
Geometrical aspects of Amplitudes
and Correlators in N = 4 SYM

Gabriele Dian

A Thesis presented for the degree of
Doctor of Philosophy

Centre for Particle Theory
Department of Mathematical Sciences

Durham University
United Kingdom

October 2022





Geometrical aspects of
Amplitudes and Correlators in

N = 4 SYM

Gabriele Dian

Submitted for the degree of Doctor of Philosophy
October 2022

Abstract: This thesis describes progresses made by the author and collaborators
in the positive geometry description of superamplitudes and the supercorrelators in
planar N = 4 SYM.





Declaration

The work in this thesis is based on research carried out in the Department of Math-
ematical and Computer Sciences at Durham University under the supervision of
Prof. Paul Heslop.

The first part of this thesis aims to introduce the reader to planar scattering amp-
litudes and correlators integrands in N = 4 SYM and to set the conventions used
throughout the text. The second part is based on results obtained in the publications

• G. Dian and P. Heslop, Amplituhedron-like geometries, JHEP 11 (2021) 074,
arXiv:2106.09372 [hep-th] ,

• G. Dian, P. Heslop, and A. Stewart, Internal boundaries of the loop amp-
lituhedron, arXiv:2207.12464 [hep-th] .

No part of this thesis has been submitted elsewhere for any degree or qualification.

Copyright © 2022 Gabriele Dian.
“The copyright of this thesis rests with the author. No quotation from it should be
published without the author’s prior written consent and information derived from
it should be acknowledged.”





Acknowledgements

There are many ingredients that go into a successful PhD, but an indispensable one
is to have good teachers. I will like therefore to start by thanking the people from
whom I learned the most.

My first thanks go to my supervisor Paul Heslop, who guided me through my
studies and taught me the profession of theoretical physicist. Your kindness, respect
and intellectual honesty are qualities that I deeply admire and I hope, thanks to
your example, I will be able to make them my own. I promise you I’ll learn more
about Young tableau.

Computing is knowledge, once told me my undergrad thesis supervisor Raffaele
Resta. I better understand what he meant now that I have experienced how fun-
damental explicit computations are in building our own intuition and unveiling our
naïve preconceptions. But not all interesting computations can be done with pen
and paper and for this the Wolfram Language has been an invaluable tool. I need
therefore to thank Devendra Kapadia for providing me with the programming skills
I didn’t know I terribly needed. Learning something new never felt so natural thanks
to the well-calibrated challenges you proposed to me daily.

During my four years at the Durham department of Mathematical Sciences, I had the
fortune of finding not only stimulating researchers but also many nice human beings.
In particular, I would like to thank Daniele Dorigoni, Arthur Lipstein, Patrick Dorey,
Andreas Braun, Tin Sulejmanpasic, Nabil Iqbal, Iñaki García Etxebarria, Stefano
Cremonesi, Douglas Smith, Magdalena Larfors, Madalena Lemos, Pankaj Vishe,
Matthew Bullimore, Napat Poovuttikul (aka Nick), Federico Carta, Danny Levis,
Connor Armstrong, Teresa Abel, Kieran Macfarlane. Being part of such an vibrant
and friendly research environment taught me a great deal.

A special thank goes to Davide Polvara, for his spirit of playfulness which made
all the steps we took together from the beginning to the end of this journey light
and joyful, Dario Domingo for always being there for me when I needed him, Luigi
Guerrini for all the mornings filled sharing our research and Alastair Stewart for the
long time spent working together on the amplituhedron, for all the shared moments



viii Acknowledgements

of excitement and those of disappointment.

There are many people to whom I own the immense fortune, that is the PhD, to
have been paid to learn and to have concluded my studies successfully. My par-
ents, for making me study, supporting me economically and morally. My graduate
thesis supervisor and co-supervisor Roberto Valandro and Simone Giacomelli. The
SAGEX network and all the people that made it possible, in particular Gabriele
Travaglini, Matthias Staudacher, Paolo Benincasa, Lance Dixon, Zvi Bern, Lionel
Mason, Volker Schomerus, Georgios Papathanasiou, JJ Carrasco, David Kosower,
Jan Plefka, Andreas Brandhuber, Jacob Bourjaily, Johannes Blümlein and Chris
White. The SAGEX ESRs, Manuel Accettulli Huber, Stefano De Angelis, Luke
Corcoran, Nikolai Fadeev, Andrea Cristofoli, Ingrid Holm, Sebastian Pögel, Lorenzo
Quintavalle, Marco Saragnese, Canxin Shi and Anne Spiering, with whom I shared
so many moments of joy and tough challenges.

