gram determinant is zero. For N = 4 points xi ∈ Rd the associated Gram

determinant takes the form

det(Xij)
∣∣
4
= (z − z̄)2X2

13X
2
24 . (4.11)

We see that this expression is rather simple when written in terms of the cross ratios z, z̄, much simpler

than its expression in terms of u, v. Since any four vectors Xi ∈ R1,2 are linearly dependent, the four-

point Gram determinant must vanish in d = 1. This is achieved by setting z = z̄ so that all four points lie

on a single line, in agreement with our discussion in the previous paragraph. The simplicity of the Gram

determinant in the z, z̄ coordinates means that these are very well suited to implement the dimensional

reduction.

Next we turn to a discussion of the Casimir operator. When the expression we spelled out in eq. (4.8) is

rewritten in terms of z and z̄ it acquires the form

D2
(12) = 2z2(1− z) ∂

2

∂z2
+ 2z̄2(1− z̄) ∂

2

∂z̄2
− 2(a+ b+ 1)

(
z2

∂

∂z
+ z̄2

∂

∂z̄

)

− 2ab(z + z̄) + 2ε
zz̄

z − z̄

(
(1− z) ∂

∂z
− (1− z̄) ∂

∂z̄

)
(4.12)
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4. Limits of multipoint conformal blocks and OPE factorization

with ε = d − 2. We note that the resulting expression is slightly longer than for the original set u, v of

four-point cross ratios, and its coefficients are no longer polynomial. However, the main advantage of the

z, z̄ coordinates is that they admit a rather simple implementation of the OPE limit in which we send

z̄ → 0 first, followed by the limit z → 0. When |z̄| < |z| we can actually expand the last term in the

expression for D2
(12) in a power series. In the resulting expression, all terms possess non-negative z̄ grade,

i.e.

grz̄

(
D2

(12)

)
∈ {0, 1, 2, . . . } . (4.13)

In particular, there is no term in which the derivatives with respect to ∂z̄ outnumber the multiplications

with z̄. Keeping only terms of vanishing z̄-grade we have

D2
(12) ∼ 2z2(1− z) ∂

2

∂z2
+ 2z̄2

∂2

∂z̄2
− 2(a+ b+ 1)z2

∂

∂z
− 2abz − 2εz̄

∂

∂z̄
+ . . . (4.14)

where . . . stand for terms of positive z̄ grade. We can now continue and analyze the z grade of the leading

term in the previous formula. Obviously, the leading terms have non-negative z grade with the terms of

vanishing grade given by

D2
(12) ∼ 2z2

∂2

∂z2
+ 2z̄2

∂2

∂z̄2
− 2εz̄

∂

∂z̄
+ . . . (4.15)

where now the . . . contain also terms of positive z grade. Now let us apply this discussion to the problem

of finding eigenfunctions of the Casimir operator

D2
(12)g∆,l(z, z̄) = [∆(∆− d) + l(l + d− 2)] g∆,l(z, z̄) . (4.16)

For the limiting regime in which we replace the Casimir operator by the expression in eq. (4.15) the

eigenvalue problem is very easy to solve,

g∆,l(z, z̄) ∼ z
∆+l
2 z̄

∆−l
2 c∆,l + . . . (4.17)

where c∆,l is a non-vanishing constant factor that is not determined by the eigenvalue equation and

depends on the normalisation. Since all the terms we have omitted from our original Casimir operator

have positive grade, we conclude that it possesses an eigenfunction of the form

g∆,l(z, z̄) = z
∆+l
2 z̄

∆−l
2 f∆,l(z, z̄) = z

∆+l
2 z̄

∆−l
2 (c∆,l +O(z, z̄)) (4.18)

where the function f possesses a power series expansion in z and z̄ with non-vanishing constant term

c∆,l.

Before we turn to higher number N > 4 of insertion points we want to summarise a few of the desirable

properties of the coordinates z, z̄ that seem relevant. To begin with, when working with multipoint

correlators it is certainly very desirable to have simple expressions for the Gram determinant. Note that

N points Xi ∈ R1,d+1 are linearly dependent for N > d + 2. So if we keep the dimension d fixed, going

to larger values of N will inevitably lead to vanishing Gram determinants. Consequently, an N -point

function in dimension d < N − 2 lives on a subspace within the larger space of cross ratios for d ≥ N − 2.

The explicit description of this subspace is easiest when we work with coordinates in which the Gram

determinant factorizes into simple functions of the cross ratios. More importantly, we would like to find

coordinates that are well adapted to the OPE limit in the sense we outlined above. For higher multipoint

functions this means to find coordinates and association of subsets thereof with the internal links of the

OPE diagram such that eigenfunctions admit a power series expansion in all these link variables. For

N > 4 the leading term of these expansions will no longer be constant, of course, but it should factorize

into a product of functions that are associated with the two subdiagrams that are connected by the link.

We will indeed be able to construct such variables for all N -point comb channel diagrams, at least in

d = 4 dimensions.
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4.2. Cross ratios for multipoint correlation functions

4.2.2 Polynomial cross ratios for comb channel multipoint blocks

In this subsection we address the construction of sets of cross ratios which make all coefficients of comb

channel differential operators polynomial. Because of this property, we dub this set polynomial cross

ratios. We have seen this feature before when we wrote the Casimir operator for four-point functions in

the coordinates u, v, see eq. (4.8). In this sense, the polynomial cross ratios we are about to construct

are natural extensions of the four-point cross ratios u, v.

1

2 3

4

u

v

(a) Four-point cross ratios

r

vr

ur

(r)

(r+1) (r+2)

(r+3)

(b) Construction of four-point cross ratios around internal leg r

Figure 4.2: Schematic representation of the four-point cross ratios u and v, where intersecting lines
correspond to terms in the denominator. The same type of cross ratios can be constructed around every
internal leg by focusing on the closest four points.

It is possible to construct the four-point cross ratios of the same type for each internal link of the comb

channel OPE diagram. Consider the link with label r = 1, . . . , N − 3. Then the four nearest neighbor

insertion points are xi with i = r, r + 1, r + 2, r + 3, see Figure 4.2b. From these we can build two

four-point cross ratios ur, vr using the same expressions as in the case of four-point functions, i.e. for an

N -point comb channel diagram we can construct (N − 3) sets of u, v type cross ratios through

ur =
Xr(r+1)X(r+2)(r+3)

Xr(r+2)X(r+1)(r+3)
, vr =

Xr(r+3)X(r+1)(r+2)

Xr(r+2)X(r+1)(r+3)
, r = 1, . . . , N − 3 . (4.19)

Here we have used the construction in terms of the embedding space variables Xi, see previous subsection.

The 2(N − 3) cross ratios we have introduced so far do not suffice to generate all conformal invariants

as soon as d > 2 and N > 4. We conjecture that a set of cross ratios that makes all coefficients of the

N -point comb channel Casimir operators polynomial in d ≥ 2 is obtained if we complement the four-point

cross ratios (ur, vr) introduced above by the following set of m-point cross ratios

U (m)
s =

Xs(s+m−1)

∏m−3
j=1 X(s+j)(s+j+1)∏m−3

j=0 X(s+j)(s+j+2)

, s = 1, . . . , (N −m+ 1) , m = 5, . . . , N. (4.20)

The total number of cross ratios we have introduced is N(N − 3)/2 which coincides with the number of

independent cross ratios as long as d ≥ N −2. We checked our claim of polynomial dependence explicitly

by verifying that all comb channel quadratic Casimir operators that appear for up to N = 10 external

scalar fields indeed have polynomial coefficients in the cross ratios we have introduced. In addition, we

also verified the claim for vertex differential operators with N ≤ 6. We shall often refer to the variables

(4.20) as the m-point polynomial cross ratios, since they are constructed around every set of m adjacent

points in an N -point function. The first few examples of these type of cross ratios with low values of m

are represented schematically in Figure 4.3.

If the dimension d drops below its lower bound or alternatively, if for fixed dimension d the number

N of insertion points satisfies N > d + 2, there are additional relations between the cross ratios we

have introduced. These can be found by computing the Gram determinant for the scalar products Xij .

Given d, the relations allow to express our m-point cross ratios U (m) with m > d + 2 through cross

ratios involving a lower number of insertion points. In other words, in dimension d the space of N -point

conformal invariants is generated by the cross ratios U
(m)
s with m ≤ d + 2. It is easy to verify that the

number of such cross ratios indeed coincides with the expected number ncr, see eq. (4.1).
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(a) Five-point cross ratio
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1
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(c) Seven-point cross ratio

Figure 4.3: Polynomial cross ratios for five, six, and seven point functions. The colored lines correspond
to scalar products present in the expression of the cross ratio, with lines that intersect outside vertices
corresponding to terms in the denominator.

In d dimensions, there are N − d − 1 of these m-point cross ratios with maximal value m = d + 2. In

particular, the first time one of these cross ratios is needed is for (d + 2)-point functions. For example,

to construct the conformal invariants of an N -point function in d = 3 we need m-point cross ratios

with m = 4, 5 only and the first time a five-point cross ratio appears is for N = 5. Similarly, in d = 4

dimensions we work with m-point cross ratios for m = 4, 5, 6 and all these invariants actually appear

starting with N = 6 insertion points. Since we are mostly interested in d = 3, 4, it will be sufficient for

us to analyze Casimir operators for correlation functions of N = 5 and N = 6 scalar fields.

The set of polynomial cross ratios we have introduced in this subsection leads to relatively simple expres-

sions of Casimir operators, but it does not behave nicely when taking OPE limits of fields, i.e. the OPE

limit cannot simply be obtained by taking a limit for a subset of cross ratios to specific values. We will

now turn to the construction of new variables that are more suitable for OPE limits.

4.2.3 Five-point OPE cross ratios

We begin our discussion of the new OPE cross ratios with N = 5. As we reviewed above, five insertion

points give rise to five independent cross whenever d ≥ 3. Our recipe for the construction of polynomial

cross ratios in the previous subsection provides us with the following set

u1 =
X12X34

X13X24
, v1 =

X14X23

X13X24
,

u2 =
X23X45

X24X35
, v2 =

X25X34

X24X35
,

U
(5)
1 =

X15X23X34

X24X13X35
, (4.21)

that corresponds precisely to the set we used in (3.81) and (3.82).

For this case we did introduce a new parametrization already in (3.85) through the following set of

relations
u1 = z1z̄1 , v1 = (1− z1)(1− z̄1) ,

u2 = z2z̄2 , v2 = (1− z2)(1− z̄2) ,

U
(5)
1 = w1(z1 − z̄1)(z2 − z̄2) + (1− z1 − z2)(1− z̄1 − z̄2) .

(4.22)

Note that the Z2 symmetry one introduces when passing from u, v to z, z̄ in the case of four-point

functions is now enhanced to Z2 × Z2. In the case of five-point functions the two non-trivial generators

of this symmetry act by zr ↔ z̄r, w1 → (1 − w1) for r = 1, 2. When written in the conformal invariant

coordinates zr, z̄r and w = w1, the complexity of the differential operators remains roughly on the same

level as for the polynomial cross ratios, in the same way as the quadratic Casimir operators for N = 4

which have similar complexity in the two sets of variables, c.f. eqs. (4.8) and (4.12). But our OPE

coordinates for five-point functions have a number of additional properties that are worth pointing out.

To begin with, they possess a rather nice geometric interpretation that requires going to a certain con-

formal frame. We already saw that using conformal transformations it is possible to move three points,
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φ

φ

x1
x2

x3

x4

x5
z1, z̄1

z2, z̄2

Figure 4.4: Conformal frame for five points

let’s say x2, x3 and x4, onto a single line to positions 0, 1,∞. Then we can use the remaining rotations

transverse to that line in order to move x1 into a plane and finally rotations transverse to that plane

in order to move x5 into some 3-dimensional subspace, i.e. there exists a conformal transformation f (5)

such that
f (5)(x1) = ρ1(cos θ1, sin θ1, 0, 0⃗) , f (5)(x2) = (0, 0, 0, 0⃗) ,

f (5)(x3) = (∞, 0, 0, 0⃗) , f (5)(x4) = e⃗1 = (1, 0, 0, 0⃗) ,

f (5)(x5) = e1 − ρ2(cos θ2, sin θ2 cosϕ, sin θ2 sinϕ, 0⃗) .

(4.23)

Here we have parametrized the image point f (5)(x1) in the plane through an angle θ1 and a distance

ρ1, as usual. Similarly, we have also parametrized the point f (5)(x5) in a 3-dimensional space through

two angles θ2, ϕ and one distance ρ2, using f
(5)(x4) = e⃗1 as reference point. In all these expressions, 0⃗

denotes a vector with d − 3 vanishing components. We note that in d = 4 dimensions, the conformal

transformation f (5) is uniquely fixed by our choice of frame. It is now easy to compute our new variables

zr, z̄r and w1 in terms of θr, ρr and ϕ,

z1 = ρ1e
iθ1 , z̄1 = ρ1e

−iθ1 , z2 = ρ2e
iθ2 , z̄2 = ρ2e

−iθ2 , w1 = sin2
ϕ

2
. (4.24)

This is illustrated in Figure 4.4. In particular we see that z1, z̄1 and z2, z̄2 describe the two planes

x1x2x3x4 and x2x3x4x5 respectively, while w1 is directly related to the angle ϕ between those planes. As

we can read off from this picture the domain of w1 for Euclidean signature is given by

w1 ∈ [0, 1] . (4.25)

The description we provided is valid for d ≥ 3. As we go down to d = 2, there are no longer enough

dimensions in order to have a non-vanishing angle ϕ between two 2-planes, i.e. we must set ϕ = 0 or

ϕ = π and hence w1 = 0 or w1 = 1. As in our review of four-point functions, we expect to recover

these values of w1 as zeroes of the Gram determinant. And indeed, the Gram determinant for the five

coordinates Xi can be shown to acquire the following form

det(Xij)
∣∣
5
= 2

w1 (1− w1) (z1 − z̄1)2 (z2 − z̄2)2X2
13X

2
24X

2
35

X23X34
. (4.26)

In addition to the two factors w1 and w1 − 1 we also notice the zeros that appear for zr = z̄r, i.e. when

the four points x1x2x3x4 or x2x3x3x5 lie on a line.

In section 5.3.2 we use these same coordinates to analyze the OPE limit of our Gaudin differential

operators. This analysis shows clearly how the variable w1 is naturally associated with the degree of

freedom that described the choice of tensor structures at the internal vertex of a five-point OPE diagram.
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More specifically, we take the OPE limit for the two sets z1, z̄1 and z2, z̄2 of variables that are associated

with the two internal links of the OPE diagram. In the limit where we take z̄r → 0 first, followed by

zr → 0, the joint eigenfunctions of the five differential operators behave as

g∆r,lr;t(zr, z̄r, w1) ∼
2∏

r=1

z
∆r+lr

2
r z̄

∆r−lr
2

r (γ∆r,lr;t(w1) +O(zr, z̄r)) . (4.27)

The derivation follows the same steps we outlined in the discussion of four-point blocks in the first

subsection. But in contrast to the case of N = 4, the leading term γ of the power series expansion in

zr, z̄r is no longer constant but rather an eigenfunction of a single variable vertex differential operator

for an STT-STT-scalar three-point function which we construct and analyze in Chapter 5.

4.2.4 Six-point OPE cross ratios

After reviewing our parametrization of five-point cross ratios we now turn to a discussion of N = 6. As

long as d ≥ 4 our set of independent polynomial cross ratios consists of

u3 =
X34X56

X35X46
, v3 =

X45X36

X35X46
, U

(5)
2 =

X26X34X45

X35X24X46
, (4.28)

U
(6)
1 =

X16X23X34X45

X13X24X35X46
. (4.29)

in addition to the five cross ratios already introduced in eq. (4.21). While the three cross ratios in the

first line are of the same type as those we met in our discussion of N = 5, the six-point cross ratio in

the second line is fundamentally new. In passing to our OPE coordinates it is natural to make use of the

map (4.22) to transform the cross ratios shared with the previously discussed five-point function, while

analogously mapping the cross ratios in eq. (4.28) to

u3 = z3z̄3 , v3 = (1− z3)(1− z̄3) ,

U
(5)
2 = w2(z2 − z̄2)(z3 − z̄3) + (1− z2 − z3)(1− z̄2 − z̄3) .

(4.30)

For the six-point variable (4.29), a new type of mapping is necessary. In the same way as the variables

zr, z̄r are associated with exchanges of STTs, and the ws variables are associated with specific non-trivial

tensor structures sitting at internal vertices of OPE diagrams, the new variable we want to introduce

should be associated with exchanges of Mixed-Symmetry Tensors with two spins, and it should naturally

combine with the z2, z̄2 cross ratios to make up the three exchanged degrees of freedom of the middle

link. We propose to introduce this conformal invariant Υ = Υ2 through the relation

U
(6)
1 = Υ(z1 − z̄1) (z2 − z̄2) (z3 − z̄3)

√
w1(1− w1)w2(1− w2)− w1w2 (z1 − z̄1) (z̄2 + z2) (z3 − z̄3)

+ w1 (z1 − z̄1) [z2 (1− z̄3)− z̄2(1− z3)] + w2 (z3 − z̄3) [z2 (1− z̄1)− z̄2(1− z1)]

+ [z2 − (1− z1)(1− z3)] [z̄2 − (1− z̄1)(1− z̄3)] . (4.31)

The new variables zr, z̄r, ws and Υ admit an action of Z3
2 that leaves the original cross ratios invariant. The

nontrivial elements σr of the three Z2 factors each exchange one of the pairs zr ↔ z̄r, map ws → (1−ws)
for r = s, s+ 1 and send Υ to −Υ.

As a first quick test of our proposal, we can compute the six-point Gram determinant. When expressed

in the OPE coordinates it reads

det(Xij)
∣∣
6
=

(1− w1)w1(1− w2)w2 (z1 − z̄1)2(z2 − z̄2)2(z3 − z̄3)2
(
4z2z̄2 −Υ2 (z2 − z̄2) 2

)

z22 z̄
2
2

∏4
i=1X

2
i,i+1

X2
34

.

(4.32)

Given the lengthy relation between the six-point cross ratio U (6) and Υ it is very reassuring to see that

the Gram determinant now fits into a single line. In addition, the new conformal invariant Υ appears
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4.2. Cross ratios for multipoint correlation functions

in a single factor, combined only with the cross ratios z2, z̄2. If we reduce the dimension to d = 3, the

number of cross ratios drops by one. In our new set of conformal invariants we see that Υ can then be

expressed in terms of z2, z̄2 as

Υ2 =
4z2z̄2

(z2 − z̄2)2
for d = 3. (4.33)

All these simple relations are quite remarkable. On the other hand they are not yet sufficient to fully

appreciate our definition of Υ. Given what we have seen one may for example still wonder why we

did not rescale Υ to make the last bracket in the Gram determinant equal to (Υ2 − 1). While that

is certainly possible and leads to a nicer geometrical interpretation, the rescaled variable would result

in more complicated expressions for the asymptotics of comb channel blocks in OPE limits, see our

discussion in the next section.

The interpretation of our coordinates proceeds as in the previous subsection. In that case, each of the two

internal links was associated with a complex plane. We used the coordinates z1, z̄1 and z2, z̄2 to specify

two positions on these two planes and related the variable w1 to the relative angle between the two planes

within a 3-dimensional subspace. As we go to N = 6, the same picture applies, but with dimensions raised

by one. Instead of the 2-planes in 3-space, we now have two 3-spaces that are associated with the points

x1, . . . , x5 and x2, . . . , x6, respectively. These are embedded in a 4-dimensional subspace with the relative

angle being measured by a new angle φ. Each of the two 3-spaces contains the configuration of two planes

depicted in Figure 4.4. For the first five points x1, . . . , x5 this defines the coordinates ρ1, θ1, ρ2, θ2 and

ϕ as before. We obtain a similar set of coordinates for the second set x2, . . . , x6. Now it is easy to see

that one pair of coordinates coincides with the ones from the first quintuple of insertion points so that

in total we need eight coordinates ρr, θr, ϕ1, ϕ2 with r = 1, 2, 3 to parametrize the configurations within

each of the 3-spaces. With these coordinates introduced one finds that

zr := ρre
iθr , ws := sin2

ϕs
2
, Υ := ±i cosφ

sin θ2
, (4.34)

where r = 1, 2, 3 and s = 1, 2. The sign in Υ is conventional, and can be absorbed in a shift of the angle

φ. A more formal definition of the various geometric parameters on the right hand side will be given in

the next subsection as part of a more general construction that applies to any number N of points in

d = 4 dimensions.

4.2.5 Generalisation to higher number of points

In order to extend our choice of coordinates to higher number N of insertion points in d = 4 dimensions,

it is useful to formalize the construction we have described at the end of the previous section. As

described in subsection 4.2.3, each quintuple of consecutive points xs, xs+1, . . . , xs+4 defines a conformal

transformation f
(5)
s as in eq. (4.23)

f (5)s (xs) =: ρsn⃗(θs, 0) , f (5)s (xs+1) =: (0, 0, 0, 0),

f (5)s (xs+2) =: (∞, 0, 0, 0) , f (5)s (xs+3) =: e⃗1 = (1, 0, 0, 0), (4.35)

f (5)s (xs+4) =: e⃗1 − ρs+1n⃗(θs+1, ϕs),

where s = 1, . . . , N − 4 and we defined the unit vectors n⃗ as

n⃗(θ, ϕ) := (cos θ, sin θ cosϕ, sin θ sinϕ, 0). (4.36)

Thus, to compute x6 in the conformal frame where f
(5)
1 (x1), . . . , f

(5)
1 (x5) are of the form (4.23), we express

the sixth point as

f
(5)
1 (x6) = f

(5)
1 ◦ f (5)−1

2 (e⃗1 − ρ3 n⃗(θ3, ϕ2)) ≡ h(5)12 (e⃗1 − ρ3 n⃗(θ3, ϕ2)). (4.37)
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By construction, h
(5)
12 is a conformal group element parametrized by the cross ratios of the six-point

function. In Appendix B.2, we compute this conformal transformation and find

h
(5)−1
12 = ρ−D2 Iσ1e−φM34e−θ2M12e−ϕ1M23eP1 , (4.38)

where I is conformal inversion and σ1 : (x1, x2, x3, x4) 7→ (−x1, x2, x3, x4) is a reflection along the

hyperplane orthogonal to the first coordinate direction. The explicit action of the element (4.38) on

spacetime points x is given by

h
(5)−1
12 (x) = ρ2σ1e

−φM34e−θ2M12e−ϕ1M23
x− e⃗1

(x− e⃗1)2
. (4.39)

In particular we read off that the angle φ described the relative angle between two 3-spaces. It is obvious

how to continue these constructions beyond N = 6 points in d = 4. We continue to introduce comb

channel cross ratios zr, z̄r and ws in terms of the polynomial cross ratios through relations (4.22) with

indices running over r = 1, . . . , N − 3 and s = 1, . . . N − 4, respectively. Similarly, we introduce Υr with

r = 2, . . . N − 4 through relations of the form (4.31). After extending our relations (4.34) to a higher

number of comb channel OPE coordinates we introduce the geometric coordinates as

zr := ρre
iθr , ws := sin2

ϕs
2
, Υr := ±i

cosφr
sin θr+1

, (4.40)

and define in direct analogy to eq. (4.38) the conformal transformations

h
(5)
s(s+1) := f (5)s ◦ f (5)−1

s+1 = ρ−Ds+1 Iσ1e−φsM34e−θs+1M12e−ϕsM23e−φs−1M34eP1 , (4.41)

for s = 1, . . . , N − 4. We can thus supplement eqs. (4.35) by the relations

f
(5)
1 (x6) = h

(5)
12 (e⃗1 − ρ3n⃗(θ3, ϕ2)) , f

(5)
1 (x7) = h

(5)
23 ◦ h

(5)
12 (e⃗1 − ρ4n⃗(θ4, ϕ3))

. . .

f
(5)
1 (xN ) = h

(5)
(N−5)(N−4) ◦ h

(5)
(N−6)(N−5) ◦ · · · ◦ h

(5)
23 ◦ h

(5)
12 (e⃗1 − ρN−3n⃗(θN−3, ϕN−4)).

These formulas allow us to compute the location of the insertion points in the conformal frame defined

by the first five points x1, . . . , x5, see eq. (4.35), in terms of the geometric parameters ρr, θr, ϕs and φr.

The latter possess a very simple relation with the OPE cross ratios that we spelled out in eq. (4.40).

4.3 OPE limits and factorization for six-point blocks

In the previous section we have introduced new conformally invariant coordinates for multipoint blocks

in d = 4 dimensions that were naturally attached to the links and vertices of a comb channel OPE

diagram, see e.g. Figure 4.5 for the example N = 6. To support our choice we provided a nice geometric

interpretation and, closely related, showed that the Gram determinant for N = 6 points admits a simple

factorized expression, see eq. (4.32). Recall that the six-point function in d ≤ 4 is the first correlator for

which the new link variable Υ appears. This makes N = 6 the decisive case when it comes to testing our

cross ratios for comb channel blocks in d = 4. The next two sections are devoted to the most important

test.

As we have reviewed in subsection 4.2.1, what makes the cross ratios z, z̄ for 4-point function so useful

is the fact that they provide power series expansions in the OPE limit where z, z̄ go to zero. One can

deduce this important feature from the expressions of the Casimir differential operators. Here we want

to extend this type of analysis to the OPE limits of six-point functions and in particular to the limit in

which the coordinates z2, z̄2 and Υ attached to the central link of the comb channel diagram are sent

to zero. Our goal is to show that in this limit the six-point comb channel blocks possess a power series

expansion and that the leading term of this expansion factorizes into a product of two functions, one

depending on z1, z̄1, w1, the other on z3, z̄3, w2.
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φ1

φ2 φ3 φ4 φ5

φ6
z1, z̄1

a

z2,Υ, z̄2

b

z3, z̄3

c
w1 w2

Figure 4.5: Six point function with external scalars in the comb channel. The zi, z̄i, wi and Υ type of
cross ratios are naturally associated with one particular internal leg or vertex of the OPE diagram.

In our approach we characterize multipoint blocks as eigenfunctions of a complete set of commuting

differential operators. For N = 6 comb channel blocks, these operators are briefly reviewed in the first

subsection. Then we show that the OPE limit we are interested in does indeed correspond to sending

z2, z̄2 and Υ to zero. In the final subsection we then perform the OPE limit on the differential operators

and show that these operators decouple into two independent sets associated with the left and right side

of the diagram. We also provide concrete expressions for the limiting differential operators. These will

be further analyzed in the next section.

4.3.1 Preliminaries on comb channel six-point blocks

In this subsection we shall specify all of our conventions concerning six-point blocks and the differential

operators we use to characterize them. As usual, any six-point correlation function of scalar fields can

be split into a product of some homogeneous prefactor Ω, which depends on the scaling weights ∆· i and
insertion points xi of the external scalar fields, and a function F of the nine cross ratios,

⟨ϕ1ϕ2ϕ3ϕ4ϕ5ϕ6⟩ = Ω
(∆· i)
6 (Xi)F

(∆· i)
(
u1, v1, u2, v2, u3, v3, U

(5)
1 , U

(5)
2 , U

(6)
1

)
. (4.42)

The prefactor is not unique. Here we shall adopt the following choice:

Ω
(∆· i)
6 (Xi) =

1

X
∆· 1+∆· 2

2
12 X

∆· 3+∆· 4
2

34 X
∆· 5+∆· 6

2
56

(
X23

X13

)∆· 1−∆· 2
2
(
X24

X23

)∆· 3
2
(
X35

X45

)∆· 4
2
(
X45

X46

)∆· 6−∆· 5
2

. (4.43)

The function F (∆· i) admits a conformal block decomposition of the form

F (∆· i) =
∑

Ξ

λΞ g
(∆· i)
Ξ

(
ur, vr, U

(5)
1 , U

(5)
2 , U

(6)
1

)
, where Ξ = {∆a, la,∆b, lb, ℓb,∆c, lc, tL, tR} (4.44)

is a complete set of quantum numbers that includes the weights ∆a,∆b,∆c and spins la, lb, ℓb, lc of the

internal fields in the comb channel decomposition, as well as two quantum numbers tL and tR that label

the choice of tensor structure at the two central vertices of the diagram in Figure 4.5. We have also split

each summand into a product of OPE coefficients λ = λΞ and a conformal block gΞ. From now on we

will drop the labels on g unless it is not clear from the context which ones they are.

According to our discussion of Chapter 3, the six-point comb channel conformal blocks in eq. (4.44) are

joint eigenfunctions of nine differential operators. These include three quadratic Casimir operators, which

are constructed for each of the three internal links of the OPE diagram as

D2
(12) = (T1 + T2)[AB](T1 + T2)[BA] = D2

(3456) , (4.45)

D2
(123) = (T1 + T2 + T3)[AB](T1 + T2 + T3)[BA] = D2

(456) , (4.46)

D2
(56) = (T5 + T6)[AB](T5 + T6)[BA] = D2

(1234) . (4.47)
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The three quadratic Casimir operators are joined by three quartic ones which take the following form

D4
(12) = (T1 + T2)[AB](T1 + T2)[BC](T1 + T2)[CD](T1 + T2)[DA] = D4

(3456) , (4.48)

D4
(123) = (T1 + T2 + T3)[AB](T1 + T2 + T3)[BC](T1 + T2 + T3)[CD](T1 + T2 + T3)[DA] = D4

(456) , (4.49)

D4
(56) = (T5 + T6)[AB](T5 + T6)[BC](T5 + T6)[CD](T5 + T6)[DA] = D4

(1234) . (4.50)

In addition, there is one third-order Pfaffian operator that is assigned to the central link,

D3
(123) = ϵABCDEF (T1 + T2 + T3)[AB](T1 + T2 + T3)[CD](T1 + T2 + T3)[EF ] . (4.51)

To complete the list of differential operators we finally spell out the two fourth order vertex operators,

D4,3
L,(12)3 = (T1 + T2)[AB](T1 + T2)[BC](T1 + T2)[CD](T3)[DA] , (4.52)

D4,3
R,(56)4 = (T5 + T6)[AB](T5 + T6)[BC](T5 + T6)[CD](T4)[DA] . (4.53)

In the following we will mostly focus on the quadratic Casimir operators. It is rather easy to compute

the expression of these Casimir operators in the polynomial cross ratios with the aid of computer algebra

software and verify that all their coefficients are indeed polynomial, as we had claimed in the previous

section. The resulting expressions for Casimir operators are actually the simplest we have been able to

find, simpler than for any other set of coordinates. On the other hand, the polynomial cross ratios are not

well adapted to taking OPE limits, as we will argue in section 4.3.3. Taking the OPE limit will require

passing to the new OPE coordinates introduced in the previous section.