Part of my PhD has coincided with the coronavirus pandemic, when interacting with
other people was not that easy. So, thanks to David Damgaard, Robert Moerman
and Henrik Munch for all the stimulating talks they organized as part of geometry
and amplitudes journal club, as well as Atul Sharma, Federico Gasparotto and Carlos
Gustavo Rodriguez Fernandez, for taking part with enthusiasm. And thanks also
to my old pals Christian Copetti and Francesco Cianci, always ready to talk about
physics and life.

I will remember these days also as the happy days I lived in the North East. For
the word “happy” would like to thank all the italian-spanish gang, too many to list,
that treated me as an old friend from day one, with a special thought for those
who have left us and those who have just come into the world. A special thanks
to Antonella and Roberto for making me and Barbara feel like living in a paesello
and to Andreas and Kübra for the good wine, good food, good friends and good times.

Finally, thanks again to Paul, Alastair, Dario, Davide and Francesco for reviewing
the manuscript.



De più poderia dir, ma me voi destrigar,
Perchè da vu mi bramo sentirme confutar.

— from Critica del Filosofo Inglese by G. Baffo





This thesis is dedicated
to my life partner

Barbara





Contents

Abstract iii

List of Figures xvii

1 Preface 1
1.1 On the Amplituhedron and positive geometries . . . . . . . . 2

I Review of Concepts 7

2 Planar Integrands in N = 4 SYM 9
2.1 Planar color ordered amplitudes . . . . . . . . . . . . . 9
2.2 Region variables and integrands . . . . . . . . . . . . . . 11
2.3 The Superamplitude . . . . . . . . . . . . . . . . . . 13

2.3.1 The squared superamplitude . . . . . . . . . . . . 15
2.4 Twistors and momentum twistors . . . . . . . . . . . . . 16

2.4.1 Twistors . . . . . . . . . . . . . . . . . . . 16
2.4.2 Momentum twistors . . . . . . . . . . . . . . . 19

2.5 BCFW recursion in supermomentum twistor space . . . . . . . 22
2.6 The supercorrelator . . . . . . . . . . . . . . . . . . 25

2.6.1 Hidden permutation symmetry of Gn,n−4 . . . . . . . 27
2.6.2 The correlator/superamplitude duality . . . . . . . . 28

3 Amplituhedron Basics 31
3.1 Projective Geometry . . . . . . . . . . . . . . . . . 31

3.1.1 The inside of a polygon . . . . . . . . . . . . . . 33
3.1.2 The inside of a polytope . . . . . . . . . . . . . . 36
3.1.3 The Grassmannian . . . . . . . . . . . . . . . . 37

3.2 Superamplitude bosonization . . . . . . . . . . . . . . . 39
3.3 The canonical form . . . . . . . . . . . . . . . . . . 42

3.3.1 The orientation form . . . . . . . . . . . . . . . 42
3.3.2 Multivariate residues . . . . . . . . . . . . . . . 44



xiv Contents

3.3.3 Canonical form definition . . . . . . . . . . . . . 44
3.3.4 Canonical form properties . . . . . . . . . . . . . 45

3.4 The amplituhedron . . . . . . . . . . . . . . . . . . 50
3.4.1 The amplituhedron and flipping number . . . . . . . . 51

3.5 Correlahedron and squared amplituhedron . . . . . . . . . . 52
3.5.1 Correlator potential as a differential form . . . . . . . 52
3.5.2 The correlahedron geometry . . . . . . . . . . . . 53
3.5.3 Light-like limit in the Grassmannian . . . . . . . . . 54
3.5.4 The squared amplituhedron . . . . . . . . . . . . 55

II Loop Amplituhedron and Squared Amplituhedron as
WPGs 57

4 WPGs and Internal Boundaries 59
4.1 Two loop maximal cuts and internal boundaries . . . . . . . . 62
4.2 Generalized Positive Geometries and WPGs . . . . . . . . . 65

4.2.1 Generalised Positive Geometry and its Canonical Form . . 66
4.2.2 Weighted Positive Geometry and its Canonical Form . . . 69
4.2.3 Tilings of WPGs . . . . . . . . . . . . . . . . 73

4.3 GCD algorithm and explicit characterisation of GPGs / WPGs . . 74
4.4 Conics and internal boundaries . . . . . . . . . . . . . . 79
4.5 Summary . . . . . . . . . . . . . . . . . . . . . . 81

5 Loop-Loop Cuts 83
5.1 All-in-one-point cut . . . . . . . . . . . . . . . . . . 85

5.1.1 Three-loop all-in-one-point cut . . . . . . . . . . . 86
5.1.2 Geometric all-in-one-point cut . . . . . . . . . . . 88
5.1.3 Higher loop all-in-one-point cut . . . . . . . . . . . 91

5.2 All in one point and plane cuts . . . . . . . . . . . . . . 95
5.2.1 All-in-one-point-and-plane canonical form at 2 loops . . . 96
5.2.2 3-loops all-in-one-point-and-plane canonical form . . . . . 99
5.2.3 All 4-loop point-plane and maximal loop-loop cuts . . . . 100
5.2.4 A cut at arbitrary loop order . . . . . . . . . . . . 102

5.3 Summary . . . . . . . . . . . . . . . . . . . . . . 103

6 Geometry of the Product of Amplitudes 105
6.1 Product of amplitudes in amplituhedron space . . . . . . . . 108

6.1.1 NMHV squared example . . . . . . . . . . . . . . 110
6.1.2 Product of multiple amplitudes . . . . . . . . . . . 110



Contents xv

6.2 Amplituhedron-like geometries . . . . . . . . . . . . . . 111
6.2.1 Conjecture: Amplituhedron-like geometries give products . 114
6.2.2 General m amplituhedron-like geometries . . . . . . . 115
6.2.3 Amplituhedron-like geometries: alternative definition . . . 116

6.3 Maximal residues of the squared amplituhedron . . . . . . . . 118
6.4 Proof and checks of the conjectures . . . . . . . . . . . . 119

6.4.1 Equivalence of definitions of amplituhedron-like geometries . 119
6.4.2 On-shell diagrams . . . . . . . . . . . . . . . . 122
6.4.3 Proof of the conjecture at tree-level . . . . . . . . . 124
6.4.4 Proof of the loop level conjecture for f maximal . . . . . 125
6.4.5 Checks of the tree-level general m conjecture . . . . . . 128

6.5 Factorisation of sign flip patterns . . . . . . . . . . . . . 130
6.6 Canonicalizing Cyclicity and Crossing . . . . . . . . . . . 132

6.6.1 Cyclic geometries . . . . . . . . . . . . . . . . 132
6.6.2 Crossing symmetric correlahedron geometries . . . . . . 135

6.7 Summary . . . . . . . . . . . . . . . . . . . . . . 137

7 Outlooks 139

A Spinor Helicity variables 145

B Rational residue forms on rational varieties 147

C Loop-loop cut computations 149
C.1 Three loop internal Boundary and its maximal residues . . . . . 149
C.2 Four loop point-plane boundary geometry . . . . . . . . . . 152
C.3 An all loop point-plane geometry . . . . . . . . . . . . . 154

D Checks on the bosonized product formula 157
D.1 Star product proof for m = 1 . . . . . . . . . . . . . . 157
D.2 Bosonised product checks for m = 2 and m = 4 . . . . . . . . 158





List of Figures

1.1 Examples of the sum of two overlapping WPGs. . . . . . . . . 6

2.1 Region variables associated to the box diagram. The internal region
is colored in blue while the external regions are colored in red. . . 12

3.1 Points in P2. . . . . . . . . . . . . . . . . . . . . . 32
3.2 Illustration of the geometrical interpretation of the sign of the de-

terminants 〈P1P2A
′〉 and 〈P1P2A〉. . . . . . . . . . . . . . 34

3.3 Illustration the projective triangle P1P2P3. . . . . . . . . . . 35
3.4 Example of a 5-point convex and non-convexity configuration. . . 35
3.5 Example an oriented line in P̃2. . . . . . . . . . . . . . . 37
3.6 An oriented square. The square orientation is represented by a spiral,

while the boundary orientation are represented by arrows. . . . . 43

4.1 Two examples of positive geometries obtained by sandwiching a conic
and a straight line. The first, involving a hyperbola, is a multi-linear
geometry whereas the second is not multi-linear, but is still a positive
geometry. . . . . . . . . . . . . . . . . . . . . . . 76

4.2 Region in between a quadric and a plane in projective space . . . 80

5.1 Example of a geometry where the path taken to reach the boundary
is relevant. . . . . . . . . . . . . . . . . . . . . . 83

5.2 A geometrical depiction of the third residue taken when calculating
the three loop all-in-one-point cut. Note the lines that pass through
the points B2 and B3 do not in general lie on the same plane, but
they do not (yet) intersect. . . . . . . . . . . . . . . . 87

5.3 A graphical representation of the two types of residues discussed here.
On the left is an intersection between lines Li and Lj, which we label as
(i, j). On the right is a sliding between the sets of lines Li1 , Li2 , ..., Lin

and Lj1 , Lj2 , ..., Ljm , which we label as (I, J) ≡ (i1i2...ink, j1j2...jmk). 92



xviii List of Figures

5.4 Graphical representation of the four loop all-in-one-point cut labelled
in (5.1.20). The all-in-one-point cut corresponds to drawing a tree
configuration, and collapsing the graph so that only one intersection
point remains. The intersections are given by pairs of intersecting
lines Li, Lj. The slidings are labelled in the order they should be
done, c1, ..., cL−2. Each slide corresponds to moving one intersection
point along a line in the direction dictated by the red arrow until it
meets another intersection point. . . . . . . . . . . . . . 94



Chapter 1

Preface

The amplituhedron is a geometrical object which gives a beautiful intrinsic definition
of the perturbative expansion of planar amplitudes in N = 4 super Yang-Mills
(SYM), allowing for entirely novel expressions for amplitudes to be found. In this
framework, amplitude integrands are obtained as a differential form, called the
canonical form, of the amplituhedron. The boundary structure of the amplituhedron
then encodes the full singularity structure of the integrand. In the last few years
tight relations between scattering amplitudes and geometrical objects called positive
geometries have been uncovered, generalizing the amplituhedron framework beyond
N = 4 SYM.