4.3.2 The OPE limit from embedding space

Our goal now is to motivate why we expect the sum over descendants in the central intermediate link

to be encoded in a power series expansion in the variables z2, z̄2,Υ. The idea here is to prepare the

intermediate fields through an operator product expansion of either the three fields on the left or the

three fields on the right of the central link. For the left hand side this amounts to making x1, x2 and x3

collide.

It is a little more tricky to understand how the OPE limit is performed once we pass to the cross ratios.

As an example, let us briefly look at the limit in which x1 and x2 come together. In the process we expect

to go from a six-point function of scalar fields to a five-point function with one STT insertion and four

scalars. While the former has nine cross ratios, the latter has only seven, i.e. we expect that two cross

ratios are fixed in the OPE limit. On the other hand, if we apply the limit to the nine polynomial cross

ratios we find

u1 → 0 , v1 → 1 , U
(5)
1 → v2 , U

(6)
1 → U

(5)
2 . (4.54)

Of course, this simply means that one needs to consider subleading terms in the limiting behaviour of the

cross ratios to parametrize the seven cross ratios of the resulting five-point function, but it still illustrates

how subtle OPE limits are in the space of cross ratios.

In order to analyze the triple OPE limits of our new cross ratios it is advantageous to work in embedding

space. In the next few paragraphs we will review how to take double limits into STTs and triple limits

into MSTs. A generic MST2 has three associated vectors X, Z ≡ Z1, and W ≡ Z2; we will work with

vectors in the Poincaré patches we discussed in section 2.3.2. Using the metric

ds2 = dXAdXA = −dX+dX− + δµνdX
µdXν , (2.39)

these vectors acquire the form

X =
(
1, x2, x

)
, (4.55)

Z = (0, 2x · z, z) , z = (
1− ζ2

2
, i
1 + ζ2

2
, ζ) ∈ Cd (4.56)

W = (0, 2x · w,w) , w = (ζ · ω,−iζ · ω, ω) ∈ Cd , (4.57)
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where ω ∈ Cd−2 satisfies ω2 = 0 and is normalised such that ω1 + iω2 ≡ 1. By construction, these satisfy

the null relations

X2 = Z2 =W 2 = X · Z = X ·W = Z ·W = 0 . (4.58)

To discuss the OPE limit of a pair of scalars inserted at x1 and x2 we use their embedding space

coordinates X1 and X2. Projecting to the STTs that are produced by the OPE of those two scalar fields

requires to construct the embedding space coordinate XSTT and polarisation ZSTT of said fields from the

coordinates of the two scalars. This can be achieved by taking a lightcone limit X1 ·X2 = 0 first. Once

the lightcone condition is satisfied we introduce

XSTT =
1

2
(X1 +X2) , ZSTT =

1

(X2 −X1)1 + i(X2 −X1)2
(X2 −X1) . (4.59)

Note that the prefactor in the definition of ZSTT ensures that the polarisation is normalised such that

z1+iz2 = 1, as in (4.56). Thanks to the condition X1 ·X2 = 0, the two vectors we have built from X1 and

X2 satisfy the usual relations for STT variables, namely they both square to zero, X2
STT = 0 = Z2

STT,

and they are transverse to each other, i.e. XSTT · ZSTT = 0. So far, we have only assumed that the two

scalar fields are light-like separated so that X1 · X2 = 0. To complete the OPE limit we can now set

X2 = X1 + ϵ ZSTT and compute the ϵ→ 0 limit.

In order to address the triple OPE limit, it remains to discuss the operator product of an STT with a

scalar field. Let us consider an STT with associated coordinates X1, Z1 and a scalar at position X2. If

we want to project to the exchange of an MST2 produced by the OPE of those two fields, we need to

be able to construct embedding space coordinates XMST2
and polarisations ZMST2

,WMST2
for an MST2

field starting from the degrees of freedom of the two initial fields. To do so, we will follow a nested

procedure with two limits of the type described above. As before, we start by first taking the lightcone

limit X1 ·X2 = 0 and construct the expressions

XMST2
=

1

2
(X1 +X2) , Z ′ =

1

(X2 −X1)1 + i(X2 −X1)2
(X2 −X1) . (4.60)

From here, one can take X2 = X1 + ϵ Z ′ and compute the ϵ → 0 limit. This leads temporarily to

something described by one coordinate XMST2 and two auxiliary vectors of STT type Z1 and Z ′. To

make this set suitable to describe an MST2, we need to further reduce the degrees of freedom of the system

and construct a variable W . This can be achieved by taking the lightcone limit Z ′ ·Z1 = X2 ·Z1 = 0 and

constructing

ZMST2 =
1

2
(Z ′ + Z1) , WMST2 =

1

(Z ′ − Z1)3 + i(Z ′ − Z1)4
(Z ′ − Z1) . (4.61)

These two vectors indeed satisfy the appropriate conditions for variables associated with an MST2, and

the normalisation is such that it matches the reference one we spelled out above. At this point we can

complete the OPE limit by writing Z ′ = Z + ϵW and taking ϵ→ 0.

Let us now come back to the cross ratios and analyze their behaviour when we take the OPE limit. This

is particularly simple if we take the OPE limit for the two scalar fields ϕ1 and ϕ2 in which case one find

that z̄1 and z1 both tend to zero while all other cross ratios remain finite. A similar statement holds

for the OPE limit of the two scalar field ϕ5 and ϕ6. It is less straightforward to understand the leading

behaviour for exchanges of a certain MST2 for the internal leg in the middle. To study this, let us start

by taking first the OPE limit on the left of side of the OPE diagram and reducing to a five-point function

of fields Oa, ϕ3, . . . , ϕ6. Here, the OPE limit for leg b can simply be cast as a limit for one STT with

coordinates Xa, Za and one scalar with coordinate X3, of the form described in section 4.3.2. Following

that, it is possible to check that

w1
((12)3) OPE−→

{
1 if (Xa ∧X3) · (X4 ∧X5) > 0 ,

0 else ,
(4.62)
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4. Limits of multipoint conformal blocks and OPE factorization

while the cross ratios z2, z̄2 and Υ all tend to zero. On the other hand, if we were to take the limit from

the right side in the ((65)4) order, we would end up with

w2
((65)4) OPE−→

{
1 if (X2 ∧X3) · (X4 ∧Xc) > 0 ,

0 else ,
(4.63)

while once again z2, z̄2 and Υ vanish in the limit. This instructs us on the fact that the relevant regime

to study the projection on exchanges of specific operators in the leg b of the six-point function is the part

in common for both OPE limits we took above, namely (z2, z̄2,Υ) → 0. Taking only these three cross

ratios to zero, while leaving all others finite, corresponds to a regime in which the two triples (x1, x2, x3)

and (x4, x5, x6) can each be enclosed in a sphere of radius r which is parametrically smaller than the

distance R between any two points of the two triples. In this limiting regime, we need the six remaining

cross ratios to parametrize the configuration of insertion points in the two small spheres, see Appendix

B.3 for some more details.

4.3.3 OPE limits of six-point blocks

Our main goal in this subsection is to analyze the asymptotics of the six-points comb channel blocks in

the limit where we send z̄2, z2 and Υ to zero. We will first study the limiting behaviour of the Casimir

equation for D2
(123) under the assumption of a leading power-law behaviour of the form

g(zs, z̄s, wr,Υ) ∼ z̄p12 zp22 Υp3 (ψ(z1, z̄1, z3, z̄3, w1, w2) +O(z2, z̄2,Υ)) (4.64)

in the three variables for the middle leg. In a similar way to what happens for exchanges of STTs, see our

review in subsection 4.3.1, the precise powers depend on the order in which the limits are taken. Taking

the limit Υ → 0 first turns out to be inconsistent, as it produces divergences in the Casimir equation.

Instead we first take the z̄2 → 0 limit followed by the one in z2, in direct analogy to the N = 4, 5-point

functions. Alternatively, we could also send z2 to zero first, but given the symmetry of the cross ratios

under z ↔ z̄ and w ↔ (1−w) this is a mere issue of convention. Once this limit is performed, the order

in which the remaining two are performed turns out to be irrelevant and one finds

z̄−p12 z−p22 Υ−p3D2
(123)z̄

p1
2 z

p2
2 Υp3

z̄2→0−→
z2,Υ→0

−2
(
d p1 − p21 − p22 + (p3 + 1) (p2 − p1)− p3 (p3 − 1)

)
+. . . (4.65)

where we indicated the order of limits by placing the first one above the arrow and the remaining two

below. As before, the . . . correspond to higher order terms in z2, z̄2 and Υ. This behaviour, in which the

leading term of the second order Casimir differential operator for the central link is a constant was what

we were going for when we introduced the OPE coordinates. Now we see that we have indeed achieved

a first important goal.

Of course, we expect the constant term we just computed to match the eigenvalue of the quadratic

Casimir element in the MST2 representation of the exchanged intermediate field. The latter is related to

the weight and spin labels of said fields as

c
(2)
∆b,lb,ℓb

= ∆b(∆b − d) + lb(lb + d− 2) + ℓb(ℓb + d− 4) . (4.66)

Equating this with the constant we computed in eq. (4.65) we can only match the coefficients in front of

the dimension d provided that

p1 =
∆b − lb − ℓb

2
.

It is then natural to set the exponent p2 of the variable z2 to be

p2 =
∆b + lb + ℓb

2
. (4.67)
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4.3. OPE limits and factorization for six-point blocks

This also ensures that for ℓb = 0 one recovers the usual leading behaviour for intermediate STT exchange,

see subsection 4.3.1. Requiring finally a full match with the Casimir eigenvalue leaves us with two possible

solutions for the leading behaviour in Υ

p3 = ℓb or p3 = lb + 1 . (4.68)

This freedom, which cannot be eliminated by considering higher Casimir differential operators, is associ-

ated with the invariance of the Casimir elements under the action of Weyl transformations. Let us note

that the two possible solutions correspond to the two possible behaviours in (1 − v) for the four-point

s-channel OPE that distinguish between Euclidean and Minkowski conformal blocks [84]

(1− v)l , or (1− v)1−∆ , (4.69)

modulo an exchange of −∆ ↔ l and l ↔ ℓ. Along with the interpretation of Υ as a degree of freedom

associated with MST2 fields, the first solution with p3 = ℓb seems to be more natural. This choice will

later be validated when we compare the limiting behaviour of the remaining non-trivial Casimir operators

to those of spinning four-point blocks.

φ1

φ2 φ3

z1, z̄1

a
Obw1

Figure 4.6: One of the four-point functions obtained in the OPE limit for the middle leg in a six-point
function in comb channel. The rightmost field is a Mixed-Symmetry Tensor with two spin indices and
the exchanged field is a Symmetric Traceless Tensor.

Now let us address the second part of our claims. As stated in the introduction we want to show that

expansion of the conformal block (4.64) takes the more specific form

g(zr, z̄r, w1, w2,Υ)
z̄2,z2,Υ→0∼ z̄

∆b−lb−ℓb
2

2 z
∆b+lb+ℓb

2
2 Υℓb (ga(z1, z̄1, w1)gc(z3, z̄3, w2) + . . . ) , (4.70)

in which the leading term splits into a product of two functions of three variables each, and to characterize

the two factors, one for the left side of the OPE diagram, see Figure 4.6, the other for the right. The

proof is a nice application of Gaudin integrability, i.e. our characterisation of multipoint conformal blocks

through differential equations. Having seen that the differential operators Dp(123), p = 2, 3, 4, simply acts

as multiplication with the value of the associated Casimir elements, we now need to study the limiting

behaviour of the remaining six differential operators. These include two quadratic and two fourth order

Casimir operators as well as two vertex operators. We will focus our discussion on the quadratic Casimir

operators. Very remarkably, it turns out that the two quadratic Casimirs D2
(12) and D2

(56) decouple

completely upon taking the OPE limit in the central link,

D2
(12)

bOPE−→D2
a(z1, z̄1, w1) , D2

(123)
bOPE−→ c

(2)
∆b,lb,ℓb

, D2
(56)

bOPE−→D2
c (z3, z̄3, w2) . (4.71)

Here b OPE denotes the limit in which we take z̄2 to zero followed by z2 and Υ, as discussed before.

Obviously, the expression for D2
a and D2

c are identical, given the symmetry of the OPE diagram and the

limiting procedure. Hence it suffices to spell out an expression for D2
a which takes the relatively simple
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4. Limits of multipoint conformal blocks and OPE factorization

form

D2
a = −2 (z1 − 1) z21∂

2
z1 − 2 (z̄1 − 1) z̄21∂

2
z̄1 +

4 (w1 − 1)w1z1z̄1 (w1 (z1 − z̄1) + z̄1 − 1)

(z1 − z̄1) 2
∂2w1

+ 2 (1− w1)w1z
2
1∂z1∂w1

− 2 (1− w1)w1z̄
2
1∂z̄1∂w1

+ 2

[
z21

(
a+ b− 1 +

(
w1 −

1

2

)
lb

)
+

z1z̄1
z1 − z̄1

(1− z1)(d− 2)

]
∂z1

+ 2

[
z̄21

(
a+ b− 1−

(
w1 −

1

2

)
lb

)
− z1z̄1
z1 − z̄1

(1− z̄1) (d− 2)

]
∂z̄1

+2

[
a (w1 − 1)w1 (z1 − z̄1)−

2 (w1 − 1)w1z1z̄1 (lb − 1)

z1 − z̄1

+
z1z̄1(d− 2) (w1 (z̄1 + z1 − 2)− z̄1 + 1)

(z1 − z̄1) 2
]
∂w1

− a [(2w1 − 1) (z1 − z̄1) lb + 2b (z̄1 + z1)]−
z1z̄1 (w1 (z1 − z̄1) + z̄1 − 1)

(w1 − 1)w1 (z1 − z̄1) 2
ℓb (ℓb + d− 4) . (4.72)

Here the constants a, b are determined by the conformal weights of the external scalars and ∆b through

2a = ∆· 2 − ∆· 1 and 2b = ∆· 3 − ∆b. The expression for D2
c looks the same, but with variables z3, z̄3, w2

instead of z1, z̄2, w1 and parameters 2a = ∆· 4 −∆b and 2b = ∆· 3 −∆· 4. We have also analyzed the fourth

order Casimir operators as well as the vertex operators and shown that they display the same decoupling.

We refrain from spelling out explicit expressions here.

For the time being, all we can do with the explicit expression for D2
a is to appreciate that the formula

looks relatively simple. In the next section we will analyze it further and show that it can be mapped

to the quadratic Casimir operator for a spinning four-point function with three scalar and one MST2

external field. Let us note that the blocks for such spinning four-point functions indeed depend on three

variables, the two 4-point cross ratios and one additional variable associated with the choice of tensor

structure at the scalar-STT-MST2 vertex. Notice that our analysis implies in particular that conformal

partial waves in the limit are polynomials of a bounded degree in a variable closely related to w1, given

in (4.114), a fact that is already non-trivial from the mere definition of OPE cross ratios.

Before we conclude this section we briefly want to discuss a second OPE limit that we have also worked

out explicitly. It concerns a setup in which we take two OPE limits on the links a and c so that we end

up with a four-point function of two STT fields and two scalars, see Figure 4.7. As explained before, we

φ3 φ4

Oa

z2,Υ , z̄2

b
Ocw1 w2

Figure 4.7: Four-point function obtained from OPE limit on legs a and c of a six-point function in
comb channel. Fields at legs a and c are Symmetric Traceless Tensors, while the exchanged field is a
Mixed-Symmetry Tensor with two spin indices.

perform this limit by first sending z̄1 and z̄2 to zero before taking the limits z1, z2 → 0. In the limit, five

of the nine cross ratios survive and one finds

g(z1, z̄1, z2, z̄2, z3, z̄3, w1, w2,Υ)
z̄1,z1,z̄3,z3→0∼ z̄

∆a−la
2

1 z
∆a+la

2
1 z̄

∆c−lc
2

3 z
∆c+lc

2
3 (gb(z2, z̄2, w1, w2,Υ) + . . . ) .

(4.73)

The derivation of this limit follows the same steps we carried out in the discussion of the OPE limit on

the link b above. In particular, one can show that upon taking the combined a and c OPE limit, the
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4.4. Spinning Calogero-Sutherland models

second order Casimir operators behave as

D2
(12),D2

(56)

(a+c)OPE−→ const , D2
(123)

(a+c)OPE−→D2
b (z2, z̄2, w1, w2,Υ) . (4.74)

Here ‘const’ denotes the value of the quadratic Casimir element in the STT representations of the in-

termediate fields that are exchanged in the channels a and c, respectively. The second order Casimir

element for the link b reduces to an operator in the five remaining variables that can be worked out

explicitly, even though the expression is a bit longer than in our discussion above. It can be found in the

Mathematica notebook attached to [44]. In the next section we will argue that this 5-variable Casimir

operator can be mapped to the Casimir operator of a spinning four-point function with two scalars and

two STTs attached on either side of the OPE diagram.

4.4 Spinning Calogero-Sutherland models

In the previous section we have computed the six-point comb channel Casimir differential equations in

two OPE limits. In the first case, we performed the OPE limit on the central link of the OPE diagram

and obtained two sets of Casimir operators that act on three cross ratios each. The second order Casimir

operators were spelled out in eq. (4.72). The second setup involved a combined OPE limit on the left and

the right link and it resulted in a set of Casimir operators acting on a 5-variable system. In both cases,

the resulting limiting system is expected to correspond to a spinning four-point correlator, either one

involving three scalars and one MST or one with two scalars and two STT external fields. The Casimir

operators for such four-point blocks have been constructed in some examples, see e.g. [25, 78–80]. Here

we shall report on a very recent observation that all these Casimir operators can be constructed from

Harish-Chandra’s radial component map [83]. The construction actually works for arbitrary spinning

four-point functions in any dimension.

We shall provide a short review of the previous work on the relation between spinning conformal blocks

and harmonic analysis of spherical functions in the first subsection before we spell out the universal

spinning Casimir operators in the second. The general construction will be worked out explicitly in

a number of examples, including the two cases we mentioned in the previous paragraph. In the third

subsection we then construct an explicit map between the OPE limits of Casimir operators obtained in

the previous section with the spinning Casimir operators to be discussed below, thereby confirming the

expectation that e.g. the Casimir operator spelled out in eq. (4.72) is identical to the Casimir operator

for a spinning four-point function.

4.4.1 Spherical functions and the radial part of the Laplacian

As was shown in [79, 80, 85], conformal four-point functions admit a realisation as covariant vector-

valued functions on the conformal group G ∼ SO(d + 1, 1)3 itself. More precisely, there is a bijective

correspondence between solutions to conformal Ward identities and K-spherical functions on G, where

K ∼ SO(1, 1)×SO(d) is the group of rotations and dilatations. Given two finite-dimensional irreducible

representations ρL and ρR of K, with carrier spacesWL,R, respectively, the space of K-spherical functions

is defined as

ΓρL,ρR = {f : G −→ Hom(WR,WL) | f(kLgkR) = ρL(kL)f(g)ρR(kR)}, g ∈ G, kL,R ∈ K . (4.75)

We may, and occasionally will, identify Hom(WR,WL) ∼=WL ⊗W ∗
R. Covariance properties of f are then

written as

f(kLgkR) = (ρL(kL)⊗ ρ∗R(k−1
R ))f(g) . (4.76)

The explicit map between K-spherical functions and conformal correlators may be found in [81, 86].

3We write G ∼ H to mean that Lie groups G and H are locally isomorphic, i.e. Lie(G) ∼= Lie(H).
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4. Limits of multipoint conformal blocks and OPE factorization

Through the reinterpretation of conformal correlators as K-spherical functions on the conformal group,

conformal blocks are carried to eigenfunctions of the group Laplacian, thus becoming a subject of harmonic

analysis. By definition, spherical harmonics are eigenfunctions of the radial part of the Laplacian. The

latter may be thought of as a differential operator in two variables with matrix coefficients. To explain

this, we recall that the conformal group G admits a Cartan decomposition

G = KApK . (4.77)

In other words, almost every4 element of G can be factorized as g = kLakR, with kL, kR ∈ K and

a ∈ Ap. The factor Ap is the two-dimensional abelian group generated by elements H1 = 1
2 (P1 +

K1) and H2 = − i
2 (P2 − K2), where Pµ,Kµ denote generators or translations and special conformal

transformations, respectively. Clearly, spherical functions are uniquely determined by their restrictions

to Ap. Furthermore, such restrictions are not arbitrary. Let M ∼ SO(d − 2) be the centraliser of Ap in

K. For any m ∈ M , given one decomposition g = kLakR, we can form another g = (kLm)a(m−1kR)

(one can fix the ambiguity by requiring that either kL or kR belongs to a particular section of K/M).

When restricted to Ap, spherical functions take values in the space ofM -invariants inside Hom(WR,WL).

Indeed

f(a) = f(mam−1) = ρL(m)f(a)ρR(m
−1) . (4.78)

Because it commutes with left and right regular representations, the Laplacian ∆ preserves the space

ΓρL,ρR . The above comments allow us to regard its restriction to this space as a differential operator that

acts on vector-valued functions in two variables.

4.4.2 Spinning blocks and Calogero-Sutherland models

We will now explain how radial parts of the Laplacian are related to spinning Calogero-Sutherland models.

Let h = exp(tiHi) be an element of Ap and write X ′ = h−1Xh for any X ∈ g5. The quadratic Casimir

of g can be written as

Cas2 = H2
1 +H2

2 + coth(t1 + t2)(H1 +H2) + coth(t1 − t2)(H1 −H2) + (d− 2)(coth t1H1 + coth t2H2)

− D′2
+ − 2 cosh(t1 + t2)D

′
+D+ +D2

+

2 sinh2(t1 + t2)
− D′2

− − 2 cosh(t1 − t2)D′
−D− +D2

−

2 sinh2(t1 − t2)
(4.79)

+

d∑

a=3

(
M ′2

1a − 2 cosh t1M
′
1aM1a +M2

1a

sinh2 t1
+
M ′2

2a − 2 cosh t2M
′
2aM2a +M2

2a

sinh2 t2

)
− 1

2
MabMab,

where we have introduced D± = D ± iM12 and indices a, b to run over the set {3, 4, ..., d}. In the

remainder of this section, Latin indices will always be assumed to be in this range. The validity of the

last equation can be readily checked and we provide a short derivation in Appendix B.1. We call the

above equation the radial decomposition of Cas2. More generally, the radial decomposition of elements

in U(gc) may be thought of as an infinitesimal version of the Cartan decomposition. Significance of the

radial decomposition of Cas2 lies in the fact that it allows to directly reduce the Laplacian to any space

of K-spherical functions. All one needs to do is substitute the generators Hi by partial derivatives ∂ti ,

the primed generators x′, with x ∈ kc, by representation operators ρL(x) and the unprimed generators

y ∈ kc by ρ
∗
R(−y). The fact that the same prescription can be applied for all choices of ρL and ρR can be

captured by defining a universal map

Π : U(gc)→ D(Ap)⊗ (U(kc)⊗U(mc) U(kc)), (4.80)

that assigns to any element of U(gc) a (class of a) differential operator on Ap with coefficients in two

copies of U(kc) (here D(Ap) denotes the algebra of differential operators on Ap). The latter is called

4The set of elements that cannot be factorized has Haar measure zero.
5We use the notation g = Lie(G) and gc = g⊗ C and similarly for Lie algebras of all other groups under consideration.
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4.4. Spinning Calogero-Sutherland models

Harish-Chandra’s radial component map. In practice, for any u ∈ U(gc), Π(u) is computed by radially

decomposing u6 and then replacing elements x′, with x ∈ U(kc), by x ⊗ 1 and elements y, with y ∈ kc,

by 1⊗ y. The replacements here belong to the product of two commuting copies of U(kc).

The universal Calogero-Sutherland Hamiltonian is a close cousin of the universal radial part of the

Laplacian Π(Cas2) (see [87, 88] for a recent discussion). The two are related by conjugation, H =

δΠ(Cas2)δ−1, by the factor

δ(ti) =

√
sinhd−2 t1 sinh

d−2 t2 sinh(t1 + t2) sinh(t1 − t2) . (4.81)

This is the essentially unique factor that gives an operator in a Schrödinger from, i.e. without first order

derivatives in ti. Explicitly, the universal Hamiltonian reads

H = ∂2t1 + ∂2t2 +
1−D′2

+ + 2 cosh(t1 + t2)D
′
+D+ −D2

+

2 sinh2(t1 + t2)
+

1−D′2
− + 2 cosh(t1 − t2)D′

−D− −D2
−

2 sinh2(t1 − t2)

+
M ′

1aM
′
1a − 2 cosh t1M

′
1aM1a +M1aM1a − 1

4 (d− 2)(d− 4)

sinh2 t1
(4.82)

+
M ′

2aM
′
2a − 2 cosh t2M

′
2aM2a +M2aM2a − 1

4 (d− 2)(d− 4)

sinh2 t2
− 1

2
MabMab −

d2 − 2d+ 2

2
.

We have slightly abused the notation here: in eq. (4.79) both M1a and M ′
1a are elements of U(gc)

and M ′
1a = h−1M1ah, whereas in eq. (4.82), they are elements of U(kc)⊗ U(kc). In accordance with the

prescription spelled out above, spinning Calogero-Sutherland Hamiltonians, denoted HρL,ρR , are obtained

from H by substitutions x′ → ρL(x) and y → ρ∗R(−y), with x, y ∈ U(kc). Equation (4.82) is the central

one of this section and all applications below emerge from its special cases. Compared to the previous

works [79, 80], which computed HρL,ρR for some particular representations ρL,R, the new observation of

[83] concerns the universal spin dependence of these Schrödinger operators.7

As a first simple illustration of this universal formula let us briefly discuss the case of scalar functions

on G. These correspond to four-point functions of scalar fields. For K-K invariant functions, i.e. trivial

representations ρL = ρR = 1 the Hamiltonian we get reads

H0 = ∂2t1+∂
2
t2+

1

2

(
1

sinh2(t1 + t2)
+

1

sinh2(t1 − t2)

)
− (d− 2)(d− 4)

4

(
1

sinh2 t1
+

1

sinh2 t2

)
−d

2 − 2d+ 2

2
.

To make our coordinates on Ap agree with [79, 80], we introduce u1 = t1 + t2 and u2 = t1 − t2. The

Hamiltonian then can be written as

H0 = −2
(
H

(0,0)
PT (u1) +H

(0,0)
PT (u2) +

(d− 2)(d− 4)

8

(
1

sinh2 u1+u2

2

+
1

sinh2 u1−u2

2

))
− d2 − 2d+ 2

2
,

(4.83)

where H
(a,b)
PT denotes the quantum mechanical Pöschl-Teller Schrödinger operator. The H0 is the Hamil-

tonian of the hyperbolic BC2 Calogero-Sutherland model with parameters a = 0, b = 0 and ϵ = d − 2,

justifying our terminology. More precisely

H0 = −2H(0,0,d−2)
cs − d2 − 2d+ 2

2
. (4.84)

6Almost any element h ∈ Ap provides an isomorphism of vector spaces U(gc) ∼= U(apc )⊗ (U(kc)⊗U(mc) U(kc))

Γh : U(apc )⊗ U(kc)⊗ U(kc) −→ U(gc), Γh(H ⊗ x⊗ y) = h−1xh H y .

The element of U(gc) on the right hand side is said to be in a radially-decomposed form with respect to h. Notice that
U(apc ) is naturally represented by differential operators on Ap with constant coefficients, i.e. U(apc )

∼= C[∂t1 , ∂t2 ].
7In the most direct way to derive Casimir equations for spinning conformal blocks, one would introduce spin by modifying

generators of conformal transformations that act on individual fields. Upon reduction to the cross ratio space, this produces
additional terms in the Casimir operator. Our procedure circumvents the reduction of spinning degrees of freedom and
adds their contribution to the reduced operator directly.
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4. Limits of multipoint conformal blocks and OPE factorization

For non-identical scalar fields, ρL and ρR are characters of the dilatation group SO(1, 1) and trivial

representations of SO(d). Writing ρL(D) = 2a and ρ∗R(D) = 2b, we obtain the potential

VρL,ρR = −2a2 − 4 cosh(t1 + t2)ab+ 2b2

sinh2(t1 + t2)
− 2a2 − 4 cosh(t1 − t2)ab+ 2b2

sinh2(t1 − t2)
. (4.85)

The full Hamiltonian is then that of the BC2 Calogero-Sutherland model with parameters a, b and

ϵ = d− 2

HρL,ρR = H0 + VρL,ρR = −2H(a,b,d−2)
cs − d2 − 2d+ 2

2
. (4.86)

Wave functions of this operator were constructed in the seminal work of Heckman and Opdam [77].