The main objective of this thesis is to sharpen our understating of the amp-
lituhedron and its canonical form as well as extend this new paradigm to correlators.
This would simultaneously improve our ability to compute physical observables and
possibly illuminate underlying structures in quantum field theory (QFT).

Thesis Outline

The content of this thesis is presented in two parts titled:

• Part 1: Review of Concepts

• Part 2: Loop Amplituhedron and Squared Amplituhedron as WPGs

The first part mainly serves as an introduction to the amplituhedron. We review the
notions of amplitude and correlator integrand and their supersymmetric generaliza-
tion to superfunctions as well as their connection to differential forms and positive
geometries. The second part instead consists of the original work published in [1, 2].
The content of these papers is adapted to be coherent as a whole and sometimes
extended.
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Part 1 contains the following chapters:

• Chapter 2 is an invitation to superamplitudes and supercorrelators in planar
N = 4 SYM. We define the main quantity in which we are interested which is
the color ordered amplitude integrand. We then introduce superamplitudes in
super momentum twistor space and supercorrelators in supertwistor space. We
conclude by formulating the duality between the square of the superamplitude
and the supercorrelator.

• Chapter 3 introduces positive geometries, the canonical form and the funda-
mental mathematical tools to deal with these objects. We then define the
amplituhedron, the correlahedron and the squared amplituhedron.

Part 2 contains the following chapters

• Chapter 4 shows why the loop amplituhedron is not a positive geometry and
how positive geometries can be generalized to weighted positive geometries
(WPG) to include it.

• Chapter 5 explores some boundaries of the loop amplituhedron related to
setting all loop propagators on-shell. Then the canonical form for some special
cases is computed at arbitrary loop order.

• Chapter 6 shows that the squared amplituhedron is a WPG given by the
union of a set of geometries corresponding to products of amplitudes called
amplituhedron-like geometries. Finally, the positroid tiling of the amplituhed-
ron is used to prove that the canonical form of the tree-level MHV squared
amplituhedron corresponds to the square of the superamplitude.

• The thesis ends with the conclusions and an outlook on future work in Chapter
7.

1.1 On the Amplituhedron and positive
geometries

One of the best understood and studied QFTs is N = 4 SYM [3, 4]. The reason
is that, despite the richness of phenomena that it can describe, the Lagrangian is
completely determined by its symmetries, a signal of a hidden simplicity. Moreover,
at the origin of the moduli space, the theory is also conformal invariant which unlocks
all the power of CFT techniques [5]. Nevertheless, it is not straightforward to make
use of the full supersymmetry to compute observables for the simple fact that it is
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not possible to write a manifestly N = 4 supersymmetric off-shell Lagrangian and
therefore to write supersymmetric Feynman diagrams.

This obstacle has inspired many researchers to look directly at the representation
of supersymmetry on (quasi)-physical observables like amplitudes and correlators.
These can be represented as manifestly supersymmetric quantities called superamp-
litudes and supercorrelators on various superspace constructions. Superfunctions
are polynomials in auxiliary Grassmann (anticommuting) variables, which transform
under spacetime and supersymmetry transformations. The coefficients of superamp-
litudes and supercorrelators are then ordinary amplitudes and correlators. Taking
an approach typical in the study of CFT, one can then compute the perturbative
expansion of the latter simply by constraining them with their symmetries and their
analytic properties, like behaviour on singularities and branch points, when studied
for complex momenta [6–8].

Particularly striking is the case of planar N = 4 where amplitude integrands,
that is the amplitude before integrating the loop variables1, can be computed by
a generalization of the BCFW recursion relation [9]. An unexpected outcome of
this investigation was discovering that planar amplitudes in N = 4 turn out to be
invariant under an infinite dimensional group called the Yangian [10], completely
hidden by the Lagrangian description of the theory. The study of this new symmetry
led to discovering a new structure in algebraic geometry, associated with contour
integrals over the Grassmannian, which allows to write the amplitude as a sum
of manifestly Yangian invariant terms [11–13]. At the same time the remarkable
observation was made by A. Hodges that NMHV amplitudes can be thought of as
the volume of certain polytopes in momentum twistor space [14].

In December 2013, N. Arkani-Hamed and J. Trnka published “ The Amplituhed-
ron” and were able to make a connection between contour integrals over the Grass-
mannian and the polytope description of the amplitude, opening new perspectives
and puzzles [15]. The idea is that any n-point superamplitude, where the sum of
the helicities of the scattering particles is equal to n− 2(k + 2), can be mapped to a
volume form2 in the Grassmannian Gr(k, k + 4), that is the space of k-hyperplanes
in k + 4 dimension. In this space, a geometrical object, called the amplituhedron,
can be defined such that its boundary structure encodes all the singularities of the
volume form, characterizing it completely.

Since the original paper, there has been an enormous amount of progress in
understanding various properties of the amplituhedron, such as: its boundary struc-
ture [16–18], relation with Yangian symmetry [19,20], parity [21], its tilings [22–28]

1Amplitude integrands are well defined only in particular cases, see section 2.2.
2A volume form or top form is a differential form of degree equal to the differentiable manifold

dimension.
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and a formal proof of the tree-level conjecture [29]. In particular, in 2017 three
fundamental breakthroughs led to the explosion of new results in the geometrical
description of amplitudes we have been seeing in the last 4 years.

The first is the rigorous mathematical definition of the map between the amp-
lituhedron and the amplitude [30]. This is called the canonical form and all geomet-
ries possessing a canonical form are then called positive geometries. The second is
a characterization of the amplituhedron, proposed in [31, 32] and recently proved
in [33], in terms of an integer called flipping (or winding) number, a topological in-
variant connected to the ordering of the kinematical data once projected down to one
dimension. This picture allowed for a more practical analysis of the amplituhedron
geometry that led among other important results to proving perturbative unitarity
from the amplituhedron [34]. Last but not least is the positive geometry description
of tree-level amplitudes in the massless biadjoint φ3 theory [35], which showed how
supersymmetry and gauge interactions are not a fundamental ingredients for this
type of geometrical structures to appear. This construction has been since then
partially generalized to: massive particles [36], higher polynomial interaction [37–41],
multi fields [42] and loops [43, 44]. Moreover, the ideas presented in these three
seminal papers led to a positive geometry description of tree-level amplitudes in
N = 4 in spinors helicity variables [45], in ABJM theory [46,47], connections to the
CHY formalism [48,49] and cosmological correlators [50].

Crucially for this thesis, in 2017 a geometrical object called the correlahedron
was introduced in [51] and conjectured to be equivalent to the correlator of stress-
energy tensor supermultiplets in planar N = 4 SYM. The correlahedron is not
itself a positive geometry, but evidence was given that it nevertheless possesses a
well-defined volume form that should yield the correlator. Correlators in planar
N = 4 SYM have very direct and surprising connections with scattering amplitudes.
In particular, the square of the superamplitude at all loops can be obtained as a
limit of the tree-level correlator [52–57]. The same limit performed geometrically on
the correlahedron defines a new geometry called the squared amplituhedron, whose
canonical form is thus conjectured to correspond to the square of the superamplitude.

A detailed study of the squared amplituhedron geometry has been carried out
in [1] and represents one of the main topics of this thesis. While the initial aim
was to give further evidence for the correlahedron conjecture, this study led to more
fundamental considerations about the sum and product of superamplitudes in the
positive geometry framework. The challenges with the product in the amplituhedron
space can be summarized as follows:

• Given two superamplitudes with volume forms in Gr(k1, k1 +4) and Gr(k2, k2 +
4), it is not obvious how to obtain the volume form of the product, which is a
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form in Gr(k1 + k2, k1 + k2 + 4).

• Given two amplituhedra, it is not obvious how to derive the geometry of the
product.

The first problem found a concrete answer in formula (6.1.2). The second problem
found a general, but unsatisfactory, answer using the technology of positroids/on-
shell diagrams [58] and a partial but elegant answer for the product of parity conjug-
ate amplitudes. In this case, the geometry is given by a direct generalization of the
amplituhedron to arbitrary flipping number we called amplituhedron-like geometries.
Using on-shell diagrams it is possible to generate a tiling of the amplituhedron and
of geometry of the product. This description is unsatisfactory, both because the
number of tiles grows with the complexity of the amplitude and because it reveals the
boundaries of the single tile, rather than the ones of the final geometry. Nevertheless,
the positroid tiling allowed us to prove that the canonical form of amplituhedron-like
geometries corresponds to the product of amplitudes and to prove that the maximal
squared amplituhedron canonical form gives indeed the sum of products of parity
conjugate amplitudes.

This last statement brings us directly to the subtle point of the sum of canonical
forms and union of positive geometries, which we started to investigate in [1] and
more clearly addressed in [2]. In fact, the squared amplituhedron and, to our
great surprise, the loop amplituhedron are not strictly speaking positive geometries.
Nevertheless, it is possible to express them as a union of positive geometries and
slightly generalize the concept of positive geometry to include them in the definition
as we will briefly illustrate now.