Finally, assume that ρL and ρR arbitrary finite-dimensional representations. Due to the invariance

condition (4.78), the Hamiltonian HρL,ρR is restricted to act on functions F : Ap → WL ⊗ W ∗
R that

satisfy (ρL(Mab) + ρ∗R(Mab))F = 0. It is not difficult to see from the expression (4.82) that HρL,ρR is

indeed a well-defined operator on this space. By writing ρL(x) and ρ∗R(−y) as matrices one ends up

with a certain matrix Schrödinger operator. Here we will follow a slightly different path: representations

ρL and ρR of kc will be written in terms of differential operators that act on finite-dimensional spaces

of polynomials. This allows to elegantly impose the M -invariance conditions - ”spin cross ratios” of

previous sections will arise as generators of M -invariants in Hom(WR,WL). When prepared in this way,

the spinning Hamiltonians may be compared to those obtained through the OPE limit construction.

We will consider two examples in particular: 1) the representation ρL is trivial and ρR is a mixed symmetry

tensor of depth two, and 2) both ρL and ρR are symmetric traceless tensors. Here, we are referring to

the SO(d) content of these representations. By the dictionary of [79, 81], the two cases correspond in

conformal field theory to a four-point function of an MST2 field and three scalars, and two STTs and

two scalars, respectively, and hence they are directly relevant for the discussion of the two OPE limits

we analyzed in the previous section.

One MST2 and three scalars

We consider spinning Calogero-Sutherland Hamiltonians that arise when one of the representations ρL, ρR

is trivial. For concreteness, let ρL be the trivial representation. The potential in the Schrödinger operator

the simplifies to

V = − D2
+

2 sinh2(t1 + t2)
− D2

−

2 sinh2(t1 − t2)
+

d∑

a=3

(
M2

1a

sinh2 t1
+

M2
2a

sinh2 t2

)
− 1

2
MabMab . (4.87)

We assume that ρR is a mixed symmetry tensor (l, ℓ) of depth two of the rotation group. Thus, the

generators may be realised as differential operators

iM12 → ρ∗R(−iM12) = za∂a − l, Mab → zb∂za − za∂zb + wb∂wa − wa∂wb , (4.88)

iM1a →
1

2

(
(1 + z2)∂za − 2za(z

b∂zb − l) + 2zb(wb∂wa − wa∂wb)
)
, (4.89)

M2a →
1

2

(
(1− z2)∂za + 2za(z

b∂zb − l)− 2zb(wb∂wa − wa∂wb)
)
, (4.90)

that act on polynomial functions of za and wa. In the following, to simplify notation, we will write the

differential operators ρ∗R(−Mab) simply as Mab. The invariance condition (4.78) reads Mabf = 0 and is

solved by functions of the variables

X = zaza, W = wawa, Y = zawa . (4.91)

To get to the carrier space of ρ∗R, we are further required to impose the homogeneity Y ∂Y f = ℓf and

restrict to the lightcone {W = 0}. Individual pieces of the Hamiltonian (4.82) restrict to well-defined
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4.4. Spinning Calogero-Sutherland models

operators on such functions. Introducing the operator

Ll,ℓ(X) = −X(1−X)2∂2X −
(
ℓ(1−X)− 2(1− l)X +

d− 2

2
(1 +X)

)
(1−X)∂X

+

(
1− l − d− 2

2

)
(ℓ(1−X) + lX)− l(d− 2)

2
, (4.92)

we have

D = 2b, iM12 = 2X∂X + ℓ− l, M1aM1a = L(X), M2aM2a = L(−X) . (4.93)

Therefore, the Hamiltonian reads

H
(b)
l,ℓ = ∂2t1 + ∂2t2 +

1− (2b+ ℓ− l + 2X∂X)2

2 sinh2(t1 + t2)
+

1− (2b− ℓ+ l − 2X∂X)2

2 sinh2(t1 − t2)

+
Ll,ℓ(X)− 1

4 (d− 2)(d− 4)

sinh2 t1
+
Ll,ℓ(−X)− 1

4 (d− 2)(d− 4)

sinh2 t2
− d2 − 2d+ 2

2
. (4.94)

Note that the Hamiltonian acts on three variables, t1, t2 and X. We will compare it to the second order

differential operator (4.72) we obtained in the previous section when studying the OPE limit in the central

intermediate link of the six-point function.

Two STTs and two scalars

Let us now address the second case in which the left and right representations of the rotation group are

both symmetric traceless tensors. This leads to the Calogero-Sutherland Hamiltonian as a differential

operator in five variables. In the universal Calogero-Sutherland Hamiltonian, we are required to make

substitutions

iM ′
12 → ρL(iM12) = −z′a∂′a + l′, M ′

ab → z′a∂
′
b − z′b∂′a, (4.95)

iM ′
1a → −

1

2

(
(1 + z′2)∂′a − 2z′a(z

′b∂′b − l′)
)
, M ′

2a → −
1

2

(
(1− z′2)∂′a + 2z′a(z

′b∂′b − l′)
)
, (4.96)

iM12 → ρ∗R(−iM12) = za∂a − l, Mab → zb∂a − za∂b, (4.97)

iM1a →
1

2

(
(1 + z2)∂a − 2za(z

b∂b − l)
)
, M2a →

1

2

(
(1− z2)∂a + 2za(z

b∂b − l)
)
. (4.98)

The invariance condition (M ′
ab −Mab)f = 0 then means that f depends only on the scalar products

XR = zaza, XL = z′az′a, Y = zaz′a . (4.99)

Individual pieces of the Hamiltonian commute with the constraints, so they reduce to operators in the

variables (XR, XL, Y ). To write them down, we introduce

L1(XR, XL, Y ) =
1

4

(
− 4XR(1−XR)

2∂2XR
− 4Y (1−XR)

2∂XR
∂Y + (4Y 2 − (1 +XR)

2XL)∂
2
Y

+ 2(1−XR)(4(1− l)XR − (d− 2)(1 +XR))∂XR
(4.100)

− 2Y ((−2l − d+ 4)XR + 2l − d+ 2)∂Y + 2l(2(1− l)XR − (d− 2)(1 +XR))
)
,

and

L2(XR, XL, Y ) = −1

4

(
− 4Y (1−XR)(1−XL)∂XR

∂XL
− 2(1−XR)(XR(1 +XL)− 2Y 2)∂XR

∂Y

− 2(1−XL)(XL(1 +XR)− 2Y 2)∂XL
∂Y + (−4Y 3 + Y (−1 +XR +XL + 3XRXL))∂

2
Y (4.101)

+
(
(2− d)(1 +XR)(1 +XL) + 2(1− l)XR(1 +XL) + 2(1− l′)XL(1 +XR)− 4(1− l − l′)Y 2

)
∂Y

− 4lY (1−XL)∂XL
− 4l′Y (1−XR)∂XR

− 4ll′Y
)
.
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4. Limits of multipoint conformal blocks and OPE factorization

Then we have

M1aM1a = L1(XR, XL, Y ), M2aM2a = L1(−XR,−XL,−Y ), (4.102)

M ′
1aM1a = L2(XR, XL, Y ), M ′

2aM2a = L2(−XR,−XL,−Y ) . (4.103)

Clearly, the operators M ′
1aM

′
1a and M ′

2aM
′
2a are obtained from M1aM1a and M2aM2a by exchanging XR

and XL. Together with

iM12 = 2X∂XR
+ Y ∂Y − l, iM ′

12 = −2XL∂XL
− Y ∂Y + l′, (4.104)

1

2
MabMab =

(
XRXL − Y 2

)
∂2Y − (d− 3)Y ∂Y . (4.105)

these expressions are substituted in the formula (4.82) for the universal Hamiltonian to give the appro-

priate Calogero-Sutherland model that characterizes four-point blocks with two scalars and two STTs. It

will be compared with the Hamiltonian we obtained in the previous section when we studied the double

sided OPE limit of the six-point function.

4.4.3 Mapping between OPE-reduced operators and Calogero-Sutherland
form

In this section we will see how, using the leading behaviours of six-point blocks spelled out in section 4.3

under the various OPE limits, it is possible to recover the spinning four-point Casimir equations from the

previous subsection. Our strategy is to map the differential equations we obtained when discussing OPE

limits into a certain “standard form” of a quantum mechanical Hamiltonian, which can then be identified

with one of the spinning Calogero-Sutherland Hamiltonians constructed above. As a rule of thumb, we

will modify the second-order derivatives by performing a change of variables; all first-order derivatives

can instead be modified without affecting the second-order ones by “extracting” a certain function of

the cross ratios from the target function. After this second operation, the new differential operator D′ is

related to the original one by conjugation by the factor ω

ψ = ωψ′ =⇒ D′ = ω−1Dω . (4.106)

Let us now describe these steps in some more detail for the two cases we have analyzed in the previous

section.

One MST2 and three scalars

As a first step, it is possible to employ the change of variables used in [76] in order to map the second-order

derivatives of D2
a in z1 and z̄1 to one-dimensional kinetic terms. More precisely, we make the following

change of variables

z1, z̄1 −→




t1 = i

[
arcsin

(
1√
z1

)
+ arcsin

(
1√
z̄1

)]
,

t2 = i
[
arcsin

(
1√
z1

)
− arcsin

(
1√
z̄1

)]
,

(4.107)

which leads to the anticipated transformation in the quadratic Casimir

2z21(1− z1)∂2z1 + 2z̄21(1− z̄1)∂2z1 −→ ∂2t1 + ∂2t2 . (4.108)

Secondly, we wish to eliminate first order derivatives with respect to t1 and t2. We can do so through

conjugation of the type in eq. (4.106), with the factor

ω(t1, t2, w1) = (sinh t1 sinh t2)
1− d

2 (cosh t1 − cosh t2)
−a−b− 1

2 (cosh t1 + cosh t2)
a+b− 1

2

(
sinh t1 + sinh t2
sinh t1 − sinh t2

(1− w1)
2

) lb−ℓb
2

. (4.109)
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4.4. Spinning Calogero-Sutherland models

We now wish to eliminate the mixed derivatives ∂ti∂w1
, providing this way a partial decoupling of the

internal leg and vertex degrees of freedom. This can be achieved by the change of variables

w1 −→ X =
sinh t1 − sinh t2
sinh t1 + sinh t2

w1

1− w1
. (4.110)

The operator produced at the end of this procedure is of the spinning Calogero-Sutherland form, and

corresponds precisely to the operator we spelled out in the previous subsection 4.4.2, see eq. (4.94).

Two STTs and two scalars

As we did in the previous subsection, the first step to map this operator to a quantum mechanical Hamil-

tonian is to make two derivatives become one-dimensional kinetic terms, which is done by transforming

z2, z̄2 −→




t1 = i

[
arcsin

(
1√
z2

)
+ arcsin

(
1√
z̄2

)]
,

t2 = i
[
arcsin

(
1√
z2

)
− arcsin

(
1√
z̄2

)]
,

(4.111)

which leads to

2z22(1− z2)∂2z2 + 2z̄22(1− z̄2)∂2z2 −→ ∂2t1 + ∂2t2 . (4.112)

As a second step, it is possible to remove the first order derivatives in t1 and t2 by conjugating with

ω(t1, t2, w1, w2,Υ) = (sinh t1 sinh t2)
1− d

2 (cosh t1 − cosh t2)
−a−b− 1

2 (cosh t1 + cosh t2)
a+b− 1

2

(
sinh t1 − sinh t2
sinh t1 + sinh t2

w2
1

) la
2
(
sinh t1 + sinh t2
sinh t1 − sinh t2

(1− w2)
2

) lb
2

. (4.113)

Finally, we can eliminate all mixed derivatives that involve the ti coordinates by taking the change of

variables

XL =
sinh t1 + sinh t2
sinh t1 − sinh t2

1− w1

w1
, XR =

sinh t1 − sinh t2
sinh t1 + sinh t2

w2

1− w2
,

Y = −
√

(1− w1)w2

(1− w2)w1

sinh t1 sinh t2
cosh t1 − cosh t2

Υ .

(4.114)

The operator obtained at the end of this procedure corresponds precisely to the one we constructed in

subsection 4.4.2. This concludes the mappings between the differential operators obtained from the OPE

limits and the Calogero-Sutherland Hamiltonians, confirming that the leading behaviors in section 4.3.3

are extracted properly.
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Chapter 5

Vertex systems

The goal of this chapter is to report our results of [43], where we analyzed the simplest cases of vertex

differential operators that appear in CFT, namely the case of three-point functions with an associated

one-dimensional space of independent tensor structures. These corresponds to all the possible vertices

that can appear in comb-channel correlation functions in 3D and 4D. We start by expanding the discussion

of section 2.4.3 by spelling out the construction of all these one-dimensional systems, and we then shift

our attention to the vertex differential operators one can construct in those cases. These correspond to

the reduction of certain 3-site Gaudin models to the space of cross-ratios for 3-point functions. The main

claim we review in this chapter is that for all these one-dimensional systems, we can map the vertex

operators to Hamiltonians of a crystallographic elliptic Calogero-Moser-Sutherland (CMS) model that

was first discovered by Etingof, Felder, Ma, and Veselov in [75].

5.1 Setup and Summary of Results

Let us start by providing all the basic knowledge and notation that is required to spell out the main

results of [43]. We proceed in three steps. In the first subsection we review the counting of cross ratios

for scalar correlation functions in general, and for spinning vertex systems in particular cases. Next we

sketch a group theoretic interpretation of the cross ratios for the spinning vertex system. This will provide

the link to the Gaudin integrable model and the construction of vertex operators which we outline in the

third subsection.

5.1.1 Cross ratios and single parameter vertices

Let us consider an OPE channel CNOPE for an N -point correlation function of scalars. As before, we

enumerate external lines by indices i = 1, . . . , N , internal lines by r = 1, . . . N − 3, and vertices by

v = 1, . . . N −2. The number of degrees of freedom associated with a single vertex depends on the spin of

the three fields involved, i.e. whether they are scalars, symmetric traceless tensors, or fields with higher

spin depth. The depth of the intermediate fields grows with the number of operator products that are

required to construct them from scalars. More precisely, given the relation L = d − 1 between the spin

depth L, and the shifted definition of depth of chapter 3, we have from (3.9) that the depth Lr of a link

r in an OPE diagram is given by

Lr(CNOPE, d) = L(Ir,1, d), where L(I, d) = min(|I|, N − |I|, rankd)− 1 . (5.1)

Here, rankd denotes the rank of the d-dimensional conformal algebra, i.e. the dimension of its Cartan

subalgebra. Let us now look at a particular vertex v in an OPE diagram in a d-dimensional conformal

field theory. We call the ordered set (Lv,1, Lv,2, Lv,3) of depths Lv,k of the three adjacent legs with

Lv,1 ≥ Lv,2 ≥ Lv,3 the type of the vertex. This type determines the number of degrees of freedom that
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5.1. Setup and Summary of Results

are associated with v according to the formula

nvdo,v(CNOPE, d) = ncr

(
3∑

k=1

Lv,k + 3, d

)
−

3∑

k=1

Lv,k(Lv,k + 1) . (5.2)

Here, ncr(M,d) counts the total number of independent cross ratios of a scalar M -point function in d

dimensions we expressed in (2.112). As we showed in section 2.4.3, vertices v with two scalar legs are

completely fixed by conformal symmetry and do not contribute any degree of freedom, i.e. nvdo,v = 0 for

Lv,1 = 0 = Lv,2. Vertices for which none of the legs are scalar are easily seen to have at least two degrees

of freedom. Hence, vertices that possess a single degree of freedom must necessarily have one scalar leg.

These are the three cases

(Lv,1, Lv,2, Lv,3) =





I : (1, 1, 0) for d ≥ 3

II : (2, 1, 0) for d ≥ 4

III : (2, 2, 0) for d = 4

. (5.3)

Let us note that in d > 4 the vertex of type III possesses two degrees of freedom. The reduction to a

I

(a) STT-STT-scalar

II

(b) MST2-STT-scalar

III

(c) MST2-MST2-scalar

Figure 5.1: Vertices with an associated one-dimensional space of tensor structures. Single-lined legs are
scalars; double or triple lines correspond respectively to STT and MST2 representations. For the type
III vertex in Figure 5.1c, the space is two-dimensional and reduces to one dimension only in d = 4.

single degree of freedom in d = 4 is exceptional. In standard terms, type I vertices involve one scalar and

two STTs, type II occur for one scalar, one STT and one MST of depth L = 2 while type III contain

one scalar and two MSTs of depth L = 2. These three different types, depicted in Figure 5.1, exhaust

all those vertices that can appear in the comb channel of scalar N -point functions in d = 3 and d = 4

dimensions. By definition, all vertices in the comb channel have at least one external leg which is scalar,

i.e. has L = 0. Let us also note that for 5-point functions in any d the only non-trivial vertex is of type I,

which is included in our list. Similarly, for 6-point functions in the comb channel one only needs vertices

of type II. In this sense, the theory we are about to describe addresses some of the vertices that are most

relevant for applications, and constitutes all the possible vertices that can be recovered from the OPE

limits of chapter 4.

The construction of the single conformal invariant X that describes the vertices in our list (5.3) from

the coordinates and polarizations of the three individual fields, as well as the parameterization of 3-point

functions of the three types in terms of this cross ratio, will be reviewed in the next section 5.2, see eqs.

(5.13), (5.14) and (5.18). The precise embedding of individual (single variable) vertex systems into a

multi-point function is illustrated in subsection 5.3.2 for the example of the type I vertex system and its

relation with the vertex in a scalar 5-point function.

5.1.2 Group theoretic reformulation of the vertex system

The main goal of this chapter is to characterize the three different types of vertices listed in eq. (5.3)

through some differential equation of fourth order. As we reviewed in chapter 3, scalar N -point blocks can

be characterized as joint eigenfunctions of ncr(N, d) commuting Gaudin Hamiltonians. In an appropriate

limit of parameters of the Gaudin model, the Hamiltonians were shown to include all the Dolan-Osborn
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Casimir operators that measure the weight and spin of intermediate fields. The embedding of these

operators into an N -site Gaudin model guarantees that the Casimir operators can be complemented into

a full set commuting differential operators, one for each cross ratio, and it provides explicit expressions

for the additional differential operators which can be associated with the vertices of the OPE diagram

and are thereby referred to as vertex differential operators. The Gaudin model allows us to prepare the

individual vertex systems, see section 3.3. In the context of the present work, this is most easily described

for the vertex of type III. The 4-dimensional conformal group G = SO(1, 5) possesses 15 generators. It

has a number of interesting subgroups. In our discussion, two of them play a particular role. The first

one is the parabolic subgroup P = (SO(1, 1) × SO(4)) ⋉ R4 that is generated by dilatations, rotations

and special conformal transformations. The quotient G/P admits a transitive action of translations and

is therefore 4-dimensional. The representations that are associated with scalar fields, i.e. representations

of depth L = 0, can be realized on the sections of line bundles over G/P . Another closely related

realization of this representation is obtained on the space of holomorphic sections in a bundle over the

complexification GC/PC. It is the latter version we shall adopt here. The second subgroup we need is

the 9-dimensional Borel subgroup BC ⊂ GC. In this case, the quotient GC/BC is a flag manifold and we

can realize any representation (of depth L = 2) on a space of holomorphic sections in a line bundle over

it. Given a vertex of type I, it is now natural to assign the following coset space,

M(2, 2, 0; d = 4) = (GC/BC ×GC/BC ×GC/PC) /GC . (5.4)

Here, the complexified conformal group GC in the denominator acts diagonally from the left on the three

factors in the numerator. Note that the numerator has dimension 6 + 6 + 4 = 16. So, once we divide by

the 15-dimensional conformal group we end up with a 1-dimensional quotient space. The coordinate X
of this space is the unique degree of freedom that the vertex of type III contributes. A triple product of

coset spaces, such as the one in equation (5.4), may be regarded as the configuration space of a 3-site

Gaudin integrable system.

To treat other vertices we introduce the following family of subgroups Pd,L, L = 0, . . . , rankd−1, of the
complexified d-dimensional conformal group GC,

Pd,L = S(d)1,1

(
S(d−2)
2

(
· · · S(d+2−2L)

2

(
S(d−2L)
2 (SOC(d− 2L))

)
· · ·
))
⊂ GC = SOC(1, d+ 1) . (5.5)

Here, S(M)
2 (H) ⊂ SOC(M + 2) denotes a subgroup that is defined for any positive integer M and any

subgroup H ⊂ SOC(M) as

S(M)
2 (H) = (SOC(2)×H)⋉CM ⊂ SOC(M + 2)

where the carrier space CM of the fundamental representation of H ⊂ SOC(M) is extended to a repre-

sentation of SOC(2)×H by requiring that the elements of CM carry one unit of so(2) charge. This also

ensures that S(M)
2 (H) becomes a subgroup of SOC(M + 2). We use a very similar construction to build

S(d)1,1 (H) = (SOC(1, 1)×H)⋉Cd

for any subgroup H ⊂ SOC(d). With Pd,L fully defined we note that the first member Pd,0 of this family is

the parabolic subgroup Pd,0 = PC while the last one with L = rankd−1 coincides with the Borel subgroup

Pd,rankd −1 = BC. One can thus realize the representation of the conformal group that is associated to

a tensor field of depth L on a line bundle over the quotient GC/Pd,L. The choice of the line bundle is

determined by the weight and spin of the field. With this notation, we can now define

M(L1, L2, L3; d) = (GC/Pd,L1 ×GC/Pd,L2 ×GC/Pd,L3) /GC . (5.6)

Is is easy to see that the dimension of this space coincides with the number of independent conformal

invariants that can be constructed from the insertion points and polarizations of three fields of depth Lk,
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i.e.

dimC (M(L1, L2, L3; d)) = ncr(

3∑

k=1

Lk + 3, d)−
3∑

k=1

Lk(Lk + 1) . (5.7)

The spaceM is the configuration space of the integrable Gaudin model on the 3-punctured sphere with

punctures of depth Lk.

5.1.3 From Gaudin Hamiltonians to Lemniscatic CMS models

The Gaudin Hamiltonians provide a complete set of commuting higher order differential operators on

M. Here we shall content ourselves with a very brief review of the vertex system, for more detail

see section 3.2.2. A key ingredient in the construction of the Gaudin model is its Lax matrix, whose

components in the basis Mα of the conformal Lie algebra are defined as

Lv
α(w) =

3∑

k=1

T (k)
α

w − wk
, (5.8)

where w is an auxiliary complex variable called the spectral parameter and we can fix the three complex

parameters wk to be w1 = 0, w2 = 1 and w3 = ∞. The symbols T (k)
α here denote the first order

differential operators that describe the action of the conformal algebra on the three spinning primaries

at the vertex or, equivalently, on the flag manifolds GC/Pd,Lk
we introduced above. The superscript v

on the Lax matrix emphasizes that this is the matrix corresponding to the vertex v.

For any elementary symmetric invariant tensor κp of degree p on the conformal Lie algebra, there is a

corresponding w-dependent Gaudin Hamiltonian. As in chapter 3, we choose κp such that the Hamiltonian

takes the form

H(p)
v (w) = str

(
Lv
α1
(w) · · · Lv

αp
(z)
)
+ . . . , (5.9)

where . . . represent quantum corrections, involving a smaller number of components of the Lax matrix.

Our analysis in subsection 3.2.3 shows that for the vertex systems in our list (5.3) there is only one such

independent Hamiltonian and it is of order p = 4. Indeed we have argued there that the lower order

operators are trivial while the higher order ones can be rewritten in terms of lower order operators. A

non-trivial operator can be extracted from the family (5.9) with p = 4 as

Dv ≡ D4,3
v,13 = str

(
T (1)T (1)T (1)T (3)

)
. (5.10)

For the single variable vertices listed in (5.3) the Gaudin model provides the single differential operator

of order four which depends on the conformal weights and spins of the three fields. We will work it out

explicitly for all three cases, see section 5.3. The results are a bit cumbersome to spell out at first.

In section 5.4 we will massage the answer and thereby pass to a much more compact algebraic formulation

where we construct the Hamiltonian from the generators of a deformation of some generalized Weyl

algebra. The commutation relations of its three generators A,A† and N depend on the spins of the fields,

see eqs. (5.91) - (5.94). In the limit of d = 3 this algebra is actually well known in the literature on quiver

varieties where it appears as a generalized Weyl algebra or deformed/quantized Kleinian singularity of

affine type Ã3. Our deformation to d ̸= 3 can be seen to possess finite dimensional representations

whenever the spin quantum numbers are integers, and the dimension of these representations coincides

with the number of 3-point tensor structures. Once the algebra generated by A,A† and N is introduced,

the expression for the Hamiltonian can be stated in a single line, see (5.96). Obviously, this Hamiltonian

does depend on the choice of conformal weights, unlike the algebra it is a part of. In some sense, the

formulas of section 5.4 provide the most compact formulation of our vertex operators and we believe that

similar formulations are likely to exist for higher dimensional vertex systems.

Section 5.5 contains the main result we anticipated in the introduction of this chapter: there we show

that the vertex operators for all three vertex systems listed in eq. (5.3) can be mapped to a CMS
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Hamiltonian, namely the Hamiltonian for a crystallographic elliptic model that was originally discovered

by Etingof, Felder, Ma and Veselov about a decade ago, see [75]. This lemniscatic CMS Hamiltonian

is spelled out in equation (5.132). It is a fourth-order differential operator in a single variable z. The

relation between the cross ratio X of the vertex system and the new elliptic variable z is stated in eq.

(5.146). The map involves Weierstrass’ elliptic function ℘(z). The lemniscatic Hamiltonian contains

three non-trivial coefficient functions cp(z) which are defined in eqs. (5.133)-(5.135). These coefficient

functions depend on 12 multiplicities mi,ν with i = 1, . . . , 4, and ν = 0, 1, 2, subject to the five constraints

given in eq. (5.125), such that there are only seven remaining independent parameters. These determine

the coupling constants in the coefficient functions cp(z) through eq. (5.152) and eqs. (5.136)-(5.138). For

each of the three single variable vertex systems we determine the parameters mi,ν in equations (5.152)

and (5.153)-(5.160) (type I, II; for type II one sets ℓ2 = 0) and (5.164)-(5.171) (type III). We note that in

cases I and II, the vertex Hamiltonians do not exhaust the entire seven parameter family of lemniscatic

models. In fact, for these two cases the multiplicities satisfy the additional constraint (5.163) that reduces

the number of independent parameters to six. Only for vertices of type III are the parameters of the

lemniscatic model unrestricted.

5.2 Three-Point Functions in Embedding Space

The scope of this section is to construct all the vertex systems we listed in (5.3), which have an associated

one-dimensional space of tensor structures. We divide the analysis into two subsections. Vertices of type

I and II, which exist for all sufficiently high dimensions, are treated in the first subsection. The case of

type III which is restricted to d = 4 dimensions requires special treatment and is presented in the second

subsection. The use of embedding space formalism and polarization variables gives rise to an elegant

reformulation that allows us to construct 3-point correlators easily, up to a function t of conformal

invariant variables that is not determined by conformal symmetry, as we saw in (2.92).

5.2.1 Spinning 3-point functions in embedding space

We are now interested in those 3-point functions for which conformal symmetry leaves one free parameter,

i.e. the three configurations of spinning fields listed in eq. (5.3). These correspond to the vertices for

STT-STT-scalar in d ≥ 3, MST2-STT-scalar in d ≥ 4, and MST2-MST2-scalar in d = 4, respectively. In

section 5.3 we will actually address the computation of the vertex operators for these three cases through

a single computation by passing through the 3-point function for MST2-MST2-scalar in d > 4. From

there, we can then descend to the three cases we are interested in. As one can easily see, the vertex of

type (2, 2, 0) in d > 4 comes with two cross ratios and carries seven quantum numbers: three conformal

weights and four spin labels. In order to descend to the three types in the list (5.3), we need to specialize

the quantum numbers and restrict to a single cross ratio, see below.

To simplify notation and avoid multiple indices, we will use the notation of section 4.3.2 with

Z ≡ Z1 , W ≡ Z2 , (5.11)

and use Latin indices i, j, k = 1, 2, 3 to run over the three points. The first two spin labels will be as usual

be indicated by the letters l and ℓ. With this notation, correlation functions are expressed in terms of

the field ϕ∆1,l1,ℓ1(X1, Z1,W1), which therefore has spins l1 ≥ ℓ1 ≥ 0 and depends on the coordinate X1

and the two polarization vectors Z1 and W1, as well as the fields ϕ∆2,l2,ℓ2(X2, Z2,W2) and ϕ∆3(X3).