It is easy to show that the canonical form of the disjoint union of two geometries
is equal to the sum of two canonical forms. The union of two geometries instead
can have two outcomes: the two geometries can be disjoint or they can overlap. In
the case where their interiors overlap and the canonical form of the union does not
correspond to the sum of the canonical forms and the two differ by the canonical form
of the intersection. It therefore makes sense to define the union of two geometries
as a region paired with a weight function counting in each point the number of
times the geometries do overlap, together with a sign taking care of orientations as
illustrated in figure 1.1. In [2] we made this intuition precise by generalising what
we mean by a geometrical region by introducing the concept of weighted positive
geometries (WPGs).

So what do these overlappings have to do with the squared amplituhedron and
the loop amplituhedron? In the first case, we have that the squared amplituhedron is
given by almost-disconnected unions of amplituhedron-like geometries, which means
that while the interior of the amplituhedron-like geometry is disconnected they
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1 12

(a) Union of two squares with the
same orientation.

1 -10

(b) Union of two squares with oppos-
ite orientation.

Figure 1.1: Examples of the sum of two overlapping WPGs.

overlap on codimension-2 or higher boundaries. As a consequence, even though the
squared amplituhedron can be described by a WPGs with weight 1 in its interior,
some of its boundaries are given by overlapping unions of geometries and can take
various weights. Even more interesting is the case of the loop amplituhedron. The
latter in fact has a connected interior, but it has nevertheless boundaries given by
almost disconnected unions! Indeed a simple example of these boundaries is given
by points in 3d satisfying z > 0, z + xy > 0, which pictured from below looks like
the following:

This geometry contains a boundary (nearest to the viewer in the above picture)
at z = 0, which is given by xy > 0; two opposite quadrants of a plane. This
2d boundary in turn has a boundary at y = 0, consisting of two 1-dimensional
regions x > 0, x < 0 with opposite orientation. Finally, this 1d region contains a
0-dimensional overlapping boundary at x = 0.

Overlapping boundaries emerge in the loop amplituhedron when, in some sense,
loop-loop propagators are set on-shell. The geometry of these boundaries for a
general amplituhedron has been derived in [2], together with the canonical form at
all loops for one particular class of boundaries in the MHV amplituhedron.

In this thesis, we will review in detail the concepts outlined in this introduction
and give the reader a brief but hopefully fairly pedagogical review of all the mathem-
atical tools needed to understand the results presented in [1,2]. We conclude with a
discussion on possible future directions. Have a good reading!



Part I

Review of Concepts





Chapter 2

Planar Integrands in N = 4 SYM

The aim of this chapter is to give a review of the basics of amplitudes and correlators
in N = 4 SYM to set the stage for the definition of the amplituhedron/correlahedron
and the canonical form. We will start introducing the concepts of planarity and
color ordering, which are essential to define the amplitude integrand. Then, we will
specialize to N = 4 SYM and describe amplitudes and correlators on superspace.
We will introduce supertwistors and momentum supertwistor and we will use them
to rewrite the supercorrelators in a form that makes manifest their superspace
symmetries. We conclude the chapter by presenting the correlator/amplitude duality
whose geometric avatar will be one of the main topics of this thesis.

2.1 Planar color ordered amplitudes

color decomposition, originally derived in the seminal works [59, 60] to study tree
gluon amplitudes, has been key to the computation of scattering amplitudes and to
the study of their analytic properties. Here, we are not interested in deriving how
amplitudes can be decomposed into color ordered amplitudes but rather to explain
the general idea and to highlight its key properties. We will focus on the special
case relevant to the amplituhedron, that is amplitudes appearing in the large N
limit of a U(N) or SU(N) gauge theory with only adjoint particles. Given (T a)j

i the
base elements in the adjoint representation of the relevant Lie algebra, any Feynman
diagram can be written as a product of a function of the kinematics, that is momenta
and polarization vectors, times a sum of products of T traces. Thanks to a series of
iterated identities it is possible to show that an n-point l-loop gluon amplitude M̂n,l

can always be written in the color decomposition form, that is

M̂a1,··· ,an

n,l = gn+2(l−1)

N l
∑

σ∈Sn/Zn

Tr(T aσ(1) · · ·T aσ(n))Mn,l + O
( 1
N

) , (2.1.1)
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where the indices {aσ(1), · · · , aσ(n)} label the color of the external particles, Sn is the
set of all permutations of n objects and Zn is the subset of all cyclic permutations
that preserve the trace. We suppressed the dependence of M̂n,l and Mn,l on momenta
and spin to keep the expression compact. The functions Mn,l are then called color
ordered amplitudes. Notice that because of the symmetry of the trace under cyclic
permutations, Mn,l is cyclic invariant under the permutation of the external data,
that is momenta and spin. First, we want to highlight that if we take the limit
N → ∞ while keeping the so-called ’t Hooft coupling λ = g2N finite, the amplitude
reduces to the leading term of this expansion, which is given by color ordered
amplitudes. Secondly, an important fact is that the color ordered amplitudes can be
computed diagrammatically using some modified Feynman rules. Differently from
the amplitude itself, instead of summing over all diagrams to compute the color
ordered amplitude we have to sum over only cyclically ordered planar diagrams1.
The latter are diagrams for which the external leg terminates on a circle in the order
dictated by the trace factor and propagators do not cross, i.e. the graph must be
planar. The prescription of summing over only planar diagrams comes from the fact
that all non-planar diagrams are subleading in the 1/N expansion and instead all
planar diagrams contribute to the leading term.

As an example, consider the pure YM Lagrangian

L = 1
4TrFµνF

µν , (2.1.2)

with Fµν = ∂µAν − ∂νAµ − ig
2 [Aµ, Aν ] and Aµ = Aa

µT
a. In the Gervais-Neveu

gauge [61, 62], the Lagrangian takes the form

L = Tr
(

−1
2∂µAν∂

µAν − i
√

2g∂µAνAνAµ + g2

4 A
µAνAνAµ

)
. (2.1.3)

External legs are given by the polarization vector as in the amplitudes but without
the color factor. The color ordered amplitudes can then be computed by summing
over all the planar diagrams where the external legs are ordered and with Feynman
rules

= ηµν

p2 , (2.1.4)

= −
√

2(ηµ1µ2pµ3
1 + ηµ2µ3pµ1

2 + ηµ3µ1pµ2
3 ), (2.1.5)

1A planar graph is a graph that can be embedded in the plane, i.e. it can be drawn in such a
way that no edges cross each other.
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= ηµ1µ2ηµ3µ4 , (2.1.6)

where ηµν is the Minkowski flat space metric. The color ordered tree level 4-
particle amplitude, with generic helicity content, will be given by the diagrammatic
expansion

M4,0(g1, g2, g3, g4) =

p1

p2

p4

p3

+
p1

p2 p3

p4

+

p2 p3

p4p1

. (2.1.7)

Finally, following the review [63], the cross section for gluon scattering, or more
generally for particles in the adjoint representation of the gauge group, can be
directly expressed in terms of color ordered amplitudes. Consider a tree level n-point
gluon amplitude M̂n({p1, h1}, · · · , {pn, hn}) where pi and hi are the momenta and
helicities of outgoing scattering particles. The cross section for such process is given
by

dσtree ≈
N2

c −1∑
a=1

|M̂n|2 , (2.1.8)

where the sum is over final-state colors, is given by

dσtree ≈ Nn
c

 ∑
σ∈Sn/Zn

|Mn(σ(1), σ(2), · · · , σ(n))|2 + O(1/N2
c )
 . (2.1.9)

2.2 Region variables and integrands

The tree level amplitude is in general a well defined rational function of the external
kinematics. The loop amplitude integrand instead, that is the expression derived at
loop level using Feynman diagrams before integrating over the loops, is defined up
to a shift of the loop momenta

lµi = lµi + aµ
i , (2.2.1)

where ai is an arbitrary constant. While in general defining the integrand as an
analytic function is an open problem, in the planar limit it can be defined unambigu-
ously using the so-called region variables [64–66]. We will now illustrate how these
variables are defined and how to relate them to the internal and external momenta.
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p1 p2

p3p4

x5x1

x2

x3

x4

Figure 2.1: Region variables associated to the box diagram. The
internal region is colored in blue while the external re-
gions are colored in red.

When a planar graph is drawn with no crossing edges, it divides the plane
into a set of regions, called faces. To any planar graph g we can associate a dual
graph. The latter has a vertex for each face of g and an edge for each pair of
vertices corresponding to adjacent faces. We will call the faces corresponding to
loops internal faces and we will call external faces the remaining ones, that is the
unbounded regions in the external part of the diagram. An example of a 4-point
1-loop diagram is given in figure 2.1.

In an n-particle planar Feynman diagram we have n-external regions. For simplicity,
let’s assume that the external momenta are ordered cyclically as p1, · · · pn . We
start by assigning the four-vector x1 to the face between the external leg pn and p1

and then continue cyclically. Each external leg with momenta pi will correspond to
the boundary between the two regions xi and xi+1. We can then define a relation
between the region variable and the momenta as

sipi = xi+1 − xi , for i < n ,

snpn = x1 − xn . (2.2.2)

where si = ±1 is equal to 1 for incoming particles and −1 for outgoing particles.
More generally, we can define the momentum flowing in any leg as the difference
between the two adjacent region variables, so the momentum q flowing in between
two faces xi and xj can be written as q = xi − xj with i < j. Notice that in the x
variables the momentum conservation at each vertex is trivialized. In particular, for
any values of the x’s, the associated momenta automatically satisfies the external
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momentum conservation, that is
n∑

i=0
sipi =

n∑
i=0

xi+1 − xi = −x1 + xn+1 = 0 . (2.2.3)