From what we saw in section 2.4.3, we know that three-point functions with auxiliary variables such as

Z and W need to be constructed out of gauge invariant quantities (2.59). The first task now is therefore

to find which non-vanishing independent tensor structures can be constructed out of these. This means

building a set of conformal invariants from the position variables Xi and the polarizations Zi,Wi that

generate functions of any degree in all of the seven variables, along with the two cross ratios. The latter
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are conformal invariants of vanishing degree. To begin with, we have the scalar products of position

vectors

X12 = X1 ·X2 , X23 = X2 ·X3 , X31 = X3 ·X1 . (5.12)

If we denote the multi-degree of a MST2-MST2-scalar vertex by [−∆1, l1, ℓ1;−∆2, l2, ℓ2;−∆3], these scalar

products have degree degX12 = [1, 0, 0; 1, 0, 0; 0] etc. Next, it is customary to introduce the following

contractions of the two-forms with two position vectors

V1 = V1,32 =
X3 · (X1 ∧ Z1) ·X2

X23
, V2 = V2,13 =

X1 · (X2 ∧ Z2) ·X3

X31
. (5.13)

The two objects V1 and V2 have degree deg V1 = [1, 1, 0; 0, 0, 0; 0] and deg V2 = [0, 0, 0; 1, 1, 0; 0]. Another

simple tensor structure is given by the the contractions of the two-forms, see (2.76),

H12 ≡ H(1)
12 =

1

2
(X1 ∧ Z1) · (X2 ∧ Z2) . (5.14)

It has degree deg H12 = [1, 1, 0; 1, 1, 0; 0]. The tensor structures we have introduced so far do not depend

on the polarizations Wi, in contrast to the remaining three variables that we will introduce now. These

include the following contractions of a three-form with a two-form and a vector,

U123 =
1

2
(X1 ∧Z1 ∧W1)ABC(X2 ∧Z2)

ABXC
3 , U213 =

1

2
(X2 ∧Z2 ∧W2)ABC(X1 ∧Z1)

ABXC
3 , (5.15)

and, finally, the contraction of the two three-forms

K12 ≡ H(2)
12 =

1

3!
(X1 ∧ Z1 ∧W1) · (X2 ∧ Z2 ∧W2) . (5.16)

In the notation of [50], these MST2 tensor structures correspond to Uijk = T 3,21
i,jk and Kij = T 3,3

i,j . The

degrees of these three tensor structures are deg U123 = [1, 1, 1; 1, 1, 0; 1], deg U213 = [1, 1, 0; 1, 1, 1; 1] and

deg K12 = [1, 1, 1; 1, 1, 1; 0]. This concludes our list of building blocks of tensor structures for the MST2-

MST2-scalar vertex in d > 4. For the reader’s convenience we listed the tensor structures and their

degrees in Tab. 5.1.

As one can easily count, we have written nine independent tensor structures, the degrees of which span

the entire 7-dimensional space of multi-degrees. Since we know that the MST2-MST2-scalar vertex admits

two cross ratios, the tensor structures we introduced indeed suffice to decompose the 3-point function in

the following way

Φ123(Xi;Zi,Wi) := ⟨ϕ∆1,l1,ℓ1(X1, Z1,W1)ϕ∆2,l2,ℓ2(X2, Z2,W2)ϕ∆3(X3)⟩ = Ω∆1,∆2,∆3

l1,l2;ℓ1,ℓ2
t(X ,Y) , (5.17)

where Ω∆1,∆2,∆3

l1,l2;ℓ1,ℓ2
is a prefactor that takes care of all homogeneity conditions (2.56), i.e. it is a product

of powers of tensor structures that matches the degree of the correlation function on the left hand side.

The function t(X ,Y) is a conformal invariant that depends on two variables of vanishing degree,

X =
H12

V1V2
, Y =

X13X23V1V2K12

X12U123U213
. (5.18)

Of course, the prefactor Ω is not uniquely fixed by the homogeneity condition simply because it is possible

to form objects of vanishing degree from the nine tensor structures. The remaining freedom can be fixed

by choosing not to employ H12 and K12 in the construction of Ω. This leaves us with a unique prefactor

satisfying all of the required homogeneities in (Xi, Zi,Wi),

Ω∆1,∆2,∆3

l1,l2;ℓ1,ℓ2
=

V l1−ℓ1−ℓ21 V l2−ℓ1−ℓ22 U ℓ1123U
ℓ2
213

X
∆1+∆2−∆3+l1+l2−ℓ1−ℓ2

2
12 X

∆2+∆3−∆1−l1+l2+ℓ1+ℓ2
2

23 X
∆3+∆1−∆2+l1−l2+ℓ1+ℓ2

2
31

. (5.19)

After one has fixed Ω, the remaining freedom in the 3-point function is normally taken into account

by expanding in a discrete set of 3-point tensor structures with vanishing multi-degree. These are then
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combined with OPE coefficients to make up the full correlator. The standard tensor structures, once

homogenized, represent a basis for the space of t(X ,Y), but this basis is of course not unique. As we

have recalled in chapter 3, a distinguished basis arises naturally from the study of higher-point conformal

blocks as eigenfunctions of the vertex differential operators.

Now that we have parametrized the MST2-MST2-scalar vertex in terms of the function t(X ,Y) of two

cross ratios, we need to explain how to descend to the three types of vertices we are interested in. We

will postpone the reduction to type III to subsection 5.2.2, and we will address here types I and II that

are the simplest to discuss. In these two cases, the variable W2 does not appear because the spinning

field ϕ∆2,l2,ℓ2 is in an STT representation. Therefore, we only have seven tensor structures whose degrees

span a 6-dimensional space of degrees. Consequently, there can be only one non-trivial cross ratio which

is X . Since it is impossible to construct the cross ratio Y, the function t(X ,Y) cannot depend on it, and

therefore reduces to t(X ).
Going to type I does not impose any further constraint on the remaining variable X . Indeed, without a

variable W1 it is not possible to construct the tensor structure U123 so that we remain with six tensor

structures whose degrees span a 5-dimensional space of degrees. The construction of X is not affected.

The upshot of all this discussion is very simple: for vertices of type I and II in our list (5.3) the 3-point

function assumes the form spelled out in eq. (5.17), but with a function t that depends only on X and

not on Y,
⟨ϕ∆1,l1,ℓ1(X1, Z1,W1)ϕ∆2,l2,ℓ2=0(X2, Z2)ϕ∆3

(X3)⟩ = Ω∆1,∆2,∆3

l1,l2;ℓ1,ℓ2=0t(X ) , (5.20)

where the prefactor Ω is given in eq. (5.19) and for vertices of type I one imposes ℓ1 = 0, recovering

(2.92).

Before we conclude this section, we want to carry our discussion of the function t(X ) one step further. So

far we have not enforced spin labels to be integers so that our general form (5.20) still applies to 3-point

functions of objects with continuous spin. Now we would like to explore the additional conditions that

arise from the restriction to spins with integer values. This discussion is completely analogous to the

one we reviewed around equation (2.93). Since MSTs depend polynomially on the auxiliary variables Zi,

the function t(X ) is constrained to live in a finite-dimensional space, as one can infer from the definition

(5.18) of the cross ratio X . The tensor structures Vi that appear in its denominator each contain factors

of Zi. Therefore, the highest power of Vi from the denominators of t(X ) must not exceed the power of

Vi that appears in the numerator of the prefactor (5.19) in order to ensure polynomial dependence on

the Z variables. This provides an upper bound on the exponent M of XM in a series expansion of t(X ).
Negative powers of X are not possible either, as these would produce the tensor structure H12 in the

denominator, which itself contains both Z1 and Z2 but cannot be compensated by the prefactor Ω that

does not contain H12. In conclusion, t(X ) must be a polynomial of order up to nt = min(l1 − ℓ1, l2 − ℓ1)
if nt ≥ 0, and it must vanish if nt < 0. The set of all allowed functions t(X ) therefore spans an (nt + 1)-

dimensional space of tensor structures. For type III vertices, we will be able to write 3-point functions

in the same form as (5.20) with ℓ2 ̸= 0. However, this last discussion on the polynomiality of t(X ) and
the space of tensor structures will be substantially different.

There is a slight twist to this story that is relevant for the STT-STT-scalar vertex in d = 3. Note that

all the tensor structures we have introduced so far are even under parity. So all of the 3-point tensor

structures that they generate are also parity even. But for the type I vertex in d = 3, it is also possible

to construct a parity-odd tensor structure given by

O
(3)
123 = ϵABCDEX

A
1 X

B
2 X

C
3 Z

D
1 Z

E
2 . (5.21)

Its degree in the 5-dimensional space of degrees for type I vertices is deg O123 = [1, 1; 1, 1; 1]. The square of

this parity-odd tensor structure must be parity-even, and it can be expressed in terms of tensor structures
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−∆1 −∆2 −∆3 l1 l2 ℓ1 ℓ2

H12 1 1 0 1 1 0 0
K12 1 1 0 1 1 1 1
V1 1 0 0 1 0 0 0
V2 0 1 0 0 1 0 0
U123 1 1 1 1 1 1 0
U213 1 1 1 1 1 0 1

Table 5.1: Degrees of tensor structures of the MST2-MST2-scalar 3-point function in d > 4.

constructed above as (
O

(3)
123

)2
∝ (1−X )XV 2

1 V
2
2

X13X23

X12
. (5.22)

We infer from this equation that parity-odd 3-point tensor structures contain factors of
√

(1−X )X ,
generalizing the polynomial space of t(X ) to also include these half-integer powers. A similar analysis

can be done for the type II vertex in d = 4. However one finds no extension of the space of polynomials;

we will describe this in the following subsection.

5.2.2 Embedding space construction in d = 4 dimensions

We now address the restriction of the 3-point function (5.17) to d = 4, thereby describing vertices of type

III. In going from d > 4 to d = 4, the number of independent cross-ratios reduces from two to just one.

One may think of this reduction in terms of a constraint that is imposed on the variable Y. The simplest

way to understand the need of a reduction in cross-ratio space is by observing that the embedding space

for a theory in d = 4 dimensions is 6-dimensional, while the MST2-MST2-scalar 3-point function described

in the previous subsection depends on seven vectors (X1, Z1,W1, X2, Z2,W2, X3). Seven vectors in a six-

dimensional space must be linearly dependent, which is equivalent to the vanishing of the determinant

of their Gram matrix. For the case at hand, the Gram determinant is easily computed in terms of our

tensor structures, and the vanishing condition becomes

X12

X13X23

U213U123

V1V2

Y2(−1 + X ) + Y
X = 0 , (5.23)

with two solutions in cross-ratio space: Y = 0 and Y = 1/(1 − X ). To understand the reason why

two different solutions appear and what each one means, we first need to explain in more detail some

properties of the embedding space representation of mixed-symmetry tensors in d = 4.

As we already reviewed in section 2.3.2, the representations labeled by Young diagrams that we consider

for generic d are actually reducible in even dimensions when L = d/2, and further decompose into

irreducible self-dual and anti-self-dual representations. To see this more concretely, let us specialize our

discussion of section 2.3.2 on Poincaré patches to the d = 4 case. Following the same conventions as

there, we can write the X and Z vectors as

X =
(
1, x2, xµ

)
,

Z = (0, 2x · z, zµ) zµ = (1,−ζ+ζ−, ζ+, ζ−) ,
(5.24)

where we use three pairs of coordinates (X+1, X− 1, X+2, X− 2, X+3, X− 3) in which metric given by

ds2 = −dX+1dX− 1 + dX+2dX− 2 + dX+3dX− 3. The variable W , introduced to parametrize the space

of solutions to X · W = Z · W = W 2 = 0 quotiented by the gauge and projective equivalence W ∼
λW + αZ + βX, has instead two possible solutions in d = 4, see the discussion that lead to equations

(2.69) and (2.70). The two possibilities can be spelled out as:

W = (0, 2x · w,wµ) wµ = (0,−ζ+, 0, 1) or (5.25)

W = (0, 2x · w,wµ) wµ = (0,−ζ−, 1, 0) . (5.26)
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It is easy to check that ⋆(X ∧ Z ∧W ) = X ∧ Z ∧W , and ⋆(X ∧ Z ∧W ) = −X ∧ Z ∧W . As a result,

W and W define two distinct orbits of the conformal group in embedding space, and the restriction to

the W or W orbit projects a spinning representation to its self-dual or anti-self-dual part. To make

the choice of orbit and duality explicit, we now slightly modify the homogeneity conditions of (2.56): we

redefineW andW to have opposite homogeneity degree, such that ℓ > 0 denotes self-dual representations

encoded by polynomials of order |ℓ| in W , and ℓ < 0 denotes anti-self-dual representations encoded by

polynomials of order |ℓ| inW . To motivate this prescription, recall that the double cover of the Lorentzian

conformal group SO(2, 4) by SU(2, 2) defines a map from C4 twistor fields to R2,4 embedding space fields.

In the twistor formalism, it is customary to label representations by the Dynkin labels (J, J̄) ≡ (λ1, λ2),

cf. Table 2.1, that respectively count the number of indices transforming in the chiral and anti-chiral

representation of the SLC(2) Lorentz subgroup1. In Appendix C.1 we construct an explicit map from

gauge invariant embedding space tensors to twistor space variables. Using this, one can readily verify

that our prescription to label self-dual and anti-self-dual representations is equivalent to the identification

l =
J + J̄

2
, ℓ =

J − J̄
2

, (5.27)

which corresponds precisely to the relations of Table 2.1 specialized to d = 4, and is standard in the

CFT4 literature.

With the introduction of these two vectorsW andW , the space of tensor structures that one can construct

changes dramatically. To see this, we begin by evaluating our expression for the tensor structure K with

Wi, respectively W i, i = 1, 2, taken from the same Poincaré patch (5.25), respectively (5.26),

K12 =
1

3!
(X1 ∧ Z1 ∧W1) · (X2 ∧ Z2 ∧W2) = 0 =

1

3!

(
X1 ∧ Z1 ∧W 1

)
·
(
X2 ∧ Z2 ∧W 2

)
= K1̄2̄ , (5.28)

which corresponds precisely to the specialization of (2.80) to the d = 4 case. On the right hand side, we

introduced the notation that barred indices ı̄ in tensors correspond to occurrences of the variable W i, as

opposed toWi. The vanishing of the tensor structures K12 and K1̄2̄ in d = 4, however, is accompanied by

the possibility of constructing two more tensor structures combining the self-dual and the anti-self-dual

vectors, cf. (2.79). It turns out that the resulting tensor structures are perfect squares, we can thus define

the following tensor structures in place of K1̄2 and K12̄:

k12̄ =

√
1

3!
(X1 ∧ Z1 ∧W1) ·

(
X2 ∧ Z2 ∧W 2

)
, k1̄2 =

√
1

3!

(
X1 ∧ Z1 ∧W 1

)
· (X2 ∧ Z2 ∧W2) .

(5.29)

Despite the presence of square roots, the fact that the radicand is a perfect square implies that k12̄ and

k1̄2 are both polynomials in the d-dimensional variables xi, zi. These two structures satisfy the following

relation

H12 = 2k12̄k1̄2 . (5.30)

Let us also spell out the degrees of the two new tensor structures,

deg k12̄ =

[
1

2
,
1

2
,
1

2
;
1

2
,
1

2
,−1

2
; 0

]
, deg k1̄2 =

[
1

2
,
1

2
,−1

2
;
1

2
,
1

2
,
1

2
; 0

]
. (5.31)

In conclusion, we have now replaced the two tensor structures K12 and H12 of the previous subsection

by the two tensor structures k12̄ and k1̄2. Furthermore, one can show that the objects Uij3 can be

decomposed into

U123 = ℧ k12̄ , U213 = ℧ k1̄2 , (5.32)

with a new tensor structure ℧ defined as

℧ =

√
XA

3 (X1 ∧ Z1 ∧W1)ABC (X2 ∧ Z2 ∧W2)
BCD

X3D . (5.33)

1More specifically the double cover of the Lorentz subgroup SO(1, 3) ⊂ SO(2, 4).
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−∆1 −∆2 −∆3 l1 l2 ℓ1 ℓ2

k12̄ 1/2 1/2 0 1/2 1/2 1/2 −1/2
k1̄2 1/2 1/2 0 1/2 1/2 −1/2 1/2
℧ 1/2 1/2 1 1/2 1/2 1/2 1/2
℧̄ 1/2 1/2 1 1/2 1/2 −1/2 −1/2

Table 5.2: Degrees of additional tensor structures of the MST2-MST2-scalar 3-point function in d = 4.

The degree of ℧ is given by

deg℧ =

[
1

2
,
1

2
,
1

2
;
1

2
,
1

2
,
1

2
; 1

]
, (5.34)

The tensor structure ℧ uses only Wi. Of course, it is also possible to construct a similar tensor structure

℧ in terms of W i as

℧ =

√
XA

3

(
X1 ∧ Z1 ∧W 1

)
ABC

(
X2 ∧ Z2 ∧W 2

)BCD
X3D , (5.35)

with

deg℧ =

[
1

2
,
1

2
,−1

2
;
1

2
,
1

2
,−1

2
; 1

]
. (5.36)

In direct analogy with eq. (5.32) we also find that

U1̄23 = ℧ k1̄2 , U2̄13 = ℧ k12̄ . (5.37)

At this point we have nine basic tensor structures at our disposal, namely k1̄2, k12̄,℧ and ℧ in addition

to X12, X23, X13, V1 and V2. Their degrees certainly span the 7-dimensional space and in addition, we

can construct the unique cross ratio X as

X = 2
k1̄2k12̄
V1V2

. (5.38)

Finally, the nine fundamental tensor structures that we introduced satisfy one relation,

(X23V1)(X13V2) = X12℧℧+ 2k12̄k1̄2X13X23 . (5.39)

For the reader’s convenience we listed these additional tensor structures and their degrees in Tab. 5.2.

Having introduced this new set of tensor structures for vertices of type III, we immediately see that the

two solutions to the vanishing of the Gram determinant (5.23) in d = 4 arise very naturally when trying

to construct a second Y-like cross ratio. First, note that the cross ratio Y introduced in eq. (5.18) vanishes

when ℓ1 and ℓ2 have the same sign,

Y++ =
X13X23V1V2K12

X12U123U213
= 0 =

X13X23V1V2K1̄2̄

X12U1̄23U2̄13

= Y−− , (5.40)

because of the property (5.28). On the other hand, when the fields have opposite duality, one can only

construct a cross ratio with the help of the non-vanishing tensor structures k1̄2 or k12̄,

Y−+ =
X13X23V1V2k

2
1̄2

X12U1̄23U213
=

1

1−X =
X13X23V1V2k

2
12̄

X12U123U2̄13

= Y+− . (5.41)

To compare with eq. (5.40), note that K12 = k212. In evaluating the expressions for Y−+ and Y+−, we

have used the relation (5.39) before inserting the definition (5.38) of the cross ratio X . In this sense, the

second zero of the Gram determinant can be associated with 3-point functions in which the spins ℓi of

the MSTs have opposite sign.

Keeping in mind that we are also allowed to have negative values of the spin ℓi in d = 4, we can now

write a generic 3-point function as in equation (5.20), but with the prefactor Ω given by

Ω∆1,∆2,∆3

l1,l2;ℓ1,ℓ2
=

V
l1−|ℓ1|−|ℓ2|
1 V

l2−|ℓ1|−|ℓ2|
2 U

|ℓ1|
s123

U
|ℓ2|
s213

X
∆1+∆2−∆3+l1+l2−|ℓ1|−|ℓ2|

2
12 X

∆2+∆3−∆1−l1+l2+|ℓ1|+|ℓ2|
2

23 X
∆3+∆1−∆2+l1−l2+|ℓ1|+|ℓ2|

2
31

(5.42)
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instead of (5.19). In spelling out the new prefactor that is defined for arbitrary integer values of ℓi, we

have introduced the notation

si =

{
i ℓi ≥ 0

ı̄ ℓi < 0
. (5.43)

Note that, despite the presence of absolute values in (5.42), representations with any sign of ℓi are allowed,

as the possible presence of W i takes full care of negative homogeneity degrees. Formula (5.42) is the

main result of this subsection.

As in the previous subsection, we can use our expression for the 3-point function to count the number of

tensor structures when we impose spins to acquire integer values. In order to do so, we need to expand

(5.42) in terms of the tensor structures specific to d = 4, in a form that depends specifically on the duality

of the two MST2 involved. To distinguish between those cases, we introduce the notation Ωσ1σ2
, where

σi = +,− depending whether the field i is in a self-dual or anti-self-dual representation respectively.

Those prefactors satisfy the relations Ω++ = Ω−− and Ω+− = Ω−+, where the bar operation exchanges

Wi ↔ W i for both i = 1, 2; we can therefore focus on only the Ω++ and Ω+− cases, as the results in

these cases can easily be translated to the other two cases.

In analyzing the first case, involving Ω++, we can express the prefactor in terms of ℧, k12̄ and k1̄2, leading

to the 3-point function

Ω++t(X ) =
V
l1−|ℓ1|−|ℓ2|
1 V

l2−|ℓ1|−|ℓ2|
2 ℧|ℓ1|+|ℓ2|k

|ℓ1|
12̄
k
|ℓ2|
1̄2

X
∆1+∆2−∆3+l1+l2−|ℓ1|−|ℓ2|

2
12 X

∆2+∆3−∆1−l1+l2+|ℓ1|+|ℓ2|
2

23 X
∆3+∆1−∆2+l1−l2+|ℓ1|+|ℓ2|

2
31

t(X ) . (5.44)

By requiring polynomial dependence on the variables Zi, Wi, W i in this expression, it is easy to see that

t(X ) must contain integer powers of the cross ratio (5.38), with exponents that are bounded from above

by the minimum exponent of the Vi in the prefactor, and bounded from below by the minimum exponent

of the kij . As a result, the function t(X ) must take the form

t(X ) =
∑

n

cnXn , (5.45)

with the sum over exponents restricted by the inequalities

−min(|ℓ1|, |ℓ2|) ≤ n ≤ min(l1, l2)− |ℓ1| − |ℓ2| . (5.46)

In cases where ℓ1 and ℓ2 have opposite sign, e.g. ℓ1 > 0, ℓ2 < 0 and the prefactor Ω+− is used, the

discussion is a bit different. Here we can use the relation (5.39) to eliminate one of the tensor structures

℧ or ℧ from the prefactor and write the 3-point function as

V
l1−|ℓ1|−|ℓ2|
1 V

l2−|ℓ1|−|ℓ2|
2 ℧|ℓ1|−min(|ℓ1|,|ℓ2|)℧|ℓ2|−min(|ℓ1|,|ℓ2|)

k
|ℓ1|+|ℓ2|
12̄

(V1V2 − 2k12̄k1̄2)
min(|ℓ1|,|ℓ2|)

X
∆1+∆2−∆3+l1+l2−|ℓ1|−|ℓ2|

2
12 X

∆2+∆3−∆1−l1+l2+|ℓ1|+|ℓ2|
2

23 X
∆3+∆1−∆2+l1−l2+|ℓ1|+|ℓ2|

2
31

(
X12

X13X23

)min(|ℓ1|,|ℓ2|)
t(X ) .

In order to analyze the resulting constraints on the function t(X ), we shall think of t as a function of

1−X =
V1V2 − 2k12̄k1̄2

V1V2
. (5.47)

Requiring polynomial dependence on the polarization vectors, t is constrained to contain integer powers

of (1 − X ) that are bounded from above by the minimum power of the Vi as in the previous case, and

are bounded from below by the power of the factor (V1V2 − 2k12̄k1̄2). This can be written concretely as

t(X ) =
∑

n

c′n(1−X )n , (5.48)

with the same constraint on the sum over exponents n that was spelled out in eq. (5.46). Thus, in both

cases, we have determined that the space of tensor structures t(X ) has dimension

min(l1, l2)−max(|ℓ1|, |ℓ2|) + 1 , (5.49)
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which matches exactly the expected number from the representation theory of the conformal group.

For the computation of the vertex operator in section 5.3, it will prove useful to spell out an explicit

relation between the prefactors Ω++ and Ω+−,

Ω+−

∣∣∣
|ℓ2|→−|ℓ2|

=

(X (1−X )
2

)−|ℓ2|

Ω++ . (5.50)

In other words, the prefactor for one self-dual and one anti-self-dual field is related to the one for two

self-dual MSTs through a simple function of the cross ratio X , plus a change of sign for the homogeneity

of the field for which we are changing duality. This equation will allow us to relate the vertex operator

computed in one case to the other one, see eq. (5.60).

We now address the tensor structures that can be constructed with the use of a six-dimensional Levi-

Civita symbol for vertices of type II and III. Using only one Wi or W i vector, it is possible to construct

the structures

O
(4)
ijk = ϵABCDEFX

A
i X

B
j X

C
k Z

D
i Z

E
j W

F
i , O

(4)
ı̄jk = ϵABCDEFX

A
i X

B
j X

C
k Z

D
i Z

E
j W

F

i . (5.51)

These are however easily seen to be proportional to the Uijk tensor structure

(
O

(4)
sijk

)2
∝ (Usijk)

2
, (5.52)

so that the vertex function t(X ) is unaffected by the introduction of parity-odd tensor structures for

vertices of type II in d = 4. For vertices of type III we can also construct parity odd tensors of the form

Õ
(4)
12 = ϵABCDEFX

A
1 X

B
2 Z

C
1 Z

D
2 W

E
1 W

F
2 , Õ

(4)

1̄2
= ϵABCDEFX

A
1 X

B
2 Z

C
1 Z

D
2 W

E

1 W
F
2 , (5.53)

as well as their images under 1↔ 1̄ and 2↔ 2̄. However, these structures are once again proportional to

tensors that we have already introduced:

(
Õ

(4)
12

)2
∝ (K12)

2 d=4
= 0 ,

(
Õ

(4)

1̄2

)2
∝ (K1̄2)

2
. (5.54)

We can therefore conclude that structures of the type (5.51) or (5.53) do not extend the space of t(X )
for vertices of type II and III.

Before ending this section, we would like to point out that the construction of d = 4 3-point tensor

structures in this section is the embedding space version of the twistor based construction of tensor

structures in [21, 89]. We describe in more detail in Appendix C.1 the dictionary from embedding space

variables to twistor variables and vice versa.

5.3 The Single Variable Vertex Operator

Having assembled all of the required background, including in particular a detailed discussion of single

variable 3-point functions of the form (5.20), we now move on to our central goal. In this section, we

work out the explicit expression for the action of our vertex differential operators on the function t(X )
that multiplies the prefactors (5.19) or (5.42). Our strategy is to obtain the results for all three sub-cases

listed in eq. (5.3) by studying the MST2-MST2-scalar vertex in d ≥ 4. Note that passing through this

2-variable vertex is just a trick that allows us to shorten the discussion and avoid displaying multiple long

expressions for all different cases; using the same procedure described in this section, one can compute the

vertex operator in each individual case and easily verify that the answer is the same as what is obtained

by reduction of the more general vertex. The results of this section should be seen as providing raw

data that we will process in the subsequent sections. We will also comment on the relation between our

formulas and the vertex differential operator of a 5-point function in d ≥ 3, see [42]. To this end, we shall

look at both shadow integrals and OPE limits in the second subsection.
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5.3.1 Construction of the reduced vertex operator

As we had argued in chapter 3, there is a distinguished basis for the vertex functions t that is selected by

solving the eigenvalue equations of some commuting set of vertex differential operators. For the MST2-

MST2-scalar vertex there are two such operators, one of order four and the other of order six. When

we descend from there to the single variable vertices in the list (5.3) via the constraint Y = 0, the sixth

order operator becomes dependent. Hence to achieve our goals it is sufficient to work out the fourth

order operator. The operator starts its existence as a differential operator on the space of coordinates

and polarizations of three fields. We use the embedding space constructions that were reviewed in the

previous section to write the operator

Dv ≡ D4,3
v,13 = str

(
T (1)T (1)T (1)T (3)

)
(5.55)

in terms of the simple first order differential operators (2.58) encoding the action of the conformal

generators on the variables (Xi, Zi,Wi). Let us also recall that str stands for symmetrized trace. The

action of the differential operator (5.55) can be reduced to the cross-ratio space of t(X ) by conjugation

with the prefactor Ω∆1,∆2,∆3

l1,l2;ℓ1,ℓ2
, as in the case for Casimir differential operators,

H(d,∆i,li,ℓi)t(X ) = 1

Ω∆1,∆2,∆3

l1,l2;ℓ1,ℓ2

Dv

(
Ω∆1,∆2,∆3

l1,l2;ℓ1,ℓ2
t(X )

)
. (5.56)

By plugging eqs. (2.58) and (5.55) in eq. (5.56), it is then possible to compute the action of DX
v in cross

ratio space. To do this, we implemented the action of generators (2.58) in Mathematica and first obtained

the conjugation with the prefactor expressed in terms of scalar products of Xi, Zi, Wi. We then solved

the expressions of the cross ratios (5.18) for two scalar products, set Y = 0, and plugged these expressions

in the conjugated differential operator; due to conformal invariance all of the remaining scalar products

drop out, and one is left with a differential operator in one cross ratio of the form

H(d,∆i,li,ℓi) = h0(X ) +
4∑

q=1

hq(X )X q−1(1−X )q−1∂qX . (5.57)

Apart from a constant piece in h0(X ), all of the coefficients hq(X ) are symmetric under exchange of fields

1↔ 2, and we can therefore represent them as

h(d,∆i,li,ℓi)
q (X ) = χ(d,∆i,li,ℓi)

q (X ) + (1↔ 2) . (5.58)

Finally, we write h0 as

h
(d,∆i,li,ℓi)
0 (X ) =

[
χ
(d,∆i,li,ℓi)
0 (X ) + (1↔ 2)

]
+ χ̃

(d,∆i,li,ℓi)
0 . (5.59)

These coefficients take the following form:

χ̃0 =
1

6
(∆1 −∆2) (d−∆1 −∆2)

(
d2 − 3d (∆1 +∆2 +∆3 + 1) + 3

(
∆2

1 +∆2
2 +∆2

3

))

−1

6
(l1 − l2) (d+ l1 + l2 − 2)

(
d2 + 3d (−∆3 + l1 + l2−3) + 3

(
∆2

3 + l21 − 2l1 + l22 − 2l2 + 2
))

−1

6
(ℓ1−ℓ2) (d+ ℓ1 + ℓ2−4)

(
d2 + 3d (−∆3 + ℓ1 + ℓ2−5) + 3

(
∆2

3 + ℓ21 − 4ℓ1 + ℓ22 − 4ℓ2+8
))
,
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χ0(X ) = 2X 2
[
l1
(
−4l22ℓ1 + l2 (8ℓ1 (ℓ1 + ℓ2 + 1) + 1)− 2ℓ1 (ℓ1 + 1) (2ℓ1 + 6ℓ2 + 1)

)

+2ℓ1
(
ℓ2 (2ℓ1 (−3l2 + 2ℓ1 + 3) + 1) + (ℓ1 + 1) (ℓ1 − l2) (−l2 + ℓ1 + 1) + 3ℓ1ℓ

2
2

)

+l21
(
−2l2 (2ℓ1 + 1) + l22 + 2ℓ1 (ℓ1 + 2ℓ2 + 1)

)]

+X
[
2ℓ1l2

(
d2 − d (∆1 +∆3 + 1) + 2 (∆1∆2 +∆3 + 1) + ℓ1 (d− 2∆3 + 14ℓ2 + 6) + 4ℓ21

)

−d∆1l2ℓ2 + 2ℓ21
(
−d2 +∆1 (d− 2∆2) + (d− 2)∆3 − 3ℓ2 (d− 2∆3 + 4) + d− 8ℓ22 − 2

)

+2ℓ1ℓ2
(
−d2 + 2∆1 (d−∆2) + (d− 2)∆3 + d− 2

)
− 2ℓ31 (d− 2∆3 + 10ℓ2 + 4)

+l1
(
−l2

(
2∆1 (∆2 − d) + 2ℓ1 (d+ 9ℓ2 + 8) + (d− 1)d+ 16ℓ21 + 2

)

+2ℓ1 (−∆1 (d− 2∆2)− (d− 2)∆3 + 2ℓ2 (d− 2∆3 + 6) + (d− 1)d+ 2)

−2d∆1ℓ2 + 8ℓ31 + 2ℓ21 (d− 2∆3 + 14ℓ2 + 6) + ∆3l2 (d+ 4ℓ1 − 2) + 8l22ℓ1
)

+2d∆1ℓ
2
2 − 4l22 (ℓ1 + 1) ℓ1 − 4ℓ41 − 2l21

(
−2l2 (2ℓ1 + 1) + l22 + 2ℓ1 (ℓ1 + 2ℓ2 + 1)

)]

−ℓ1ℓ2
2X

(
∆2

3 + 4∆3 (l1 − ℓ1) + 2
(
∆1 (∆2 −∆1) + l1 (l2 − 2ℓ1) + ℓ1 (−2l2 + ℓ1 + ℓ2) + l21

))

+
1

12

[
6l1
(
l2
(
d2 + 2∆1 (∆2− d)− (d− 2)∆3 + 2ℓ1 (d− 2∆3 + 7ℓ2 + 2) + 8ℓ21 − 2

)
−(d−2)∆2

3

−2
(
ℓ1 (d (d−∆1 − 1) + (d+ 6)ℓ2 + 2∆1∆2)− d∆1ℓ2 + ℓ21 (d+ 12ℓ2 + 2) + 2ℓ31

)

+∆3 (2ℓ1 (d+ 2ℓ1 + 6ℓ2 − 2) + (d− 2)d) + 2(d− 2)(d− 1)− 4l22ℓ1
)

−∆2
3 (6∆1 (∆1 − d) + (d− 3)d) + d∆3 (6∆1 (∆1 − d) + (d− 3)d)

−6l21
(
−d∆3 + (d− 6)d+∆2

3 + 4l2ℓ1 − l22 − 2ℓ1 (ℓ1 + 4ℓ2 + 1) + 6
)

−6∆1

(
(∆1 −∆2)

(
(d−∆1)

2 +∆1∆2

)
+ 2l22 (d−∆1) + 2l2 ((d− 2) (d−∆1)− dℓ2)

+2ℓ2 (∆1 − d) + 2dℓ22
)

+6ℓ21
(
∆3 (−3d+∆3 + 4) + 2ℓ2 (3d− 10∆3 + 5) + (d− 2)(d+ 8)− 2∆1 (∆1 − 2∆2)

+4l2 (∆3 − 6ℓ2 − 2) + 4l22 + 15ℓ22
)

+6ℓ1
(
2l2 (∆1 (d− 2∆2) + (d− 2)∆3 − 5d+ 8) + (d− 2)∆2

3 + 2(d− 3)∆1 (d−∆1)

+ℓ2
(
−2∆1 (d− 3∆2) + ∆3 (−5d+ 2∆3 + 10) + 3(d− 2)d− 4∆2

1

)

−(d− 2)d∆3 + 2(d− 3)l22 − 4d+ 8
)

−12(d− 2)l31 + 12ℓ31 (−2∆3 − 2l2 + 8ℓ2 + 5)− 6l41 + 6ℓ41
]
,

χ1(X ) = 8X 3
[
−3l1ℓ21 − 3l2ℓ

2
1 + l21ℓ1 + l22ℓ1 − 6l1ℓ1 + 4l1l2ℓ1 − 6l2ℓ1 − 6l1ℓ2ℓ1 + l21 − 3l1 − l21l2 + 2l1l2

+2ℓ31 + 6ℓ2ℓ
2
1 + 6ℓ21 + 6ℓ2ℓ1 + 6ℓ1 + 1

]

+X 2
[
l1 (2d(d−∆3 −∆1) + 4∆1∆2 − l2 (d− 2∆3 + 24) + 4ℓ1 (d− 2∆3 + 19ℓ2 + 18) + 36)

−2ℓ1
(
2d2−2l2 (d+ 9ℓ1 + 18)+(3d+ 37)ℓ2 + ℓ1(3d+ 40ℓ2 + 36) + d+ 6l22 + 12ℓ21 + 36

)

−d2 + 2d∆1 (−l2 + 2ℓ1 + 2ℓ2 + 1) + ∆3 (4ℓ1 (d− 2l2 + 3ℓ1 + 3ℓ2 + 1) + d)− 48l1l2ℓ1

+36l1ℓ
2
1 + 12l21 (l2 − ℓ1 − 1)− 2∆1∆2 (4ℓ1 + 1)− 12

]

+
1

2
X
[
−2l1

(
−2∆1(d− 2∆2)− 2l2(d+ 10ℓ1 + 3) + 4ℓ1(d+ 10ℓ2 + 7) + d(d+ 6) + 16ℓ21 + 4

)

+2ℓ1
(
−2∆1 (d+∆1 − 4∆2)− 4(d+ 7)l2 + (5d+ 34)ℓ2 + d(3d+ 4) + 6l22 + 24

)

+4∆3l1 (d− l2 + 4ℓ1) + 2∆1 (−(d− 2)∆1 + 2dl2 − 2ℓ2 (d+∆1) + (d− 4)d+ 2∆2)

+2ℓ21 (5(d+ 6)− 16l2 + 42ℓ2)+8d+ 20ℓ31 + 2l21 (d− 4l2 + 6ℓ1 + 2) +∆2
3 (d+ 4ℓ1−2)

−∆3

(
d2 + 4ℓ1 (3d− 4l2 + 6ℓ1 + 7ℓ2 + 2)

)]

1

4

[
4∆3 (−l1 (d+ 2ℓ1 − 2) + ℓ1 (d− 2l2 + 2ℓ1 + 4ℓ2 + 2) + d− 2)− 2ℓ21 (d− 4l1 − 4l2 + 6)

+4 (l1 + l2−2) ℓ1 (d−l1−l2)− 2ℓ2ℓ1 (d−16l1+14ℓ1+10)− 2(d− 2) (l1 (l1 + l2 − 4) + 2)

+2∆2
1 (d+ 2ℓ1 + 2ℓ2 − 2)−∆2

3 (d+ 4ℓ1 − 2)− 2∆1∆2 (d+ 4ℓ1 − 2)− 4ℓ31
]
,
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χ2(X ) = −4X 2
(
l1 (2l2 − 6ℓ1 − 9) + 6ℓ1 (−l2 + ℓ1 + ℓ2 + 3) + l21 + 7

)

+X
[
− 2l1 (d− 2∆3 − 2l1 − 4l2 + 12ℓ1 + 18) + 2ℓ1 (3d− 6∆3 − 12l2 + 12ℓ1 + 13ℓ2 + 36)

d2 − 2d(∆1 − 1)−∆3(d+ 4) + 2∆1∆2 + 28
]

+l1 (−2∆3 − l1 − l2 + 6ℓ1 + 2d+ 4) + ℓ1 (−2d+ 6∆3 + 6l2 − 5ℓ1 − 7ℓ2 − 16)− 3d+∆2
1

−∆1∆2 +
∆3

2
(−∆3 + 2d+ 4)− 2 ,

χ3(X ) = −8X (l1 − 2 (ℓ1 + 1)) + 2∆3 + 4l1 − 8ℓ1 − d− 8 ,

χ4(X ) = −2 .

From the operator above, it is easy to reduce to the vertex operators of type I and II: one has to simply

impose the corresponding ℓi = 0. For vertices of type III, where representations labeled by Young

diagrams are reducible, the reduction requires some further comments. Let us note that the prefactor

(5.42) for two self-dual fields (respectively two anti-self-dual fields) acquires precisely the same form as

the d > 4 one, modulo the replacement of both second polarizations with their d = 4 counterparts Wi

(respectively W i), and the replacement of the ℓi with their absolute values |ℓi|. This means that the

computation of the vertex operator for these cases will proceed in exactly the same way as in d > 4 up to

the replacements described above. Furthermore, we observed with equation (5.40) that the cross ratio Y
vanishes in d = 4 when expressed only in terms of (anti-)self-dual variables. We can therefore conclude

that the vertex operator for two (anti-)self-dual fields corresponds to (5.55) with ℓi → |ℓi|, as we have

already imposed Y = 0 in the computation of the d > 4 vertex operator. If instead we wish to describe

the type III vertex operator with one self-dual and one anti-self-dual field, we can use our observation

(5.50) relating prefactors in the ℓ1ℓ2 > 0 case to the ℓ1ℓ2 < 0 case. In particular, labeling the operator

with ℓ1, ℓ2 > 0 as H = H++ and the operator for ℓ1 > 0, ℓ2 < 0 as H+−, we find that

H
(d=4;∆i;li;|ℓ1|,−|ℓ2|)
+− =

(X (1−X )
2

)|ℓ2|

H
(d=4;∆i;li;|ℓ1|,|ℓ2|)
++

(X (1−X )
2

)−|ℓ2|

. (5.60)

and analogously forH−+ with ℓ1 ↔ ℓ2. This concludes our construction of the vertex differential operators

for all three single variable cases listed in eq. (5.3)

Having written out the results of our computations, let us add a few quick remarks and observations.

First of all, it is important to note that almost all terms have a polynomial dependence on the cross ratio

X . The only exception appears in our expression for χ0(X ), which contains one term proportional to

ℓ1ℓ2X−1. For vertices of type I and II, where ℓ2 = 0, this non-polynomial term is absent, while it remains

present for vertices of type III. Let us stress again that our derivation is valid for ℓ2 ̸= 0 and for arbitrary

dimension d ≥ 4. As we shall show in section 5.5, the mapping of our operator (5.57) to the elliptic

CMS model of [75] also works for all cases, including MST2-MST2-scalar vertices d > 4 with kinematics

reduced to Y = 0. Nevertheless, it turns out that the map has significantly different features when it

is applied beyond the list (5.3) of single variable vertex systems, c.f. section 5.5 and Appendix C.2 for

a discussion. Our analysis of the results in the next section will be restricted to the cases with ℓ2 = 0

which possess polynomial coefficients.

5.3.2 Relation with vertex operator for 5-point functions

It is worth to pause our analysis of the single variable vertex operators for a moment and to explain how

this differential operator is related to the vertex operator for a 5-point function in d ≥ 3 that can be

worked out with the procedure of section 3.4. As usual, we split the scalar 5-point function

⟨ϕ1(X1)ϕ2(X2)ϕ3(X3)ϕ4(X4)ϕ5(X5)⟩ = Ω∆i
5 (Xi)F (ui) (5.61)

into a function F of cross ratios and a prefactor Ω that accounts for the nontrivial covariance law of the

scalar fields under conformal transformations. The former can be further decomposed into conformal
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blocks,

F (ui) =
∑

∆a,la,∆b,lb,t

λ12aλa3b;tλb45 g
(∆12,∆3,∆45)
∆r,lr,t

(ui) , (5.62)

while the latter is given by

Ω
(∆i)
5 (Xi) =

(
X2·X3

X1·X3

)∆1−∆2
2

(
X2·X4

X2·X3

)∆3
2
(
X3·X5

X3·X4

)∆4−∆5
2

(X1 ·X2)
∆1+∆2

2 (X3 ·X4)
∆3
2 (X4 ·X5)

∆4+∆5
2

. (3.80)

Once more, we rewrite the five cross ratios that can be constructed for N = 5 as

u1 =
(X1 ·X2) (X3 ·X4)

(X1 ·X3) (X2 ·X4)
= z1z̄1 , v1 =

(X1 ·X4) (X2 ·X3)

(X1 ·X3) (X2 ·X4)
= (1− z1)(1− z̄1) ,

u2 =
(X2 ·X3) (X4 ·X5)

(X2 ·X4) (X3 ·X5)
= z2z̄2 , v2 =

(X2 ·X5) (X3 ·X4)

(X2 ·X4) (X3 ·X5)
= (1− z2)(1− z̄2) ,

U
(5)
1 =

(X1 ·X5) (X2 ·X3) (X3 ·X4)

(X2 ·X4) (X1 ·X3) (X3 ·X5)
= w(z1 − z̄1)(z2 − z̄2) + (1− z1 − z2)(1− z̄1 − z̄2) .

(5.63)

Since the OPE diagram for a 5-point function contains two internal fields of depth L = 1, i.e. two STTs,

its blocks are characterized by four Casimir and one vertex operator.

One way to express the relation between this full vertex operator and the reduced 3-point vertex operator

of the previous subsection makes use of the shadow formalism [90]. Shadow integrals turn the graphical

representation of a conformal block, such as that of Fig. 2.8, into an integral formula. Just as in the

case of Feynman integrals, the ‘shadow integrand’ is built from relatively simple building blocks that are

assigned to the links and 3-point vertices of the associated OPE diagram. For a scalar 5-point function,

the only non-trivial vertex is of type I. Within this subsection we resume the convention of chapter 4 to

label the two internal STT lines by a and b rather than 1 and 2, to distinguish them from the external

lines. The basic building block for the integrand of the shadow integral is the 3-point function Φ that

was introduced in eq. (5.17). In the context of the 5-point function, only two special cases of this formula

appear. On the one hand, there are two 1-STT-2 scalar vertices Φ1a2 and Φb54 that are completely fixed

by conformal symmetry, i.e. where t is trivial. On the other hand, there is the central vertex Φab3 of type

I. With these notations, the shadow integral for scalar 5-point blocks of weight ∆i, i = 1, . . . , 5 reads

Ψ
(∆1,...,∆5)
(∆a,∆b;la,lb;t)

(X1, ..., X5) = (5.64)

=
∏

s=a,b

∫
dµ(Xa, Xb, Za, Zb)Φ1ã2(X1, Xa, X2; Z̄a) Φ

t
ab3(Xa, Xb, X3;Za, Zb) Φb̃54(Xb, X5, X4; Z̄b).

Here the tilde on the indices of the first and third vertex means that we use eq. (5.17) for two scalar legs

but with ∆a and ∆b replaced by d − ∆a and d − ∆b, respectively. We have placed a superscript t on

the vertex function of the central vertex to remind the reader that this depends on a function t of the

3-point cross ratio. Integration is performed with the conformal invariant measure dµ of the embedding

space variables. After splitting off the prefactor (3.80),

Ψ
(∆i)
(∆a,∆b;la,lb;t)

(Xi) = Ω(∆i)(Xi)g
(∆12,∆3,∆45)
(∆a,∆b;la,lb;t)

(ui) (5.65)

the shadow integral (5.64) gives rise to a finite conformal integral that defines the conformal block g as a

function of the five conformal invariant cross ratios ui. These integrals depend on the choice of (∆a, la),

(∆b, lb) and the function t(X ).
In chapter 3 we constructed five differential equations for these blocks. Four of these are given by the
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eigenvalue equations for the second and fourth order Casimir operators for the intermediate channels,

D2
(12) = (T1 + T2)[AB] (T1 + T2)

[BA]
, (3.75)

D2
(45) = (T4 + T5)[AB] (T4 + T5)

[BA]
, (3.76)

D4
(12) = (T1 + T2)[AB] (T1 + T2)

[BC]
(T1 + T2)[CD] (T1 + T2)

[DA]
, (3.77)

D4
(45) = (T4 + T5)[AB] (T4 + T5)

[BC]
(T4 + T5)[CD] (T4 + T5)

[DA]
. (3.78)

5-point conformal blocks are eigenfunctions of these four differential operators with eigenvalues deter-

mined by the conformal weights ∆a,∆b and the spins la, lb of the two internal fields a = (12) and b = (45)

that appear in the operator products ϕ1ϕ2 and ϕ4ϕ5, respectively. The shadow integrals Ψ for conformal

5-point blocks turn out to be eigenfunctions of the following fifth differential operator

D4,3
v,(12)3 = (T1 + T2)[AB] (T1 + T2)

[BC]
(T1 + T2)[CD] (T3)

[DA]
(3.79)

if and only if the vertex functions t(X ) we use in the integrand to represent the central vertex of the

OPE diagram is an eigenfunction of the reduced vertex operator of the previous subsection, specialized

to vertices of type I. In this sense, the shadow integral intertwines the full 5-point vertex operator of

section 3.4 with the reduced vertex operator above.

There is another way to relate the full 5-point operator with the reduced one for type I vertices that

employs the OPE limits of chapter 4. In order to work out the reduction, we make use of the OPE in

the limit where fields (ϕ1, ϕ2) and (ϕ4, ϕ5) are taken to be colliding, and are replaced with fields ϕa and

ϕb whose conformal dimension and spin belongs to the tensor product of their representations. The first

step is to reduce the operators to act on a spinning 4-point function, as in Figure 5.2.

φ1

φ2 φ3 φ4

φ5v φa

φ3 φ4

φ5v φa

φ3

φbv

Figure 5.2: Scalar five point function (left), which in the OPE limit of fields ϕ1 and ϕ2 gets reduced to
the 4-point function with a spinning leg ϕa (center), and after a second OPE limit for fields ϕ4 and ϕ5
gets fully reduced to a type I vertex (right).

Following the procedure of section 4.3.3 adapted to the five-points case, we start the reduction by taking

the leading behavior in z̄1 as

g(z1, z̄1, z2, z̄2, w)
z̄1→0∼ z̄

∆a−la
2

1 g(z1, z2, z̄2, w) . (5.66)

Imposing this leading behavior in the eigenvalue equations for the differential operators (3.75)–(3.79)

allows to reduce the action of the differential operators to a 4-dimensional subspace of cross ratios in the

following way:

lim
z̄1→0

[
z̄
−∆a−la

2
1 D

(
z̄

∆a−la
2

1 g(z1, z2, z̄2, w)

)]
= E g(z1, z2, z̄2, w). (5.67)

To complete the OPE limit, one then considers the leading behavior in z1 of the form

g(z1, z2, z̄2, w)
z1→0∼ z

∆a+la
2

1 g(z2, z̄2, w) (5.68)

and takes a similar limit as in (5.67). After these conjugations and limits, both the quadratic and quartic

Casimirs associated to the internal leg a = (12) are reduced to constants, and the remaining three

operators

D2
(45) , D4

(45) , D4,3
v,a3 (5.69)
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characterize the spinning 4-point function that is shown in Figure 5.2 (center). The latter depends only

on three cross ratios z2, z̄2, w, the spacetime dimension d, and the external data

∆a −∆3

2
,

∆5 −∆4

2
, la . (5.70)

It is straightforward to repeat the same procedure we just outlined for the leg b = (45) in the remaining

correlator, i.e. one can impose leading behaviors of the type

g(z2, z̄2, w)
z̄2→0∼ z̄

∆b−lb
2

2 g(z2, w)
z2→0∼ z

∆b+lb
2

2 z̄
∆b−lb

2
2 g(w) (5.71)

to ensure that the quadratic and quartic Casimir of the internal leg b = (45) assume constant values that

are determined by the weight and spin of the intermediate field.

At the end of this procedure, one is left with a 3-point block of two STT’s and one scalar, that is to say

a vertex of type I, which is characterized by the sole vertex operator D4,3
v,a3 acting on the remaining cross

ratio w. By considering the OPE limit in embedding space as in section 4.3.2, and therefore writing

X1 = Xa + ϵZa , X2 = Xa − ϵZa , X5 = Xb − ϵ′Zb , X4 = Xb + ϵ′Zb , (5.72)

and taking ϵ, ϵ′ → 0, we find the following expression for w in terms of the external 3-point data:

w = 1− (X3 ·Xa)(X3 ·Xb) [(Xa · Zb)(Xb · Za)− (Xa ·Xb)(Za · Zb)]
[(X3 · Zb)(Xa ·Xb)− (X3 ·Xb)(Xa · Zb)] [(X3 · Za)(Xa ·Xb)− (X3 ·Xa)(Xb · Za)]

. (5.73)

After further inspection, this expression can be identified with

w = 1− Hab

Va,3bVb,a3
= 1−X ′ , (5.74)

where the cross ratio X ′ is equal to X with the replacement (1, 2, 3) → (a, b, 3). The resulting operator

can be easily identified with the ℓ1 = ℓ2 = 0 case of the general expression (5.57).

5.4 Vertex Operator and Generalized Weyl algebras

The Hamiltonians we discussed in the previous section have nice properties, even though they may look a

bit uninviting at first. In this section we exhibit some of their underlying algebraic structure. This allows

us to recast the vertex operator into a one-line expression, somewhat analogous to the harmonic oscillator

that possesses a particularly simple representation in terms of creation and annihilation operators. Here

we define a generalized Weyl algebra with relatively simple commutation relations and then build our

vertex operators directly in terms of its generators. An important role in our discussion is played by the

scalar product of the vertex system.

5.4.1 Single variable vertices and the Gegenbauer scalar product

Functions on the configuration spaceM inherit a scalar product from the Haar measure on the conformal

group. This is the case in general, but in particular for the 1-dimensional spaces we are dealing with in

this chapter. Working out this scalar product is straightforward in principle, but a bit cumbersome in

practice; the full derivation can be found in [43, Appendix B]. The result is surprisingly simple: it turns

out that, when written in the variable s = 1−2X , the group theoretic scalar product on the configuration

spaceM coincides with the Gegenbauer scalar product,

⟨f, g⟩α(d;ℓi) :=
∫ +1

−1

ds (1− s2)α(d;ℓi)− 1
2 f(s) g(s) , (5.75)

with the parameter α given by

α(d; ℓi) := ℓ1 + ℓ2 +
d− 3

2
. (5.76)
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In the following we shall implicitly assume that the parameters assume only those values that appear in

the context of our three single parameter vertices, i.e. for d = 3 we have ℓ1 = 0 = ℓ2 while for d > 3 only

ℓ2 = 0. The only case for which ℓ2 can also be non-zero is in d = 4. Gegenbauer polynomials C
(α)
n (s)

provide an orthogonal basis for ⟨−,−⟩α:

⟨C(α)
m , C(α)

n ⟩α =
π 21−2α

Γ(α)2
Γ(n+ 2α)Γ(n+ α)

Γ(n+ α+ 1)Γ(n+ 1)
δmn . (5.77)

As one may check by explicit computation, the vertex differential operators H(d;∆i;li)(X , ∂X ) are hermi-

tian with respect to a Gegenbauer scalar product whenever the conformal weights ∆i and the STT spins

li are analytically continued to satisfy,

∆̄i = d−∆i , l̄i = 2− d− li , (5.78)

i.e. (∆i; li) ∈
(
d
2 + iR

)
×
(
2−d
2 + iR

)
, while (d; ℓi) are kept as real parameters. Our goal now is to compute

the Hamiltonian in the basis of Gegenbauer polynomials. In doing so we shall restrict to the case with

d > 3 and ℓ2 = 0, i.e. we exclude the somewhat special case of d = 4 with ℓ1 ̸= 0 ̸= ℓ2 for which

our Hamiltonian contains a non-polynomial term, see comments at the end of the previous section. The

computation of the Hamiltonian in the Gegenbauer basis relies on its expression as

H(d,∆i,li,ℓi) = h
(s)
0 (s) +

4∑

q=1

h(s)q (s)(1− s2)q−1∂qs , (5.79)

where all h
(s)
q (s) are polynomials of order at most 3 in s whenever ℓ2 = 0. It proceeds with the help of

three well-known identities:

(S) the recursion relation of Gegenbauer polynomials

s · C(α)
n =

(n+ 1)C
(α)
n+1 + (n+ 2α− 1)C

(α)
n−1

2(n+ α)
, (5.80)

(D) the Gegenbauer differential equation in self-adjoint form,

Dα · C(α)
n = (1− s2) 1

2−α∂s (1− s2)
1
2+α∂s · C(α)

n = −n(n+ 2α)C(α)
n , (5.81)

(Θ) and the first order differentiation operator

∂Θ · C(α)
n = (1− s2)∂s · C(α)

n =
(n+ 2α− 1)(n+ 2α)C

(α)
n−1 − n(n+ 1)C

(α)
n+1

2(n+ α)
. (5.82)

Using these building blocks (S),(D),(Θ), our Hamiltonians can be recast into the form

H(d,∆i,li,ℓi) =Dα∂2Θ + (k3,1s+ k3,0)Dα∂Θ +
(
k2,2s

2 + k2,1s+ k2,0
)
Dα

+ (k1,1s+ k1,0) ∂Θ + k0,2s
2 + k0,1s+ k0,0 , (5.83)

where the coefficients ki,j = ki,j(d,∆i, li, ℓi) are given by

k3,0 = 2iγ3 , k3,1 = 2(ν1 + ν2 + α) + 3 ,

k2,0 = γ21 + γ22 − γ23 − 2ν1ν2 − 2(α− 1)(ν1 + ν2)− α(1 + 3α) +
13

4
,

k2,1 = −2γ1γ2 + iγ3 (2(ν1 + ν2 + α) + 3) , k2,2 = ν21 + ν22 + 4lν1ν2 + (4α+ 1)(ν1 + ν2) + 4α2 + 3 ,

k1,0 = 2(ν1 + ν2 + α)γ1γ2 + iγ3
(
−2ν1ν2 + (2α+ 1)(ν1 + ν2)− 4α2 + 2α+ 2

)
, (5.84)

k1,1 = −2(ν21ν2 + ν22ν1) + (1− 2α)
(
ν21 + ν22 + 4ν1ν2 + (1 + 4α)(ν1 + ν2 + α+ 1)− α− 2

)
,

k0,1 = 2ν1ν2

(
γ1γ2 + iγ3(α+

1

2
)

)
, k0,2 = −ν1ν2(ν1 − 1)(ν2 − 1) .
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The parameters γk, νk are defined through

∆k :=
d

2
+ iγk , k = 1, 2, 3 , νk := lk − ℓ1 , k = 1, 2 , (5.85)

and α was introduced in eq. (5.76). Let us stress once again that the solution we have displayed here

applies to ℓ2 = 0 and d ≥ 3. When ℓ2 ̸= 0, the Hamiltonian contains a non-polynomial term in h
(s)
0 (s)

which is proportional to (1 − s)−1. So, while it is in principle possible to compute the action of the

MST2-MST2-scalar Hamiltonian in d = 4 on Gegenbauer polynomials with α = (d − 3)/2 + ℓ1 + ℓ2, it

does not directly fit our ansatz (5.83).

Plugging the identities (5.80), (5.81), (5.82) back into (5.83) one can obtain simple explicit formulas for

the matrix elements

H(d;∆i;li;ℓi)
mn =

⟨C(α)
m , H(d;∆i;li;ℓi) · C(α)

n ⟩α
⟨C(α)

m , C
(α)
m ⟩α

. (5.86)

One observes that these vanish whenever |n −m| > 2, so our Hamiltonian in the Gegenbauer basis has

non-vanishing matrix elements only close to the diagonal. In terms of the matrix elements, the hermiticity

property of the vertex differential operators reads

H(d;∆i;li;ℓi)
mn =

⟨C(α)
n , C

(α)
n ⟩α

⟨C(α)
m , C

(α)
m ⟩α

H(d;d−∆i;2−d−li;ℓi)
nm . (5.87)

With our formulas (5.83) and (5.84) we have fulfilled our first promise, namely to write the Hamiltonian

in a much more compact form that fully replaces the two pages of formulas we spelled out in the previous

section.

5.4.2 A generalized Weyl algebra acting on tensor structures

We want to go one step further and write the vertex Hamiltonians in terms of the generators of some

Weyl-like algebraic structure that acts on Gegenbauer polynomials and hence on 3-point tensor structures.

Our algebra contains three generators A,A† and N and it depends on the parameters α, ν1 and ν2 which

we introduced in eqs. (5.76) and (5.85). When acting on Gegenbauer polynomials, these three operators

are given by

NC(α)
n := nC(α)

n , (5.88)

AC(α)
n := (n+ ν1 + 2α)(n+ ν2 + 2α)

n+ 2α− 1

n+ α
C

(α)
n−1 , (5.89)

A†C(α)
n := (n− ν1)(n− ν2)

n+ 1

n+ α
C

(α)
n+1, (5.90)

where eq. (5.89) applies to all n > 0, and AC
(α)
0 = 0 when n = 0, i.e. the state C

(α)
0 is annihilated by

the lowering operator A. Similarly, the action of the raising operator A† vanishes if n = ν1 or n = ν2.

Consequently, one can restrict the action of A,A† andN to the finite dimensional subspace that is spanned

by C
(α)
n for n = 0, . . . ,min(ν1, ν2). This should remind us of the space of 3-point tensor structures we

discussed at the very end of section 5.2. There we argued that the space of 3-point tensor structures has

dimension nt + 1 with nt = min (l1 − ℓ1, l2 − ℓ1) = min (ν1, ν2) in the case of ℓ2 = 0, using the definition

(5.85) of νk. Therefore, the truncation of the action of A,A† and N to a finite dimensional subspace

of Gegenbauer polynomials we observe here is fully consistent with the finiteness of the space of 3-point

tensor structures, at least for d > 3. We will discuss the special case of d = 3 below.

From the action on Gegenbauer polynomials it is possible to check that the operators A,A† and N obey
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the following relations

[N,A†] = A†, (5.91)

[N,A] = −A , (5.92)

AA† =
(N + 1)(N + 2α)

(N + α)(N + α+ 1)
(N − ν1)(N + 2α+ ν1 + 1)(N − ν2)(N + 2α+ ν2 + 1) , (5.93)

A†A =
N(N + 2α− 1)

(N + α− 1)(N + α)
(N + ν1 + 2α)(N − ν1 − 1)(N + ν2 + 2α)(N − ν2 − 1) . (5.94)

We can use these to define a family of abstract algebras that depends parametrically on α = ℓ1+(d−3)/2

and νk = lk − ℓ1. This family comes equipped with an involutive antiautomorphism (−)∗ defined by

N∗ = N and A∗ = A†. It coincides with the adjoint whenever d is real and the spins li satisfy the

relation (5.78) that is needed in order for our vertex operators to be hermitian or, equivalently,

ᾱ = α , ν̄1 = −(2α+ 1 + ν1) , ν̄2 = −(2α+ 1 + ν2) . (5.95)

Having introduced the algebra generated by A,A† and N , the vertex operator H can now be written as

a rational combination of the generators of this algebra:

H(d;∆i;li;ℓi) =B†B − Γ(N + α)2 +
α(α− 1)K

(N + α)2 − 1
+ E(d;∆i;li;ℓi). (5.96)

Here, we defined the operators

B† :=
A−A†

2i
− i(2γ1γ2 + iγ3)(N + α) , (5.97)

B :=
A−A†

2i
+ i(2γ1γ2 − iγ3)(N + α) , (5.98)

and the two parameters

Γ :=
1

4
(1 + 4γ21)(1 + 4γ22) , (5.99)

K :=(ν1 + α)(ν2 + α)(ν1 + α+ 1)(ν2 + α+ 1) . (5.100)

The constant term E(d;∆i;li;ℓi) is obtained by relating H(d;∆i;li;ℓi) · 1 = h
(d;∆i;li;ℓi)
0 (0) to the action of

A,A†, N on C
(α)
0 . In this way we find

E(d;∆i;li;ℓi) =h
(d;∆i;li;ℓi)
0 (0)− α4 − (1 + 2ν1 + 2ν2)α

3

+ α2

(
1

4
+ γ21 + γ22 − γ23 + ν1(ν1 + 1) + ν2(ν2 + 1) + 4ν1ν2

)

− 2ν1ν2α− ν1ν2(1 + ν1ν2).

This concludes the algebraic reformulation of our vertex Hamiltonians. It is remarkable that the algebra

only depends on the spins and dimension d, i.e. that all the dependence on the conformal weights of the

three fields resides in the Hamiltonian.

The case of d = 3, which implies ℓ1 = 0, requires additional consideration since in this case one can also

have odd-parity tensor structures, see our discussion at the end of subsection 5.2.1. As we saw there, the

STT-STT-scalar vertex in d = 3 is unique in that it admits a total number

(min(ν1, ν2) + 1) + min(ν1, ν2) = min(2l1 + 1, 2l2 + 1) (5.101)

of 3-point tensor structures. A complete and orthogonal basis can be obtained from the union of Cheby-

shev polynomials of the first and second kind,

{C(0)
n (s)}n=0,...,min(l1,l2) , {

√
1− s2C(1)

n (s)}n=1,...,min(l1,l2) .
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The action of A,A†, N in d = 3, however, is more conveniently written in the Fourier basis einθ, where

n = −min(l1, l2), . . . ,+min(l1, l2) and the new variable θ is related to our cross ratio X by X = sin2 θ2 .

In this case, the action of A,A† and N on the Fourier basis is

N einθ := neinθ, A†einθ := (n− l1)(n− l2)ei(n+1)θ, A einθ := (n+ l1)(n+ l2)e
i(n−1)θ.

It is easy to see that these operators satisfy the following polynomial relations

[N,A†] = A†, (5.102)

[N,A] = −A , (5.103)

AA† = (N − l1)(N − l2)(N + l1 + 1)(N + l2 + 1) , (5.104)

A†A = (N − l1 − 1)(N − l2 − 1)(N + l1)(N + l2) . (5.105)

These relations agree with those we found in eqs. (5.91)-(5.93) above for the special choice α = ℓ1 +

(d − 3)/2 = 0 relevant for vertices in d = 3, where ℓ1 = 0. In other words, we have now shown that for

d = 3, the algebra we have introduced above possesses a finite dimensional representation on the space

of Chebyshev polynomials of first and second kind.

For α = 0 and α = 1, the algebra of A,A† and N is one special example of a larger family of algebras of

the form A†A = f(N), AA† = f(N + 1) that can be associated with a polynomial f(N). Such families

of algebras have been studied for a long time in the mathematics literature, going back at least as early

as [91, §3]. The representation theory of these algebras was studied in [92] and in [93], where the latter

author first used the term ”generalized Weyl algebra”. It was then in [94] that these algebras were

first reformulated as non-commutative deformations of the Kleinian singularity of type Ãn−1 when f is

a polynomial of degree n. Finally, using quiver theory, the authors of [95] generalized this analysis to

non-commutative deformations of the Kleinian singularities associated to any finite subgroup of SLC(2).

In this context, the algebra with relations (5.102) — (5.105) is thus called a generalized Weyl algebra or

deformed Kleinian singularity of type Ã3.

For α ̸= 0, 1, the relations (5.93) and (5.94) are no longer polynomial, at least not in the way we wrote

them. Nevertheless, they can be recast as an α-dependent family of generalized Weyl algebras if we are

willing to sacrifice the property A∗ = A†. Indeed, any rescaling of the operators A and A† by a rational

function of N defines a homomorphism of algebras2. In the case of eqs. (5.93) and (5.94), it is natural to

take

U :=
(N + α)(N + α+ 1)

(N + 1)(N + 2α)
A , V := A† , (5.106)

in which case the modified relations read

[N,V ] = V , (5.107)

[N,U ] = −U , (5.108)

UV = (N − ν1)(N + ν1 + 2α+ 1)(N − ν2)(N + ν2 + 2α+ 1) , (5.109)

V U = (N − ν1 − 1)(N + ν1 + 2α)(N − ν2 − 1)(N + ν2 + 2α) , (5.110)

and also define a generalized Weyl algebra of type Ã3, but now with an extra deformation parameter

α. In any given representation, the homomorphism A ←→ U in (5.106) is bijective if and only if

−1,−α,−(α + 1),−2α /∈ Spec(N). This condition is indeed satisfied in the Gegenbauer polynomial

representations, where U is explicitly represented as

U · C(α)
n = (n+ ν1 + 2α)(n+ ν2 + 2α)

n+ α− 1

n
Cn−1, ∀n > 0, U · C(α)

0 = 0. (5.111)

As a result, (A,A†, N) 7→ (U, V,N) defines an isomorphism, and all vertex systems of type I and II are

representations of the generalized Ã3 Weyl algebra with relations (5.107) — (5.110).

2We thank Pavel Etingof for pointing this out to us.
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Our final comment in this subsection concerns the fact that our expression (5.96) for the Hamiltonian

depends on parameters only through the combinations α, νi, γi, at least up to the constant term. It

follows that (see Appendix C.2 for a further generalization)

H(d;∆i;li;ℓ1,0) = H(d+2ℓ1;∆i+ℓ1;li−ℓ1;0,0) +∆E(d;∆i;li;ℓ1), (5.112)

where

ℓ−1
1 ∆E(d;∆i;li;ℓ1) =− 2

3
ℓ31 +

8α+ 26

3
ℓ21

+
4

3

(
−2α2 + 2(ν1 − ν2 − 41/2)α− γ21 + γ22 − γ23 + ν1(ν1 + 1)− ν2(ν2 + 1)− 33

)
ℓ1

+
16

3
α2(ν2 − ν1 + 17/4) +

8

3
α
(
γ21 − γ22 + γ23 − ν1(ν1 + 4) + ν2(ν2 + 5/2) + 9

)

+ 2

(
2γ21 − γ22 + γ23 − 2ν1(ν1 + 1) + ν2(ν2 + 1) +

9

2

)
.

Now, the α-deformed relations (5.93) and (5.94) of the generalized Weyl algebra coincide with the d = 3

relations (5.104), (5.105) whenever α = 0 or α = 1. In the former case, α = 0 ⇐⇒ (d, ℓ1) = (3, 0). On

the other hand, the latter case α = 1 can occur in two situations,

(d, ℓ1) = (5, 0) , or (d, ℓ1) = (4,
1

2
) , (5.113)

in which case

νi = li , or νi = li −
1

2
, (5.114)

and the two operators are the same up to a constant shift,

H(d=5;∆i;li;0,0)(X , ∂X ) = H(d=4;∆i− 1
2 ;li+

1
2 ;

1
2 ,0)(X , ∂X ) + ∆E . (5.115)

In both of these cases, the Gegenbauer polynomials become Chebyshev polynomials of the second kind

{C(1)
n (s)}n=0,...,min(l1,l2), and the two vertex operators are related to the d = 3 operator by a similarity

transformation,

H(d=5;∆i;li;0,0)(X , ∂X ) =
1√

X (1−X )
H(d=3;∆i−1;li+1)(X , ∂X )

√
X (1−X ) + ∆E . (5.116)

In particular, the parity-even 3-point tensor structures of two STTs in d = 5, are equivalent to the

parity-odd 3-point tensor structures of two STTs in d = 3.

5.5 Map to the Lemniscatic CMS model

In the previous section we have found quite an elegant reformulation of our vertex operators that makes

it seem a bit more tractable than the original formulas we displayed in section 5.3. All this is somewhat

similar to the Casimir operators of Dolan and Osborn, which may appear a bit uninviting at first, but

were found to possess interesting algebraic structure that led to explicit solutions, in particular in even

dimensions. In [76], it was discovered that the usual Casimir operator can be mapped to another well

studied operator, namely the Hamiltonian of an integrable 2-particle CMS model. Here we state a very

similar result for the vertex operators. By explicit computations, these operators can be mapped to

the lemniscatic CMS model, a special case of the crystallographic elliptic CMS models found by Etingof,

Felder, Ma and Veselov [75]. We review this model in the first subsection before constructing the map from

our vertex differential operator. The third subsection contains a complete identification of parameters.
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5.5.1 The elliptic Z/4Z CMS model

While our vertex system examples have received little attention, there has been much discussion in similar

cases of the relation between deformations of Kleinian singularities on the one hand, and CMS models

for the corresponding complex reflection group on the other hand — see e.g. [96] for Ãn−1, and [97]

for the general case, both of which are based on [98]. Thus, the identification of our operator with a

lemniscatic CMS model is less surprising in light of the Ã3 singularity of §5.4.2. That said, apart from Ã1,

the only integrable models explicitly studied in this particular context have so far always been rational.

And while the integrable systems in [99] include, amongst others, the compact soR(6) analogue of our

MST2-MST2-scalar vertex in d = 4, the authors do not make the connection with the elliptic integrable

models of [75].

The elliptic CMS models associated with the complex reflection groups Zm form a family of quantum

mechanical integrable systems with (complexified) coordinate on an orbifold curve of the form

M = C/ (Zm ⋉ (Z⊕ τZ)) , (5.117)

where Z ⊕ τZ ⊂ C is a 2-dimensional lattice with elliptic modulus τ in the upper half of the complex

plane, and elements of the group Zm ⊂ SO(2) act on the lattice as a point group, i.e. through rotations

by angles φn = n/2mπ where n = 1, . . . ,m. It is well known that the only 2-dimensional lattices with

a non-trivial point group Zm appear for m = 2, 3, 4, 6. Apart from m = 2, the elliptic modulus τ is also

fixed so that spacesM of the form (5.117) only appear for

(m, τ) ∈ {2} × C+ , or (m, τ) ∈ {3, e2πi/3} ∪ {4, i} ∪ {6, eπi/3} . (5.118)

In [75], the authors construct new integrable models on each of these curves, but only the case τ = i with

group action of Z4 turns out to be relevant for us. In order to proceed, let us write the associated curve

(5.117) as the quotient of the so-called lemniscatic elliptic curve Ei by a Z4 action,

M = Ei/Z4 , where Ei = C/(Z⊕ iZ) = {z ∈ C | z ∼ z + 1 ∼ z + i} . (5.119)

Here, the Z4 action is the obvious one that is given by multiplication of z ∈ Ei with any fourth root of

unity ζ4 = 1, i.e. z 7→ ζ · z. Under this action, the lemniscatic curve Ei has four fixed points:

ω0 := 0 , ζ · 0 = 0 , (5.120)

ω1 :=
1 + i

2
, ζ · 1 + i

2
=
−1 + i

2
∼ 1 + i

2
, (5.121)

ω2 :=
i

2
, ζ2 · i

2
= − i

2
∼ i

2
, (5.122)

ζ3 · ω2 =ω3 :=
1

2
, ζ2 · 1

2
= −1

2
∼ 1

2
, (5.123)

where ζ ∈ Z4 denotes the generating element ζ = i, and the equivalence relation ∼ identifies points that

are obtained from one another by lattice shifts. From the short computation in the second column we

conclude that ω0, ω1 are fixed points stabilized by the entire Z4, i.e. they are fixed points of order 4, while

ω2, ω3 are fixed points of order 2 with a stabilizer subgroup Z2 ⊂ Z4. These last two fixed points are

mapped to each other by the nontrivial Z4 transformation on Ei. They thus give rise to the same point

in the quotientM = Ei/Z4. We conclude thatM has three (singular) orbifold points which we denote

as

z0 := ω0, z1 := ω1, z2 := ω2 ∼ ω3. (5.124)

At these points, the orbifold singularities are of orders 4, 4, 2, respectively. The elliptic CMS model

associates to each of these singular points zν , ν = 0, 1, 2, a family of multiplicities mi,ν , i = 1, . . . , 4 such

that

4∑

i=1

mi,ν := 6 , ν = 0, 1, 2 , m1,2 +m2,2 = 1 , m3,2 +m4,2 = 5 . (5.125)
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Note that there is one relation among the four multiplicities we associate with the fixed points of order

four, while there are three relations among the four multiplicities that are associated with the fixed point

of order two. Given that there are three relations that constrain the four multiplicities mi,2, it is often

convenient to parametrize the solutions in terms of a single parameter k which we define as

m1,2 := k + 1 . (5.126)

The Hamiltonian LEFMV of the lemniscatic CMS model has a relatively complicated dependence on the

multiplicities. On the other hand, it may be uniquely characterized by a rather simple set of conditions:

if we require that that the Z4-invariant operator LEFMV(z, ∂z) takes the normalized form

LEFMV = ∂4z +O(∂2z ) , (5.127)

then its dependence on the multiplicities is uniquely determined by the following set of conditions

LEFMV(z, ∂z) · (z − z0)r =
4∏

i=1

(r −mi,0) (z − z0)r−4 +O((z − z0)r) , (5.128)

LEFMV(z, ∂z) · (z − z1)r =
4∏

i=1

(r −mi,1) (z − z1)r−4 +O((z − z1)r) , (5.129)

LEFMV(z, ∂z) · (z − z2)r =
4∏

i=1

(r −mi,2) (z − z2)r−4 (5.130)

+ λ(r −m1,2)(r −m2,2)(z − z2)r−2 +O((z − z2)r) ,

which we assume to hold for some constant λ ∈ C, in the neighborhood of the singular points z = zν .

In order to write the Hamiltonian explicitly over the full orbifoldM, we first introduce the Weierstrass

elliptic function

℘(z) :=
1

z2
+

∑

w∈(Z⊕iZ)\{0}

(
1

(z − w)2 −
1

w2

)
, (5.131)

which is double-periodic by construction, ℘(z) = ℘(z + 1) = ℘(z + i). Then the Hamiltonian of the

lemniscatic Z/4Z CMS model is given by [75, Eq. 4.3]

LEFMV(z, ∂z) = ∂4z +

2∑

p=0

g(z)p (z)∂pz , (5.132)

where

c
(z)
2 (z) =

3∑

ν=0

aν ℘(z − ων) , (5.133)

c
(z)
1 (z) =

3∑

ν=0

bν ℘
′(z − ων) , (5.134)

c
(z)
0 (z) =

3∑

ν=0

cν ℘
2(z − ων) + ℘(ω3)(a0 − a1)k(k + 1) (℘(z − ω2)− ℘(z − ω3)) . (5.135)

The various coefficients (aν , bν , cν) for ν = 0, 1, 2 are related to the multiplicities as [75, Example 7.7]

aν := −11 +
∑

1≤i<j≤4

mi,νmj,ν , (5.136)

bν :=
1

2


−aν − 6 +

∑

1≤i<j<k≤4

mi,νmj,νmk,ν


 , (5.137)

cν :=

4∏

i=1

mi,ν , (5.138)
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(a3, b3, c3) = (a2, b2, c2) and the parameter k is k = m1,2 − 1. Note that in eq. (5.133)-(5.135) we are

summing over the four fixed points (ω0, ω1, ω2, ω3) of the elliptic curve Ei, and that we need (a3, b3, c3) ≡
(a2, b2, c2) to ensure the Z4-symmetry of the Hamiltonian.

5.5.2 Construction of the map

In order to recast our vertex operator H in the form (5.127) of the lemniscatic CMS Hamiltonian, we

need to find a change of variables from our cross-ratio X to a new variable ϕ and a ‘gauge transformation’

Θ(X (ϕ)) such that

Θ−1HΘ = (const)∂4ϕ +O(∂2ϕ) . (5.139)

Looking at the terms of order ∂4X and ∂3X , we see that ϕ can be taken to solve the differential equation

dϕ

dX =
(−) 1

4

4
X− 3

4 (1−X )− 3
4 , ϕ(X = 0) = 0 , (5.140)

and Θ must be of the form

Θ = Θ0 X
l1+l2−2(ℓ1+ℓ2)+∆3+(1−d)/2

4 (1−X )
l1+l2−2(ℓ1+ℓ2)−∆3+(1+d)/2

4 , (5.141)

where Θ0 ∈ C\{0} is an arbitrary multiplicative constant. The solution to eq. (5.140) is proportional to

the incomplete Beta function, which has the known analytic expression (see [100, Eq. 8.17.7])

ϕ(X ) = (−) 1
4

4

∫ X

0

dX ′ X ′− 3
4 (1−X ′)−

3
4 = (−X ) 1

4 F2 1

(
1

4
,
3

4
;
5

4
;X
)
. (5.142)

If we now apply the Pfaff transformation of the Gauss hypergeometric function,

F2 1 (a, b; c;X ) = (1−X )−a F2 1

(
a, c− b; c; X

X − 1

)
, (5.143)

the above function can be expressed in terms of the inverse arc length function for the lemniscate curve

(see [101, Eq. 5]),

ϕ(X ) =
( X
X − 1

) 1
4

F2 1

(
1

4
,
1

2
;
5

4
;
X
X − 1

)
≡ arcsinlemn

( X
X − 1

) 1
4

. (5.144)

Using [101, Eq. 21], the change of variables can be inverted to

√
X
X − 1

=
sd2
(
ϕ
√
2, 1√

2

)

2
, (5.145)

where sd(u, k) is one of the Jacobi elliptic functions. This can be equivalently expressed in terms of the

Weierstrass function ℘(z) defined in eq. (5.131),

X =
℘(ω3)

2

℘(ω3)2 − ℘(z)2
, ϕ = ℘(ω3) z , (5.146)

To re-express the corresponding operator in the form (5.132) and solve the parameters k, aν , bν , cν in

eqs. (5.133), (5.134), (5.135) for ∆i, li, ℓi, d, we made a symbolic computation in Mathematica. This

symbolic computation specifically avoids the use of the special functions JacobiSD and WeierstrassP

that appear in eqs. (5.145) and (5.146), because the version of Mathematica we used does not efficiently

make use of the derivative and addition formulas of these special functions. Instead, we only use the

Hypergeometric2F1 in eq. (5.144) to compute the coefficients c
(z)
0 , c

(z)
1 , c

(z)
2 as functions of X . More

specifically, we start by determining the three functions

h
(ϕ)
0 (ϕ(X )) = H(X , ∂X ) · 1 ,
h
(ϕ)
1 (ϕ(X )) = H(X , ∂X ) · ϕ(X )− ϕ(X )h(ϕ)0 (ϕ(X )) ,

h
(ϕ)
2 (ϕ(X )) = H(X , ∂X ) · ϕ(X )

2

2
− ϕ(X )h(ϕ)1 (X )− ϕ(X )2

2
h
(ϕ)
0 (X ) ,
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that are related to the c-coefficients by

c(z)p (z(X )) = 43℘(ω3)
2− p

2

(
h(ϕ)p (ϕ (X ))− δp,0EEFMV

)
, p = 0, 1, 2 , (5.147)

where E
(d;∆i;li;ℓi)
EFMV is the constant shift of the Hamiltonian given in Appendix C.2.2. Following eq. (5.146),

it is easy to show that the c
(z)
p computed from H(X , ∂X ) are algebraic functions of ℘(z). Similarly, we

can express each term in eqs. (5.133), (5.134), (5.135) as a rational function of ℘(z) using the addition

formulas

℘ (z − ω1) = −
℘(ω3)

2

℘(z)
, (5.148)

℘(z − ω2) = −℘(ω3)
℘(z)− ℘(ω3)

℘(z) + ℘(ω3)
, (5.149)

℘(z − ω3) = ℘(ω3)
℘(z) + ℘(ω3)

℘(z)− ℘(ω3)
, (5.150)

and the derivative formula

℘′(z)2 = 4℘(z)
(
℘(z)2 − ℘(ω3)

2
)
, (5.151)

for the lemniscatic Weierstrass elliptic function. Following these identities, each of the coefficient functions

c
(z)
p in the Hamiltonian is the product of ℘

p
2−2

(
℘(ω3)

2 − ℘2
) p

2−2
with a polynomial function in ℘. We

can then identify each polynomial coefficient expressed as a function of k, aν , bν , cν with its expression in

terms of ∆i, li, ℓi, d to obtain the map from spins and conformal dimensions to multiplicities.

5.5.3 CMS multiplicities from weights and spins

In all cases, the multiplicity associated to z2 (see eq. (5.126)) can be computed from the spin quantum

numbers l1, l2 as

k = l1 − l2 −
1

2
or k = l2 − l1 −

1

2
. (5.152)

Going from one choice to the other in eq. (5.152) is equivalent to the change of parameters k → −(k+1),

which leaves the CMS Hamiltonian invariant. For the MST2-STT-scalar (type II) vertex in all d ≥ 3 we

have

m1,0 = 3
5− d
2
− (l1 + l2)−∆3 − 2ℓ1 , (5.153)

m2,0 =
d− 1

2
− (l1 + l2)−∆3 + 2ℓ1 , (5.154)

m3,0 =
d− 1

2
+ (l1 + l2) + ∆3 + 2(∆1 −∆2) , (5.155)

m4,0 =
d− 1

2
+ (l1 + l2) + ∆3 − 2(∆1 −∆2) , (5.156)

and

m1,1 = −5 d− 3

2
− (l1 + l2) + ∆3 − 2ℓ1 , (5.157)

m2,1 = −d+ 1

2
− (l1 + l2) + ∆3 + 2ℓ1 , (5.158)

m3,1 = −d+ 1

2
+ (l1 + l2)−∆3 + 2(∆1 +∆2) , (5.159)

m4,1 =
7d− 1

2
+ (l1 + l2)−∆3 − 2(∆1 +∆2) , (5.160)

which also contains the particular case of type I with two spinning fields in d ≥ 3 simply by setting

ℓ1 = 0. It is easy to observe from eqs. (5.153)—(5.160) that

mi,ν(d; ∆i, li; ℓ1) = mi,ν

(
d+ δd; ∆i +

δd

2
; li −

δd

2
; ℓ1 −

δd

2

)
, (5.161)
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or equivalently

mi,ν(2α+ 3− 2ℓ1;α− ℓ1 +
3

2
+ iγi, li; νi + ℓ1; ℓ1) = function (α; γi; νi) . (5.162)

This is a direct consequence of the observation made in eq. (5.112). We conclude that the three weight

and three spin labels along with the dimension d of the MST2-STT-scalar vertices do not exhaust the full

7-dimensional parameter space of the elliptic Z4 CMS model. In fact, it is easy to see that the parameters

are constrained by

m1,0 −m2,0 = m1,1 −m2,1 . (5.163)

When specializing to d = 4, this last constraint defines the restriction of the generic MST2-MST2-scalar

(type III) vertex to the MST2-STT-scalar case. We have determined that the full MST2-MST2-scalar

vertex in d = 4 yields the CMS multiplicities

m1,0 =
3

2
− (l1 + l2)−∆3 − 2(ℓ1 − ℓ2) , (5.164)

m2,0 =
3

2
− (l1 + l2)−∆3 + 2(ℓ1 − ℓ2) , (5.165)

m3,0 =
3

2
+ (l1 + l2) + ∆3 + 2(∆1 −∆2) , (5.166)

m4,0 =
3

2
+ (l1 + l2) + ∆3 − 2(∆1 −∆2) , (5.167)

m1,1 = −5

2
− (l1 + l2) + ∆3 − 2(ℓ1 + ℓ2) , (5.168)

m2,1 = −5

2
− (l1 + l2) + ∆3 + 2(ℓ1 + ℓ2) , (5.169)

m3,1 = −5

2
+ (l1 + l2)−∆3 + 2(∆1 +∆2) , (5.170)

m4,1 =
27

2
+ (l1 + l2)−∆3 − 2(∆1 +∆2) . (5.171)

Let us note that this set of multiplicities does not satisfy any additional constraints. This concludes our

description of the precise relation between the vertex differential operators for single variable vertices and

the lemniscatic CMS model of [75]. We would like to finish this section off with two additional comments.

Comments on algebraic integrability: The CMS operator is said to be algebraically integrable if the

multiplicities mi,ν defined by eqs. (5.128), (5.129), (5.130) are integers (see [102, Corollary 2.4]). In this

case, according to [102, Theorem 2.5], a generic eigenfunction of LEFMV will take the form

ψλ(z) = eβz
4∏

i=1

θ(z − αi)
θ(z − βi)

, (5.172)

where θ(z) is the first Jacobi theta-function of the lemniscatic elliptic curve, and β, β1, α1, . . . , β4, α4

are certain parameters that can be solved in terms for the multiplicities and eigenvalue λ by writing

the eigenvalue equation LEFMVψλ = λψλ for (5.172) near the singular points z = z0, z1, z2. We have

determined above that all multiplicities are linear combinations of the quantum numbers (∆i; li; ℓi) and

the dimension d, with coefficients in 1
2Z. Therefore, depending on whether d is odd or even, the vertex

operator is algebraically integrable when the quantum numbers [−∆i; li; ℓi] that define the representation

at each point are either integers or half-integers. This setup is equivalent to placing unitary irreducible

representations of the compact real form SOR(d+2) at each point (or the double cover thereof). It would

be interesting to explore the generalization of this result to non-integer conformal weights.

CMS multiplicities for all vertex systems: As a final comment we want to rewrite the relations between the

CMS multiplicities and the weight and spin quantum numbers in terms of the parameters that appeared

116



5. Vertex systems

in our discussion of the generalized Weyl algebra, see previous section. Recall the parameters of the

generalized Weyl algebra,

α :=
d− 3

2
+ ℓ1 + ℓ2 , ν1 = l1 − ℓ1 − ℓ2 , ν2 = l2 − ℓ1 − ℓ2 . (5.173)

To determine a universal formula for the CMS multiplicities of all 1-dimensional vertex systems, we use

the four extra parameters

β := ℓ1 − ℓ2 +
d− 5

2
, γi := −i

(
∆i −

d

2

)
. (5.174)

The parameters γi had appeared in our construction of the Hamiltonian already, see eq. (5.85). Only the

parameter β is new. Of course, the map from spin quantum numbers (li; ℓi) to α, β, ν1, ν2 can be inverted

as

l1 = ν1 + α+
3− d
2

, l2 = ν2 + α+
3− d
2

, (5.175)

ℓ1 =
α+ β + 4− d

2
, ℓ2 =

α− β − 1

2
. (5.176)

If we insert these formulas into the expressions for multiplicities we listed above, these become completely

universal to all 1-dimensional vertex systems, i.e. they no longer depend on type of the vertex (I, II, or

III). Explicitly one finds

k = ν1 − ν2 −
1

2
, or k = ν2 − ν1 −

1

2
, (5.177)

and

m1,0 = −1

2
− (ν1 + ν2)− iγ3 − 2α− 2β , (5.178)

m2,0 =
3

2
+ (ν1 + ν2)− iγ3 − 2α+ 2β , (5.179)

m3,0 =
5

2
+ (ν1 + ν2) + iγ3 + 2α+ 2i(γ1 − γ2) , (5.180)

m4,0 =
5

2
+ (ν1 + ν2) + iγ3 + 2α− 2i(γ1 − γ2) , (5.181)

m1,1 =
3

2
− (ν1 + ν2) + iγ3 − 4α , (5.182)

m2,1 = −1

2
− (ν1 + ν2) + iγ3 , (5.183)

m3,1 =
5

2
+ (ν1 + ν2)− iγ3 + 2α+ 2i(γ1 + γ2) , (5.184)

m4,1 =
5

2
+ (ν1 + ν2)− iγ3 + 2α− 2i(γ1 + γ2) . (5.185)

In particular, the MST2-STT-scalar (type II) case in all d ≥ 3 is obtained by imposing the additional

relation β = α− 1, equivalent to ℓ2 = 0.
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Chapter 6

Conclusions

In this thesis we addressed the problem of the computation of multipoint conformal blocks in Conformal

Field Theories, introducing techniques and obtaining results that have improved the general understand-

ing of this complicated subject.

After an introduction to basic concepts in CFT, we immediately delved into the characterization of

multipoint conformal blocks from the perspective of differential equations. This brought to the statement,

in chapter 3, of the first main result of this thesis: the construction of a full set of relevant differential

equations for any conformal block with any number of external legs, in any channel, and any dimension.

More concretely, we managed to construct a number of independent commuting differential operators for

N -point functions which matches in all cases the number of conformally invariant cross ratios. This result

has been achieved by making use of the integrability properties of the so(d+1, 1) Gaudin models, which

could then be passed down to the computation of conformal blocks, allowing us to characterize also this

one as an integrable problem. In fact, the possibility in Gaudin models to construct infinite families of

commuting operators that are automatically invariant under diagonal conformal symmetry, made it such

that the commuting operators that characterize conformal blocks could be simply recovered from limits

of these families, with a procedure tailored to the OPE channel in consideration. The outcome of these

limits is thus a set of operators which depends on the choice of an OPE channel, but which is in all cases

made by only two distinct types of operators: Casimir differential operators, associated with internal legs

of OPE diagrams and whose relevance is naturally expected in an extension of the work of Dolan and

Osborn [51], and vertex differential operators, constructed around every non-trivial vertex of the OPE

diagram and which constitute a novel type of operator that was never considered before in the context

of CFT.

All of these new vertex operators produce differential equations of order higher than two, which makes

them rather difficult to handle, especially when coupled with other differential equations. To have a good

starting point to tackle their solution theory, we sought out limits in which the system simplifies and can

be connected with known solutions. We discussed and analyzed one such type of limit, the OPE limits,

in chapter 4. The central result there is the introduction of a set of conformal cross ratios in which each

coordinate is naturally associated with just one of the basic elements of a comb-channel OPE diagram.

This allows simple analysis of the leading contributions associated with any OPE of a comb-channel

diagram, which can be used to project on certain exchanges of operators in the internal legs, or specific

three-point tensor structures at the vertices. We claim that after extraction of the leading behavior on

the three variables associated with an internal leg r, the d ≤ 4 differential equations associated with

the two branches connected to said leg decouple, and the conformal blocks thus factorize in a product

of lower-point conformal blocks. The same claim also applies to N -point functions with N ≤ 6 in any

dimension. We verified this claim explicitly for N ≤ 6, producing the remarkable OPE-factorization

formulas in section 4.3 and matching the reduced quadratic Casimir equations with those of spinning

four-point functions, obtained with Harish-Chandra’s radial component map.
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Being in possession of this knowledge on how multipoint conformal blocks can be explicitly reduced to

lower-point ones, one can now formulate a plan on how explicit and complete solution could be computed

for the general multipoint case. Ideally, one should first be able to solve all the fundamental subsystems

that appear in the OPE diagram, i.e. the differential equations associated with internal legs and those

for internal vertices. Once that is well under control, more general solutions could then be approached

by turning on interactions between those subsystems, “gluing together” the elementary building blocks

to form bigger OPE diagrams. The first main constituent, the Casimir equations associated with internal

legs of OPE diagrams, is already under relatively good control. Many explicit solutions have been built in

the literature for the simplest scalar and low-spin cases, and the general system is known to be in general

equivalent to spinning generalizations of the hyperbolic BC2 Calogero-Moser-Sutherland model [79, 80].

The understanding of the vertex systems, on the other hand, is not as advanced. For this reason,

in chapter 5 we analyzed the simplest of these systems, namely those vertices that possess only one

conformally invariant degree of freedom. These correspond precisely to all the possible vertices that can

appear in a comb-channel diagram in d ≤ 4, and can thus be obtained from the reduction of multipoint

conformal blocks using our OPE factorization results. Despite the rather cumbersome form in which

the explicit operators are initially computed, see section 5.3, we find after some manipulation that these

objects can be recast in expressions that only span a few lines. The first simplification has been achieved

by re-expressing the vertex differential operator in terms of generators of a generalized Weyl algebra

that acts on Gegenbauer polynomials. We then constructed explicitly a map from the daunting two-page

formula of section 5.3 to the Hamiltonian of a crystallographic elliptic Calogero-Moser-Sutherland model

introduced in [75], showing yet another time how the realm of conformal blocks and that of integrable

systems are strongly interconnected. We believe that these connections can lead to future insight on the

solution theory for these vertex systems, which would then represent a solid base for the construction of

general expressions for multipoint blocks.

There are many directions that are still left to explore from the work we just outlined, ranging from the

understanding of more abstract mathematical properties to more concrete applications. For instance, it

would be very intriguing to check whether the integrable nature of the multipoint block equations can

lead to the construction and usage of powerful tools of integrability such as the Dunkl operators [103]

for the BC2 Calogero-Moser-Sutherland models. Objects of this type could lead to the decomposition

of the Casimir or vertex operators into combinations of simpler objects, which could then make the

study of solutions far more manageable. Another promising direction is represented by the construction

of weight-shifting operators [20, 28]. These are already used in the four-point context to allow for a

recursive construction of conformal blocks with spinning internal/external legs in terms of blocks with

only scalars. One expects similar type of operators to be constructible also in a multipoint context, which

would then make the computation of low-spin multipoint blocks within reach.

Ultimately, the main ambition of our differential approach for multipoint conformal blocks is to gain

strong control over these functions, allowing this way the application of the conformal bootstrap logic to

correlators with more than four external legs. At the current stage, it seems still unclear how this can

be done in a numerical approach, as current numerical bootstrap techniques seem to depend on aspects

that are only specific to the four-point case. Nonetheless, some non-trivial ideas are currently being

considered, and it is possible that with proper refinement these could flourish and lead to functioning

techniques. On the other hand, analytical bootstrap techniques are more directly extended to a higher-

point setting. This is an aspect which has already seen some success in recent works [32–34]. The main

approach followed by these involves the use of an expression of the OPE of two fields in the limit in which

these are light-like separated [104]. This allows the computation of conformal blocks directly in certain

multiple light-cone limits, which is all one needs for a light-cone bootstrap analysis. The main limitation

of this approach, however, is that the light-cone OPE between one internal and one external field is not

yet under sufficient control to be used for explicit computations. This means that, at the current stage,
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6. Conclusions

this approach cannot produce results beyond the snowflake channel for six-point correlators. According

to some recent early results, however, our approach involving differential equations seems to have high

chances of success in leading to concrete expressions for more complicated light-cone conformal blocks,

such as the null-polygon limit for six-point correlators in the comb-channel. This is rather promising,

as it could open up the doors for bootstrap of more general operators on which very little information

is currently available, such as triple-twist operators or more general MSTs. We are planning to address

this very concretely in future work, walking along the pathway opened by the results of this thesis.
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Appendix A

Appendices to Chapter 3

A.1 Proof of the induction in the limits of Gaudin models

In this appendix, we detail the induction in the proof of the limit procedure of section 3.3. We thus refer

to this section for notation and definitions. Our main goal is to show that for every vertex v ∈ V , the

Lax matrix of the N -sites Gaudin model satisfies the limit (3.52). For the purposes of this appendix, it

will be useful to rewrite this limit as

ϖnvLα
(
hv(z,ϖ)

) ϖ→0−−−→ Lv
α(z) =

T (Iv,1)
α

z
+
T (Iv,2)
α

z − 1
, (A.1)

where we introduced

hv(z,ϖ) = ϖnvz + gv(ϖ). (A.2)

In the left-hand side of (A.1), and in all this appendix, we fix the sites wi of the Gaudin model to

their value wi = fi(ϖ) prescribed by the limit procedure of Subsection 3.3.1. Recall that v is either the

reference vertex v∗, in V
′ or in V ′′. We will treat these three cases separately.

A.1.1 Reference vertex

Let us first consider the reference vertex v∗. The definition of nv∗ and gv∗ made in Subsection 3.3.1 can

be simply rewritten as

nv∗ = 0 and hv∗(z,ϖ) = z. (A.3)

We then have

ϖnv∗Lα
(
hv∗(z,ϖ)

)
= Lα(z) =

N∑

i=1

T (i)
α

z − wi
. (A.4)

To proceed further, we decompose this sum over external edges i ∈ {1, · · · , N} into three parts.

Contribution of the reference edge. The first part is the contribution from the reference edge N ,

with corresponding site wN = fN (ϖ) = ϖ−1, according to eq. (3.51). It simply reads

T (N)
α

z − wN
=
ϖ T (N)

α

ϖ z − 1

ϖ→0−−−→ 0 (A.5)

and thus does not contribute to the limit of (A.4) when ϖ → 0.

Contribution of the subtree T ′. The second part is the contribution from the subtree T ′ attached

to e′, for which we should distinguish the cases where e′ is external or not. If e′ is external (in which case

T ′ is trivial and e′ is the only contribution from this subtree), recall from the first case of eq. (3.67) that

we then have we′ = fe′(ϖ) = ϖ, so that the contribution to (A.4) simply is

T (e′)
α

z −ϖ
ϖ→0−−−→ T

(e′)
α

z
. (A.6)
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Note that as e′ is external, we have E′ = {e′} so that the generators T (e′)
α coincide with T (E′)

α .

If e′ is intermediate in the initial diagram then the contribution from the subtree T ′ comes from the

edges i ∈ E′ ⊂ N , with corresponding sites wi = fi(ϖ) = ϖf ′i(ϖ) as in the second line of eq. (3.67).

By construction, the functions f ′i(ϖ) associated with the external edges i ∈ E′ stay finite when ϖ → 0:

indeed, as we supposed T ′ non-trivial, the edges i ∈ E′ are not the reference edge e′ of T ′ and are thus

associated with polynomial functions f ′i(ϖ). Thus, we get that the corresponding sites wi = ϖf ′i(ϖ) in

the initial tree tend to 0 when ϖ → 0. In this limit, the contribution of this subtree T ′ to the sum (A.4)

then simply becomes
∑

i∈E′

T (i)
α

z − wi
ϖ→0−−−→ 1

z

∑

i∈E′

T (i)
α . (A.7)

To conclude, let us observe that the sum in the right-hand side of the above equation is by definition

T (E′)
α . Combined with the eq. (A.6) and the discussion that followed it for the case where e′ is external,

we thus observe that in both cases e′ external and internal, the contribution of the subtree T ′ in the limit

ϖ → 0 of eq. (A.4) is simply
∑

i∈E′

T (i)
α

z − wi
ϖ→0−−−→ T

(E′)
α

z
. (A.8)

Contribution of the subtree T ′′. A similar argument applies to the contribution of the right subtree

T ′′, attached to e′′. If the latter is external, this contribution is simply equal to

T (e′′)
α

z − 1
, (A.9)

since we then have we′′ = 1 – see the first line of eq. (3.68). If e′′ is intermediate, the corresponding sites

wi, i ∈ E′′, are given by the second line of eq. (3.68) and read wi = fi(ϖ) = 1 +ϖf ′′i (ϖ), which thus

tend to 1 when ϖ → 0. In both cases, we find that the contribution to (A.4) is given by

∑

i∈E′′

T (i)
α

z − wi
ϖ→0−−−→ T

(E′′)
α

z − 1
, (A.10)

where in the first case T (E′′)
α = T (e′′)

α while in the second case T (E′′)
α is a composite operator formed by

the sum of T (i)
α for i ∈ E′′.

Conclusion. Summing the contributions (A.5), (A.8) and (A.10) in the limit of eq. (A.4) when ϖ → 0,

we then find

ϖnv∗Lα
(
hv∗(z,ϖ)

) ϖ→0−−−→ T
(E′)
α

z
+
T (E′′)
α

z − 1
. (A.11)

To conclude, we observe that the labeling of branches at vertices made in Subsection 3.3.1 using the plane

rooted tree representation T of the diagram implies that E′ = Iv∗,1 and E′′ = Iv∗,2. This shows that the

limit (A.1) is satisfied for the reference vertex v∗.

A.1.2 Vertices in V ′.

Let us now consider the case of a vertex v ∈ V ′ in the subtree attached to e′. Note that the existence of

this vertex requires the subtree T ′ to be non-trivial and thus the edge e′ to be intermediate in the initial

diagram. The definition of nv and the recursion relation for gv(ϖ) in the first line of eq. (3.66) can be

rewritten as

nv = n′v + 1 and hv(z,ϖ) = ϖh′v(z,ϖ), (A.12)

where we have defined h′v(z,ϖ) = ϖn′
vz + g′v(ϖ) as the equivalent of hv(z,ϖ) for the subtree T ′. We

thus have

ϖnvLα
(
hv(z,ϖ)

)
= ϖn′

v+1Lα
(
ϖh′v(z,ϖ)

)
=

N∑

i=1

ϖn′
v+1T (i)

α

ϖh′v(z,ϖ)− wi
. (A.13)
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We will once again separate this expression in three parts, coming from the contributions of the reference

edge N and the two subtrees.

Contribution of the reference edge. Let us start with the edge N , with associated site wN =

fN (ϖ) = ϖ−1. Its contribution to (A.13) in the limit ϖ → 0 is then given by

ϖn′
v+1T (N)

α

ϖh′v(z,ϖ)− wN
=

ϖn′
v+2T (N)

α

ϖ2 h′v(z,ϖ)− 1

ϖ→0−−−→ 0. (A.14)

Contribution of the subtree T ′′. Let us now consider the contribution coming from the subtree T ′′

attached to e′′. If e′′ is external in the initial tree T , then we simply have we′′ = 1 according to the first

line of eq. (3.68) and the contribution to (A.13) is

ϖn′
v+1T

(e′′)
α

ϖh′v(z,ϖ)− 1

ϖ→0−−−→ 0. (A.15)

If e′′ is initially intermediate, then the contribution comes from the external edges i ∈ E′′ ⊂ N whose

corresponding sites are given by the second line of eq. (3.68) to be wi = fi(ϖ) = 1 + ϖf ′′i (ϖ). In

particular, these tend to 1 when ϖ → 0. Thus, in this case, the contribution of the subtree T ′′ to (A.13)

also vanishes:
∑

i∈E′′

ϖn′
v+1T (i)

α

ϖh′v(z,ϖ)− wi
ϖ→0−−−→ 0. (A.16)

Contribution of the subtree T ′. Thus, the only non-vanishing contribution to (A.13) in the limit

ϖ → 0 comes from the subtree T ′ attached to e′. Recall that T ′ is non-trivial since it possesses a

vertex v: the external edges i ∈ E′ ⊂ N are thus different from e′ and are associated with the sites

wi = fi(ϖ) = ϖf ′i(ϖ), according to the second line of eq. (3.67). The contribution of T ′ to (A.13) then

reads
∑

i∈E′

ϖn′
v+1T (i)

α

ϖh′v(z,ϖ)− wi
=
∑

i∈E′

ϖn′
vT (i)
α

h′v(z,ϖ)− f ′i(ϖ)
. (A.17)

The Gaudin Lax matrix of the subtree T ′ (the one of the full tree, not the ones associated with vertices)

is given by eq. (3.69) and thus can be rewritten as

L′
α(z) =

∑

i∈E′

T (i)
α

z − f ′i(ϖ)
+
ϖ T (e′)

α

ϖ z − 1
, (A.18)

where we used the fact that f ′e′(ϖ) = ϖ−1 since e′ is the reference edge of T ′. Thus, we can rewrite the

above contribution (A.17) as

∑

i∈E′

ϖn′
v+1T (i)

α

ϖh′v(z,ϖ)− wi
= ϖn′

vL′
α

(
h′v(z,ϖ)

)
− ϖn′

v+1T (e′)
α

ϖh′v(z,ϖ)− 1
. (A.19)

The second term vanishes in the limit ϖ → 0. Moreover, by the induction hypothesis (3.70) for the

subtree T ′, the first term tends to Lv
α(z) in this limit. In conclusion, we thus get

∑

i∈E′

ϖn′
v+1T (i)

α

ϖh′v(z,ϖ)− wi
ϖ→0−−−→ Lv

α(z). (A.20)

Conclusion. Since the contribution (A.20) is the only non-vanishing term in the limit of eq. (A.13)

when ϖ → 0, we thus get in the end that

ϖnvLα
(
hv(z,ϖ)

) ϖ→0−−−→ Lv
α(z), (A.21)

as required. This indeed shows that the limit (A.1) is satisfied for vertices v ∈ V ′, using the induction

hypothesis (3.70) that a similar property also holds in the subtree T ′.
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A.1.3 Vertices in V ′′

Let us finally consider a vertex v ∈ V ′′. The procedure here will resemble the one in the previous

subsection so we will not describe it in detail. The definition of nv and the recursion relation for gv(ϖ)

in the second line of eq. (3.66) can be rewritten as

nv = n′′v + 1 and hv(z,ϖ) = 1 +ϖh′′v(z,ϖ). (A.22)

The main difference with the case of a vertex in V ′ is that we introduced a shift by 1 in the expression

of hv(z,ϖ). The effect of this shift is that in the computation of the limit of ϖnvLα
(
hv(z,ϖ)

)
when

ϖ → 0, the only non-vanishing contribution now comes from the subtree T ′′ and not from T ′. More

precisely, using the fact that the shift by 1 cancels with the 1 in the recursive expression (3.68) of the

sites wi, i ∈ E′′, we find in the end that

lim
ϖ→0

ϖnvLα
(
hv(z,ϖ)

)
= lim
ϖ→0

ϖn′′
vL′′

α

(
h′′v(z,ϖ)

)
= Lv

α(z), (A.23)

with L′′
α the Lax matrix (3.71) associated with the subtree T ′′, and where the last equality follows from

the induction hypothesis (3.72) for the subtree T ′′. This then completes the proof of the induction.

A.2 Classical Embedding space formalism

For the proof in Appendix A.3 we are going to need a classical version of the embedding space formalism

for the spinning fields that we have just discussed. For this purpose, we introduce PA as the conjugate

momentum to XA, and QpA as conjugate momenta of the auxiliary variables ZAp .

To see which constraints are imposed on these classical variables, one can check the action of the operators

X · ∂

∂X
, X · ∂

∂Zp
, Zp ·

∂

∂X
, Zp ·

∂

∂Zq
(A.24)

on fields or correlation functions to get conditions that need to be satisfied by scalar products of coor-

dinates and momenta. Some of the operators in (A.24) are in fact evaluated to constants on correlation

functions. By imposing the same behavior when replacing derivatives with momenta, one obtains the

following relations for phase space variables:

X2 = Z2
p = Zp · Zq = 0 ,

X · Zp = X ·Qp = 0 ,

Zp ·Qq = 0 ∀ p < q ,

X · P = −∆ , Zp ·Qp = jp .

(A.25)

One can directly verify that the conditions (A.25) combined with the classical version of the genera-

tors (2.58)

T̄[AB] = XAPB +

L∑

p=1

ZpAQpB − (A↔ B) (A.26)

lead to the correct classical Casimirs associated to mixed-symmetry tensors:

Cas 2n = 2∆2n + 2

L∑

i=1

j2np . (A.27)

A.3 Relations among vertex differential operators

Our goal in this appendix is to justify the relations (3.36) and (3.37) for the total symbols of our vertex

differential operators. There are many ways to derive these relations. Here we shall follow a more

pedestrian approach that does not require much background from representation theory.
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In order to derive the relations (3.36), (3.37) we first note that these were formulated in terms of the

coordinates and momenta of the external scalar fields. The representation of the conformal algebra that is

associated to the index set I decomposes into an infinite number of spinning representations. Each of the

irreducible components can be prepared in embedding space formalism. Here we shall study the relations

(3.36) for a given irreducible component so that the coefficients ϱf,s are functions of the associated weight

and spins rather than functions of symbols of the Casimir differential operators.

After these introductory comments let us approach relation (3.36) by considering the simplest example

in which the intermediate irreducible representation is scalar. We can construct explicitly the first three

matrices (T̄ n)AB1 in the classical embedding space that we introduced in Appendix A.2:

(
T̄ 1
)A
B
= XAPB −XBP

A

(
T̄ 2
)A
B
= ∆

(
XAPB +XBP

A
)
− P 2XAXB

(
T̄ 3
)A
B
= ∆2

(
XAPB −XBP

A
)
= ∆2

(
T̄ 1
)A
B
.

(A.28)

It is then clear that, when considering scalar representations, the powers of generators T̄ n with n ≥ 3

will be dependent on lower powers of the generators. This directly implies that any vertex operator of

the type (3.34) that contains a power of a scalar generator higher than two will become dependent on

operators of lower order, e.g.

T̄ 3 · B ∝ T̄ · B . (A.29)

We would now like to prove that something analogous to (A.28) is valid for representations of higher

depth d and higher powers, respectively. Let us then consider the generators for a mixed symmetry

tensor of depth d,

T̄[AB] = XAPB +

d−1∑

p=1

ZpAQpB − (A↔ B); (A.30)

we expect the n-fold contractions of generators T̄ n to be independent up to power n = 2d, with the first

dependent object produced at power n = 2d + 1. To prove this, let us focus on a specific matrix entry

(T̄ n)AB of the powers T̄ n and construct the following submatrix of the Jacobian for fixed indices A, B

and C: 


∂(T̄ 1)
A

B

∂XC

∂(T̄ 1)
A

B

∂PC

∂(T̄ 1)
A

B

∂ZC
1

∂(T̄ 1)
A

B

∂QC
1

· · · ∂(T̄ 1)
A

B

∂QC
d−1

...
...

...
...

...
∂(T̄ 2d+1)

A
B

∂XC

∂(T̄ 2d+1)
A

B

∂PC

∂(T̄ 2d+1)
A

B

∂ZC
1

∂(T̄ 2d+1)
A

B

∂QC
1

· · · ∂(T̄ 2d+1)
A

B

∂QC
d−1


 . (A.31)

If what we argued above holds, we should be able to see that some 2d-minors of (A.31) are equal to

zero, while the same matrix with the last row dropped out has all nonzero 2d-minors. We checked this

with Mathematica symbolically for the case of symmetric traceless tensors, and numerically for mixed

symmetry tensors of depth d ≤ 6, exhausting all tensorial representations that are allowed in the range

of dimensions of known CFTs. One can use a similar reasoning to show eq. (3.37).

Let us finally comment on a more conceptual interpretation of the results of this appendix. We consider

first the case of a scalar representation, whose generators can be gathered in the matrix (T̄f )AB =

XAPB −XBP
A in the fundamental representation. Using the relations XAXA = 0 and XAPA = −∆,

one can show that the matrix T̄f is diagonalizable, with eigenvalues ∆, −∆ and 0 (with multiplicity d).

It is a standard result of linear algebra that T̄f is then annihilated by the polynomial with simple roots

equal to these eigenvalues, namely T (T −∆)(T +∆) = T 3 −∆2T : we recover this way that T̄ 3
f = ∆2T̄f .

A similar argument can be formulated for a representation with higher depth d = L + 1, characterized

by a weight ∆ and L spins j1, . . . , jL. The (symbols of the) generators of this representation are given

by eq. (A.26) and can be gathered in a matrix T̄f valued in the fundamental representation. The

traces of odd powers of T̄f vanish, while the traces of even powers are given by the classical Casimirs

1Here and in the discussion below we shall drop the subscript f .
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(A.27). These traces are the Newton sums
∑d+2
i=1 λ

p
i of the eigenvalues λ1, · · · , λd+2 of T̄f and thus

determine these eigenvalues uniquely (up to permutation). More precisely, we find that T̄f has eigenvalues

∆,−∆, j1,−j1, . . . , jL,−jL and 0 (with multiplicity d − 2L). If we suppose that T̄f is diagonalizable, it

is then annihilated by the polynomial with simple roots equal to these eigenvalues, hence

T̄f
(
T̄ 2
f −∆2

)(
T̄ 2
f − j21

)
· · ·
(
T̄ 2
f − j2L

)
= 0. (A.32)

This shows that the power T̄ 2L+3
f = T̄ 2d+1

f is expressible in terms of lower power T̄ nf , n ≤ 2d, as expected.

Let us finally note that the coefficients in the relation (A.32) are elementary symmetric polynomials in

the variables (∆2, j21 , . . . , j
2
L): by the Newton identities, these coefficients are then also polynomials in

the Newton sums ∆2p +
∑L
i=1 j

2p
i and thus in the values (A.27) of the classical Casimirs. This ensures

that the coefficients ϱ
(n,m)
f ;AB in eq. (3.36) are polynomials in the total symbols of the Casimir operators.
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Appendices to Chapter 4

B.1 Radial decomposition of the Casimir

The quadratic Casimir Cas2 = − 1
2M

ABMAB can be written as

M2
−1,0+M

2
−1,1+M

2
−1,2−M2

01−M2
02−M2

12−M−1,aM−1,a−M0aM0a−M1aM1a−M2aM2a−
1

2
MabMab .

(B.1)

Here, indices a, b take values 3, 4, ..., d. Using relations

M−1,a = coth t1M1a −
1

sinh t1
M ′

1a M0a = i

(
coth t2M2a −

1

sinh t2
M ′

2a

)
, (B.2)

M01 ∓ iM−1,2 = − coth(t1 ± t2)D± +
D′

±
sinh(t1 ± t2)

, (B.3)

[M1a,M
′
1a] = − sinh t1H1, [M2a,M

′
2a] = − sinh t2H2, [D±, D

′
±] = 2 sinh(t1 ± t2)(H1 ±H2), (B.4)

we obtain

−M−1,aM−1,a −M1aM1a =
M ′

1aM
′
1a − 2 cosh t1M

′
1aM1a +M1aM1a

sinh2 t1
+ (d− 2) coth t1H1,

−M0aM0a −M2aM2a =
M ′

2aM
′
2a − 2 cosh t2M

′
2aM2a +M2aM2a

sinh2 t2
+ (d− 2) coth t2H2,

and

M2
−1,0−M2

12 +M2
−1,2−M2

01 = −D
′2
+ − 2 cosh(t1 + t2)D

′
+D+ +D2

+

2 sinh2(t1 + t2)
− D′2

− − 2 cosh(t1 − t2)D′
−D− +D2

−

2 sinh2(t1 − t2)

+ coth(t1 + t2)(H1 +H2) + coth(t1 − t2)(H1 −H2) .

Adding these terms gives the radial decomposition used in the main text.

B.2 Construction of a six-point conformal frame

In this section, we construct a conformal frame for the six-point function by appending x6 to the conformal

frame of the (12345) five-point function, namely:

x1 = ρ1n⃗(θ1, 0, 0), x2 = 0, x3 =∞, x4 = e⃗1, x5 = e⃗1 − ρ2n⃗(θ2, ϕ1, 0), (B.5)

where we parametrize unit vectors in S4 as

n⃗(θ, ϕ, φ) := cos θ e⃗1 + sin θ
{
cosϕ e⃗2 + sinϕ (cosφ e⃗3 + sinφ e⃗4)

}
= eφM34eϕM23eθM12 e⃗1. (B.6)
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It will also be useful to define the rotation matrices

R(θ, ϕ, φ) := e−θM12e−ϕM23e−φM31 =⇒ n⃗(θ, ϕ, φ) = R(θ, ϕ, φ)−1e⃗1. (B.7)

Finally, we parametrize cross ratios as in (4.34),

zr := ρre
iθr , z̄r := ρre

−iθr , ws := sin2
ϕs
2
, Υ := ±i cosφ

sin θ2
. (B.8)

To understand how x6 depends on the cross ratios, we compute a distinguished vector in this frame:

ψ56 := (x−1
45 − x−1

46 )
−1 ∈ R4

1234, (B.9)

where x−1 := x/x2 denotes the image of the vector x under conformal inversion. Note that we implicitly

used the residual SO(d− 4) symmetry preserving (B.5) to fix a gauge where x6 ∈ Span(e⃗1, e⃗2, e⃗3, e⃗4). In

Euclidean signature, we can parametrize the latter by its norm and its unit vector on the S4, which we

write as

ψ56 = |ψ56| ψ̂56, |ψ56| = ρ2ρ
−1
3 , (B.10)

Then the unit vector ψ̂56 is determined by three equations:

ψ̂56 · x̂45 =
1 + u2 − v2

2ρ2
, ψ̂56 · x4 =

U (5)
2

2ρ2ρ3
, ψ̂56 · x̂1 =

U (6)
1

2ρ1ρ2ρ3
, (B.11)

where the U (m)
r are polynomials in the polynomial cross ratios:

U (5)
r := 1− vr − vr+1 + U (5)

r , U (6)
1 := (1− v1)(1− v3)− v2 + U

(5)
1 + U

(5)
2 − U (6)

1 . (B.12)

Using the change of variables (4.30) and (4.31), we can express the scalar products of (B.11) in terms of

the angle cross ratios (θs, ϕr, φ):

U (5)
1

2ρ2ρ3
=cos θ2 cos θ3 + sin θ2 sin θ3 cosϕ2 (B.13)

U (6)
1

2ρ1ρ2ρ3
=cos θ1 cos θ2 cos θ3 + cos θ1 sin θ2 cosϕ2 sin θ3 + sin θ1 sin θ2 cosϕ1 cos θ3

− sin θ1 (cos θ2 cosϕ1 cosϕ2 + sinϕ1 sinϕ2 cosφ) sin θ3. (B.14)

Given that x4 = e⃗1, x̂1 ∈ Span(e⃗1, e⃗2), x̂45 ∈ Span(e⃗1, e⃗2, e⃗3), we can recursively compute the components

of ψ̂56 as

ψ̂56 · x4 = ψ̂56 · e⃗1 =⇒ ψ̂1
56,

ψ̂56 · x̂1 = ψ̂56 · n⃗(θ1, 0, 0) =⇒ ψ̂2
56,

ψ̂56 · x̂45 = ψ̂56 · n⃗(θ2, ϕ1, 0) =⇒ ±ψ̂3
56,

(ψ̂1
56)

2 + (ψ̂2
56)

2 + (ψ̂3
56)

2 + (ψ̂4
56)

2 = 1 =⇒ ±ψ̂4
56.

There is a sign indeterminacy in the third step coming from the convention for Υ ∝ ± cosφ, and there is

also a sign indeterminacy in the last step coming from the two solutions to the quadratic equation. We

compute the solution to each of these equations and find

ψ̂56 = R(θ2, ϕ1, 0)
−1n⃗(−θ3,±ϕ2,±φ) choice

= R(θ2, ϕ1, 0)
−1n⃗(−θ3, ϕ2, φ). (B.15)

Now, we can obtain x6 in the conformal frame by a conformal transformation of ψ56,

ψ56 = (x−1
64 − x−1

54 )
−1 = e−x

−1
45 ·Kex4·P · x6 = e−ρ

−1
2 n⃗(θ2,ϕ1,0)·KeP1x6. (B.16)
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After simplifying and inverting the conformal transformation in (B.16), we then obtain

x6 = e−P1ρ−D2 R(θ2, ϕ1, 0)
−1I eP1 · ρ3n(−θ3, ϕ2, φ), (B.17)

where I : x 7→ x−1 is conformal inversion. To better understand the meaning of these conformal

transformations, let’s take a closer look at the conformal group element

g ≡ g(ρ2, θ2, ϕ1) = e−P1ρ−D2 R(θ2, ϕ1, 0)
−1I eP1 . (B.18)

Its inverse acts as

g−1 : x 7→ ρ−1
2 R(θ2, ϕ1)(x− e⃗1)−1 + e⃗1, (B.19)

such that when g−1 acts on the points of the original conformal frame, the images are given by

g−1(x6) = ρ3n⃗(−θ3, ϕ2, φ), g−1(x5) = 0, g−1(x4) =∞, g−1(x3) = e⃗1. (B.20)

This suggests a general method to characterize the comb-channel conformal frame of N > 6 points in

d = 4, which depends on the cross ratios (ρr, θr)
N−3
r=1 , (ϕs)

N−4
s=1 and (φr)

N−4
r=2 defined in (4.40). First,

define the conformal transformation

h−1(ρ2, θ2, ϕ1, 0, φ2) := e−φ2M34σ1 e
P1g−1(ρ2, θ2, ϕ1) = ρ−D2 Iσ1e−φ2MztR(θ2, ϕ1)e

P1 , (B.21)

where σ1 : (x1, x2, x3, x4) 7→ (−x1, x2, x3, x4) is a reflection along the hyperplane orthogonal to e⃗1. Its

action on a point is given by

h−1(x) = ρ2σ1e
−φ2M34R(θ2, ϕ1)(x− e⃗1)−1. (B.22)

From the previous discussion, we determined that this conformal transformation acts on the six-point

conformal frame as follows:

h−1(x2) = ρ2n⃗(θ2, 0, 0), h−1(x3) = 0, h−1(x4) =∞, h−1(x5) = e⃗1, h−1(x6) = e⃗1 − ρ3n⃗(θ3, ϕ2, 0).
(B.23)

Thus, h−1 shifts the framing from the constraints (B.5) on xi, to the same constraints on xi+1, i = 1, . . . , 5.

We can similarly express the seventh point as

h−1(x7) = h′ (e⃗1 − ρ4n⃗(θ4, ϕ3, 0)) , (B.24)

where h′ ≡ h(ρ3, θ3, ϕ2, φ2, φ3) is now uniquely defined by

h′−1(0) = ρ3n⃗(θ3, 0, 0), h′−1(∞) = 0, h′−1(ex) =∞,

h′−1(h−1(x6)) = e⃗1, h′−1(h−1(x7)) = e⃗1 − ρ4n⃗(θ4, ϕ3, 0).

A quick comparison with the action of h−1 on x2, . . . , x6 implies that

h′−1 := ρ−D3 Iσ1e−φ3M34R(θ3, ϕ2, φ2)
−1eP1 . (B.25)
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We can then iterate this procedure until reaching xN . More specifically, the frame will be given by

x1 = ρ1n⃗(θ1, 0, 0),

x2 = 0,

x3 =∞,

x4 = e⃗1,

x5 = e⃗1 − ρ2n⃗(θ2, ϕ1, 0),

x6 = h(ρ2, θ2, ϕ1, φ1, 0)(e⃗1 − ρ3n⃗(θ3, ϕ2, 0))

x7 = h(ρ2, θ2, ϕ1, φ1, 0) ◦ h(ρ3, θ3, ϕ2, φ1, φ2)(e⃗1 − ρ4n⃗(θ4, ϕ3, 0)),

. . . . . . . . .

xN = h(ρ2, θ2, ϕ1, φ1, 0) ◦
N−4∏

r=3

h(ρr, θr, ϕr−1, φr−1, φr) (e⃗1 − ρN n⃗(θN , ϕN−1, φN−2, 0)) ,

where

h−1(ρr, θr, ϕr−1, φr−1, φr) := ρ−Dr Iσ1e−φrM34R(θr, ϕr−1, φr−1)
−1eP1 . (B.26)

The action of this conformal group element on points is then given by

h−1(ρr, θr, ϕr−1, φr−1, φr) : x 7→ ρrσ1e
−φrM34R(θr, ϕr−1, φr−1)

−1(x− e⃗1)−1. (B.27)

B.3 Middle leg OPE limit in embedding space

In the six-point function, the limit z̄2 → 0 at the middle leg b can be lifted to embedding space as

X45, X46, X56 → 0,
X45

X46
,
X56

X46
= finite. (B.28)

In other words, all distances between the three points x4, x5 and x6 vanish at the same rate in spacetime.

By first quantising around x6 and then mapping to the cylinder, a triplet satisfying (B.28) is mapped

to past timelike infinity. The infinite distance between (x4, x5, x6) and (x1, x2, x3) in this limit factorizes

the six-point function into a product of two four-point functions in a manner reminiscent of the cluster

decomposition principle.

To compute this limit in embedding space, it will be useful to define the vector

Y5 := (X4 −X5)−
X45

X46
(X4 −X6). (B.29)

In particular, X4 ∧ Y5 is a homogeneous tensor in both X4 and X5. For a spacetime interpretation of

these vectors, we can use the mapping X,Z 7→ x, z provided by the Poincaré patches (4.55) and (4.56),

from which we obtain

Y5 =
x256
x246

Zx4,ψ56 , ψ56 := (x−1
45 − x−1

46 )
−1. (B.30)

Note also that Y 2
5 = −2X45X56

X46
→ 0 in the limit (B.28). We now define the full bOPE limit z2,Υ→ 0 in

embedding space as

X5 = X4 + ϵZ4, Y5 = ϵ ϵ′W4, ϵ, ϵ′ → 0. (B.31)

where Z4 and W4 are MST2 polarisation vectors for X4. To make the connection with the prescription

of section 4.3.2 more explicit, we can rewrite the second equation in (B.31) as

ϵ′W4 = Z ′
4 − Z4, ϵZ ′

4 :=
X45

X46
(X6 −X4). (B.32)
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We thereby obtain the same prescription as eq. (4.61) up to projective equivalence, with a rescaling

of Z ′
4 outside of the conventional Poincaré patch to simplify computations. Note that the permutation

(4, 5, 6) ↔ (3, 2, 1) leads to an identical parametrization of the bOPE limit. Thus, to make expressions

more symmetric, we also define

Y2 := Y5|(4,5,6)↔(3,2,1). (B.33)

Now, to understand how Υ encodes MST2 transfer along the internal leg b, we would like to compute the

bOPE limit of
X34(X3 ∧X2 ∧ Y2) · (X4 ∧X5 ∧ Y5)

X2
24X

2
35

= U (5)
1 U

(5)
2 − (1− v2)U (6)

1 , (B.34)

where U (m)
r are the same functions of the polynomial cross-ratios defined in (B.12). To relate them to

the left hand side of (B.34), we expressed them in embedding space as follows:

U (5)
1 =

(X3 ∧ Y2) · (X4 ∧X5)

X24X35
, U (5)

2 =
(X3 ∧X2) · (X4 ∧ Y5)

X24X35
, U (6)

1 =
(X3 ∧ Y2) · (X4 ∧ Y5)

X24X35
. (B.35)

On the left hand side of (B.34), the OPE limit (B.31) is simple to compute:

LHS = ϵ2ϵ′
X23U4,123

X13X2
24X34

+O(ϵ3ϵ′), U4,123 := (X4 ∧ Z4 ∧W4)ABCX
A
1 X

B
2 X

C
3 .

Note that U4,123 is the unique independent MST2 tensor structure of the four-point function of three

scalars and one MST2 field. On the other hand, the right hand side of (B.34) can be written in cross

ratio space using

U (5)
1 = z′1z2 + z̄′1z̄2, (B.36)

U (5)
2 = z2z

′
3 + z̄2z̄

′
3, (B.37)

U (6)
1 = z′1z2z

′
3 + z̄′1z̄2z̄

′
3 −

[
(z1 − z̄1)

√
w1(1− w1)

]
(z2 − z̄2)Υ

[
(z3 − z̄3)

√
w2(1− w2)

]
, (B.38)

where we defined

z′1 := w1z1 + (1− w1)z̄1, z̄′1 := w1z̄1 + (1− w1)z1, (B.39)

z′3 := w2z3 + (1− w2)z̄3, z̄′3 := w2z̄3 + (1− w2)z3. (B.40)

Taking z̄2 = 0, we then find

U (5)
1 U

(5)
2 − (1− v2)U (6)

1 =
1

4

[
(z1 − z̄1)

√
w1(1− w1)

]
z22Υ

[
(z3 − z̄3)

√
w2(1− w2)

]
. (B.41)

At the same time, using

1− v2 = z2 = ϵ
J4,23

X24X34
+O(ϵ2), J4,23 := (X4 ∧ Z4)BCX

B
2 X

C
3 , (B.42)

we find that Υ = O(ϵ′) in the bOPE limit (B.31) with leading behaviour

Υ = ϵ′
U4,123X23X34

X13J2
4,23

[
z1 − z̄1

2

z3 − z̄3
2

√
w1(1− w1)

√
w2(1− w2)

]−1

+O(ϵϵ′). (B.43)

In particular, if we define

degX−∆
4 Zl4W

ℓ
4 := [∆, l, ℓ] =⇒ deg J4,23 = [−1, 1, 0], degU4,123 = [−1, 1, 1], (B.44)

then we find from (B.42) and (B.43) that

deg z2 = [1, 1, 0], deg z̄2 = [1,−1, 0], , degΥ = [0,−1, 1]. (B.45)

This fits directly with the asymptotic behaviour (4.70) of conformal blocks in the bOPE limit.
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B.4 OPE limit factorization of six-point blocks in d = 1 CFT

Let us consider the case of six-point conformal blocks in the comb channel for the d = 1 case. The

conformal blocks for this case have been computed in [36]. To match the convention of that paper, we

will introduce the three cross ratios

χ1 =
x12x34
x13x24

, χ2 =
x23x45
x24x35

, χ3 =
x34x56
x35x46

, (B.46)

which make a complete set of independent cross ratios in d = 1, and we rename conformal dimensions as

∆i = hi , ∆a = h1 , ∆b = h2 , ∆c = h3 . (B.47)

Note that when reducing to d = 1, the Gram determinant relations impose zi = z̄i, and that

χi = zi = z̄i . (B.48)

The one-dimensional six-point conformal blocks can then be written as in [36, equation 2.11]

gh1,...,h6

h1,h2,h3
= χh1

1 χh2
2 χh3

3 FK

[
h12 + h1, h1 + h2 − h3, h2 + h3 − h4, h3 + h65

2h1, 2h2, 2h3

;χ1, χ2, χ3

]
, (B.49)

where the comb function FK can be expressed as

FK

[
a1, b1, b2, a2
c1, c2, c3

;χ1, χ2, χ3

]
=

∞∑

n=0

(b1)n(b2)n
(c2)n

χn2
n!

2F1

[
b1 + n, a1

c1
;χ1

]
2F1

[
b2 + n, a2

c3
;χ3

]
.

(B.50)

It is immediate to see that taking the leading behaviour on the cross ratio χ2, which is the one-dimensional

analogue of z̄2, corresponds to simply setting n = 0 in eq. (B.50), leading to the factorized expression

gh1,...,h6

h1,h2,h3

χ2→0∼ χh2
2

(
χh1
1 2F1

[
h1 + h2 − h3, h12 + h1

2h1

;χ1

])(
χh3
3 2F1

[
h2 + h3 − h4, h3 + h65

2h3

;χ3

])
.

(B.51)

Expression (B.51) is an explicit factorization of six-point conformal blocks into the product of two four-

point blocks, providing an explicit example of equation (4.70) for the one-dimensional case.
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Appendices to Chapter 5

C.1 Map from soC(6) embedding space to slC(4) twistors

We use indices A,B,C = 0, . . . , 5 to label an orthonormal basis in the fundamental representation of

soC(6), and a, b, c = 1, 2, 3, 4 to label a basis in the fundamental representation of slC(4). We saw that

irreducible representations of soC(6) are sections of a line bundle over the space of isotropic flags in C6

Span(X) ⊂ Span(X,Z) ⊂ Span(X,Z,W ) = Span(X,Z,W )⊥ ⊂ Span(X,Z)⊥ ⊂ Span(X)⊥ ⊂ C6, (C.1)

where V⊥ is the orthogonal complement of the vector subspace V ⊂ C6 with respect to the 6-dimensional

metric (ηAB). These sections are equivalent to certain functions F (X,Z,W ) of three vectors in C6 that

are null and mutually orthogonal with respect to the Minkowski metric,

X2 = Z2 =W 2 = X · Z = X ·W = Z ·W = 0 . (C.2)

Said functions must be homogeneous of fixed multi-degree, and invariant under the gauge transformations

that preserve the isotropic flag,

F (X,Z + β10X,W + β20X + β21Z) = F (X,Z,W ) . (C.3)

Depending on the choice of real form of soC(6) (or equivalently the signature of (ηAB)), as well as the

choice of representation, one must either apply reality conditions on some of the X,Z,W or impose

that F is holomorphic in some of the X,Z,W variables. For the reflection positive and integer spin

representations of CFT4, X is real and F is holomorphic in Z,W ∈ C6. In this case, the space of vectors

(X,Z,W ) ∈ R6 × (C6)2 satisfying (C.2) is informally known as embedding space. The gauge constraints

can be explicitly solved by a change of variables

C
(0)
A := XA, C

(1)
AB := (X ∧ Z)AB , C

(2)
ABC := (X ∧ Z ∧W )ABC , (C.4)

such that F (X,Z,W ) = F ′(C(0), C(1), C(2)) for some function F ′.

Similarly, irreducible representations of slC(4) are sections of a line bundle over the space of flags in C4,

Span(Y1) ⊂ Span(Y1, Y2) ⊂ Span(Y1, Y2, Y3) ⊂ C4 . (C.5)

This is equivalent to functions Ψ(Y1, Y2, Y3) of three (arbitrary) vectors in C4. Said functions must also

be homogeneous of fixed multi-degree, and invariant under the gauge transformations that preserve the

flag,

Ψ(Y1, Y2 + c21Y1,W + c31Y1 + c32Y2) = Ψ(Y1, Y2, Y3) . (C.6)

Once again, the gauge constraints can be explicitly solved by the change of variables to gauge-invariant

tensors

Sa := Y1a, Xab := (Y1 ∧ Y2)ab, S̄abc := (Y1 ∧ Y2 ∧ Y3)abc , (C.7)
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such that Ψ(Y1, Y2, Y3) = Ψ′(S,X, S̄) for some function Ψ′. The gauge invariant, anti-symmetric, and

su(2, 2)-covariant tensors (S,X, S̄) are known as twistor variables in the physics literature. Similarly to

the previous case, reality conditions on Y1, Y2, Y3 or holomorphicity conditions on Ψ are required to realize

irreducible representations of real forms of slC(4). In particular, the reflection positive and half-integer

spin representations of CFT4 are realized by imposing that Xab is real and Ψ′ is a holomorphic function

of S and S̄. This follows from the fact that SU(2, 2) is the double cover of the Lorentzian conformal

group SO(2, 4).

More generally, as soC(6) ∼= slC(4), representations of the latter can be mapped to representations of

the former. As a result, there exists a map from homogeneous, gauge-invariant functions on soC(6)

embedding space to homogeneous functions of the twistor variables (C.7). This translates into a map

from the gauge-invariant tensors (C.4) in C6 to the gauge-invariant tensors (C.7) in C4. To determine

explicit expressions, we make use of the chiral Γ-matrices ΓAab defined for example in [21, Appendix B].

If MA
B ∈ soC(6), then there exists L b

a ∈ slC(4) such that

MA
B ΓBab = L c

a ΓAcb + L d
b ΓAad . (C.8)

These Γ-matrices are anti-symmetric, such that we can define their duals with respect to the 4-dimensional

ϵ-tensor,

Γ̄Aab :=
1

2
ϵabcdΓAab . (C.9)

The fundamental identities of the Γ-matrices can also be found in [21, Appendix B]. The Clifford relations

are

Γ̄AabΓBbc + Γ̄BabΓAbc = −2ηABδac , (C.10)

while the contraction identity is

ηABΓ
A
abΓ

B
cd = 2ϵabcd . (C.11)

The map from gauge-invariant tensors in so(1, 5) embedding space to twistor variables is then given by

C
(0)
A = XA =

1

4
XabΓ̄

ab
A , (C.12)

C
(1)
AB = (X ∧ Z)AB =

1√
2
S̄aΓAabΓ̄

bc
BSc , (C.13)

C
(2)
ABC = (X ∧ Z ∧W )ABC =

1

2
√
2
SaΓ̄

ab
A ΓBbcΓ̄

cd
B Sd , (C.14)

C̄
(2)
ABC = (X ∧ Z ∧ W̄ )ABC =

1

2
√
2
S̄aΓAabΓ̄

bc
BΓCcdS̄

d . (C.15)

Here, we defined the dual tensors

S̄a :=
1

3!
ϵabcdS̄bcd, X̄ab :=

1

2
ϵabcdXcd. (C.16)

We can now summarize our nomenclature for various spinning representations of maximal spin depth in

d = 4:

• we call a self-dual (respectively anti-self-dual) representation any function on embedding space that

is a homogeneous polynomial of order ℓ ∈ Z+ in W (respectively a polynomial of order −ℓ ∈ Z+ in

W ). In twistor space, we see that these representations correspond to homogeneous polynomials of

order J ∈ 2Z+ in S and J̄ ∈ 2Z+ with J > J̄ (respectively J < J̄).

• We call a chiral (respectively anti-chiral) representation any function on twistor space that is a

polynomial of order J ∈ Z+ in S (respectively J̄ ∈ Z+ in S̄) with J̄ = 0 (respectively J = 0). In

cases where J (respectively J̄) is an even integer, these coincide with the self-dual (respectively anti-

self-dual) parts of so(4) representations with rectangular Young tableaux of height h1 = · · · = hl = 2

and length l = ℓ = J/2 (respectively l = −ℓ = J̄/2).
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With this map, it is easy to directly relate the MST2-MST2-scalar tensor structures in so(1, 5) embedding

space with those of twistor space:

Xi ·Xj =
1

4
X̄ab
i Xjab = −

1

4
tr X̄iXj , (C.17)

XjkVi,jk = S̄iXjX̄kSi (C.18)

(kı̄j)
2 = (S̄iSj)

2 (C.19)

℧2
ij,k = (SiX̄kSj)

2 (C.20)

℧̄2
ij,k = (S̄iXkS̄j)

2. (C.21)

It is important to note that the squared tensor structures on the left hand side of (C.19), (C.20), (C.21)

are also perfect squares of soC(6) embedding space variables. This means that we can compute 3-point

functions of any half-integer spin fields in our formalism.

C.2 The d-deformation of the MST2-MST2-scalar vertex opera-
tor

C.2.1 Comparison with one-dimensional vertex systems

For all combinations of (d; ∆i; li; ℓi) that yield one-dimensional vertex systems, the Hamiltonian can be

written as

H(d;∆i;li;ℓi) = H̃(γi;νi;α;β) +∆Ẽ(γi;νi;α;β;d) , (C.22)

where (∆i; li; ℓi) ↔ (γi; νi;α;β) is the d-dependent bijection of seven parameters defined in subsection

5.5.3, and ∆Ẽ(γi;νi;α;β;d) is a constant energy shift determined by

∆Ẽ − EEFMV = LEFMV − H̃, (C.23)

with E
(∆i;li;ℓi;d)
EFMV given in C.2.2. Even for the two-dimensional vertex systems d > 4, ℓ1, ℓ2 ̸= 0, we can

obtain a d-dependent, MST2-MST2-scalar Hamiltonian for a one-dimensional system by restricting to

the Y = 0 plane:

H(d>4;∆i;li;ℓ1,ℓ2)(X , ∂X ) := H(d>4;∆i;li;ℓ1,ℓ2)(X ,Y = 0, ∂X , ∂Y = 0) . (C.24)

This d-deformation of the MST2-MST2-scalar operator is qualitatively different from the d = 4 or ℓ2 = 0

cases for several reasons:

1) First, while we can still write the whole operator H(d>4;∆i;li;ℓ1,ℓ2) in (C.26) as an elliptic CMS

Hamiltonian, two of its multiplicities will no longer be linear in the quantum numbers — instead

m1,0 =
7− d
2
− (l1 + l2)−∆3 − 2

√(
ℓ1 +

d− 4

2

)2

+ 2ℓ2

(
d− 4

2
− ℓ1

)
+ ℓ22 ,

m2,0 =
7− d
2
− (l1 + l2)−∆3 + 2

√(
ℓ1 +

d− 4

2

)2

+ 2ℓ2

(
d− 4

2
− ℓ1

)
+ ℓ22 ,

and the remaining multiplicities are

k(d; ∆i; li; ℓ1, ℓ2) = k(d; ∆i; li; ℓ1, 0) ,

mi,ν(d; ∆i; li; ℓ1, ℓ2) = mi,ν(d; ∆i; li; ℓ1 + ℓ2, 0) , (i, ν) ∈ {3, 4} × {0} ∪ {1, 2, 3, 4} × {1} .

2) Second, there is no choice of α such thatH(d>4;∆i;li;ℓ1,ℓ2) is hermitian with respect to the Gegenbauer

scalar product ⟨−,−⟩α, nor any scalar product with a measure of the form X a(1−X )b, X ∈ [0, 1].
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3) It goes hand in hand with reason (1) that H(d>4;∆i;li;ℓ1,ℓ2 ̸=0) will now exhibit an explicit dependence

on dimension after the reparametrization (∆i; li; ℓi)↔ (γi; νi;α;β), i.e.

H(d>4;∆i;li;ℓ1,ℓ2 ̸=0) = H̃(d>4;γi;νi;α;β). (C.25)

In fact, the generalization of (C.22) to H(d>4;∆i;li;ℓ1,ℓ2 ̸=0) is given by

H(d;∆i;li;ℓi) = H̃(γi;νi;α;β) + (d− 4)(α− β − 1)H
(γi;νi;α;β)
def (X , ∂X ) + ∆Ẽ(γi;νi;α;β;d) , (C.26)

where

H
(γi;νi;α;β)
def (X , ∂X ) =4X (1−X )2∂2X

+ 2(1−X ) [(ν1 + ν2 − 1)X − (ν1 + ν2 + 1)− 2α− 2iγ3] ∂X + 4ν1ν2X

+
1

4X
(
4 (γ1 − γ2)2 + (2α+ 2iγ3 + 2ν1 + 2ν2 + 3)

2
)
,

is the d ̸= 4 deformation, and ∆Ẽ(γi;νi;α;β;d>4) is also a constant obtained from

∆Ẽ − EEFMV = LEFMV − H̃ − (d− 4)(α− β − 1)Hdef . (C.27)

C.2.2 The constant shift for the CMS Operator

In section 5.5 (more specifically Eq. (5.147)), we determined the Hamiltonian of all one-dimensional

vertex systems in terms of the CMS operator LEFMV up to a constant shift EEFMV. This was generalized

in the previous section to H(d̸=4;∆i;li;ℓi ̸=0)(X ,Y = 0, ∂X , ∂Y = 0) with generalized CMS multiplities that

are no longer linear in the dimension and quantum numbers. In all of these cases, the constant shift in

the Hamiltonian is given by

H(d;∆i;li;ℓi)(X , ∂X ) = LEFMV(X , ∂X ) + E
(d;∆i;li;ℓi)
EFMV . (C.28)

To write out EEFMV explicitly, we make use of the previous change of variables to (γi; νi;α, β) and expand

the dimension around d = 4, β = 0, and α = 0, i.e.

d := 4 + 2ε, EEFMV :=

4∑

m=0

εmE
(m)
EFMV, E

(m)
EFMV :=

3∑

n=0

βnE
(m,n)
EFMV, E

(m,n)
EFMV :=

4∑

p=0

αpE
(m,n,p)
EFMV .

The simplest coefficients are at the highest order in each of the three expansion parameters,

E
(4)
EFMV = −128/3, E

(3)
EFMV =

64(β − α)− 1856

3
, E

(2,2)
EFMV = 32,

E
(1,3)
EFMV = E

(0,0,4)
EFMV = −16, E

(0,3)
EFMV = 8(1− 2α).

The next highest order terms are also relatively simple,

E
(2,1)
EFMV =

64(α− 3iγ3) + 896

3
, E

(1,2)
EFMV = 16(2iγ3 + α− 2), E

(1,0,2)
EFMV = 16(15 + 6ν1 − 2ν2),

E
(0,1,2)
EFMV = 8(1 + 8ν1 − 8ν2), E

(0,0,3)
EFMV = 80ν2 − 176ν1 − 16iγ3 − 64.

We can then write all terms at O(ε, β) as

E
(1,1)
EFMV =56ν1(ν1 −

12

7
α− 1) + 8ν2(ν2 + 4α+ 1) + 16ν1ν2 + 8(4γ21 − 4γ22 + γ23)

− 16iγ3(ν1 + ν2 − 2α) +
688

3
α− 16α2 +

230

3
.

The remaining terms that fit on one line are

E
(0,1,1)
EFMV = −16ν1(2ν1 − 1) + 16ν2(2ν2 + 1) + 16iγ3 + 32(γ21 − γ22 + γ23) +

1120

3
,

E
(0,1,0)
EFMV = 28ν1(ν1 + 1)− 4ν2(ν2 + 1)− 8ν1ν2 + 8iγ3(ν1 + ν2 +

3

2
)− 4γ23 + 16(γ22 − γ21)−

347

3

E
(0,0,2)
EFMV = 60ν2(ν2 +

31

15
)− 124ν1(ν1 + 1) + 88ν1ν2 + 4iγ3(1− 2ν1 − 2ν2) + 60γ23 − 32(γ21 + γ22) + 183.
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Finally, we have

E
(1,0,1)
EFMV =56ν21 − 8ν22 − 16ν1ν2 −

1208

3
ν2 −

1928

3
ν1

+ 16iγ3(ν1 + ν2 +
3

2
)− 8γ23 + 32(γ22 − γ21)−

278

3
,

E
(1,0,0)
EFMV =

856

3
ν1(ν1 + 1)− 616

3
ν2(ν2 + 1) + 16ν1ν2

+ 16iγ3(ν1 + ν2 −
3

2
)− 616

3
γ23 +

544

3
γ22 −

928

3
γ21 −

4874

3
,

E
(0,2)
EFMV =16α (−α+ ν1 + ν2 + iγ3 + 2) + 12ν1(ν1 + 1) + 12ν2(ν2 + 1) + 8ν1ν2

+ 4iγ3(2ν1 + 2ν2 + 3) + 59,

along with

E
(0,0,1)
EFMV =16ν32 − 240ν31 + 52ν22 − 364ν21

+ 48ν1ν2(ν1 + ν2 + 104) +
2168

3
ν1 −

1352

3
ν2 + 4iγ3(3 + 2ν1 + 2ν2)

+ 4γ23(13 + 28ν1 − 4ν2) + γ21(32ν1 − 96ν2)− 32γ22(1 + 3ν1 − ν2) + 64iγ1γ2γ3 +
899

3
,

and

E
(0,0,0)
EFMV =4ν42 − 60ν41 + 8ν32 − 120ν31 + 24ν21ν

2
2 +

1084

3
ν21 −

724

3
ν2(ν2 + 1) + 28ν1ν2 +

1276

3
ν1

+ 16iγ1γ2γ3(1 + 2ν1 + 2ν2)− 2γ43 − 64γ21(γ
2
1 − γ22)

− γ23
(
751

3
+ 56γ21 − 8γ22 − 52ν21 − 56ν1 + 8ν1 − 8ν1ν2 + 12ν22

)

− γ21
(
1330

3
+ 56ν22 − 8ν21 + 40ν2 − 24ν1 − 16ν1ν2

)

+ γ22

(
766

3
+ 8ν22 − 56ν21 + 24ν2 − 40ν1 + 16ν1ν2

)
.
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