We turn our attention now to internal regions. These will be l for an l-loop graph
and we will label them with the variables xi for n < i ≤ n + l. There are different
ways to label internal regions and depending on this choice different functions can be
obtained. We can obtain a unique integrand by simply symmetrising over all possible
labelling. Any l-loop diagram will then correspond in general to l! rational functions.
For example, the double box diagram can be written using region variables as

p4 p1

p3 p2

= 1
x2

14x
2
23x

2
15x

2
25x

2
56x

2
45x

2
26x

2
36x

2
46

+ sym 5 ↔ 6 , (2.2.4)

where x2
i,j = (xi − xj)2. Finally, we would like to remark that one has to remember

that on-shell conditions still apply and read

x2
îi+1 = m2

i , for i < n and n̂+ 1 = 1 . (2.2.5)

2.3 The Superamplitude

Supersymmetry is a transformation that mixes states of different helicity. In N = 4
SYM, its action is described by four complex super charges QAα, Q†

Aα̇, where I
goes from one to four and transforms under an internal SU(4) symmetry called
R-symmetry, while α, α̇ are spacetime spinorial indices. Amplitudes in N = 4
SYM are annihilated by the action of QAα, Q†

Aα̇. A non-trivial representation of
these operators is obtained by considering amplitudes as a function of the on-shell
superspace which we will now describe.

In the on-shell superspace formulation, particle creation operators are dressed
with Grassmann odd variables carrying an R-symmetry index and read

g+ positive helicity gluon
ηAλA positive helicity spinors
ηAηBφAB scalars
ηAηBηCλABC negative helicity spinors
η1η2η3η4g− negative helicity gluon (2.3.1)

Amplitudes involving these dressed states will be a function of the external kinematics
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and the Grassmannian variables η, which together form the on-shell superspace. it
is possible to write compactly all n-particle amplitudes in one object by considering
the scattering of states generated by the on-shell chiral superfield

O = g+ + ηAλA + +ηAηBφAB + ηAηBηCλABC + η1η2η3η4g− . (2.3.2)

In n-particle scattering amplitude each η will carry two indices: an R-charge index,
going from 1 to 4, and a particle index going from 1 to n. The vacuum expectation
value of n on-shell superfields

M(p1, · · · , pn, η1, · · · , ηn) = 〈0|O1(p1, η1) · · ·On(pn, ηn)|0〉 , (2.3.3)

is called the superamplitude. Each coefficient of the η polynomial corresponds to an
ordinary amplitude. The particle content of the coefficient is given by its η degree.
For example, if the degree in ηa is 0, the ath particle will be a positive helicity gluon.
Amplitudes in N = 4 SYM are invariant under the SU(4) R-symmetry group. Any
product of four η’s of the form εijklη

i
aη

j
bη

k
c η

l
d, is an R-symmetry invariant. Therefore,

all η monomials in the superamplitude have an η degree which is a multiple of four.
Amplitudes with the same η degree are related by supersymmetry Ward identities.
It makes sense then to consider polynomials of homogeneous degree separately

Mn = Mn,0 + Mn,1 + Mn,2 + · · · + Mn,n−4 , (2.3.4)

where Mn,k have a uniform 4(k+2) degree in the η’s and is called the NkMHV sector.
If we choose to use spinor helicity variables to represent the kinematic space, the
one-particle on-shell superspace is made by the vectors (|p〉 , |p], ηA), where |p〉 , |p] is
the spinor helicity variable associated to the momentum p as we describe in appendix
A. The action of the supercharges on a function of the n-particle superspace reads

QAα =
n∑

i=1
[pi|α∂ηA

, Q†
Aα̇ =

n∑
i=1

|pi〉α̇ ηA . (2.3.5)

All functions annihilated by Q†
Aα̇ must have a prefactor

δ(8)(q†) = 1
24 q

†
Aα̇q

†Aα̇ = 1
24

4∏
A=1

n∑
i=1

〈ij〉ηiAηjA . (2.3.6)

This prefactor is sometimes called for its behavior under Grassmann integration the
super-momentum delta function. We conclude this section giving the expression of
the simplest amplitude in N = 4; the MHV amplitude. Its expression on superspace
can be derived using the supersymmetric version of the BCFW recursion relation,
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originally derived by Britto, Cachazo, Feng and Witten in [67,68], and reads

Mn,0(|i〉 , |i], ηi) = δ(4)(∑ |i〉 |i])δ(8)(∑ |i〉 ηi)
〈12〉 · · · 〈n1〉

, (2.3.7)

where δ(4)(∑ |i〉 |i]) is the total momentum conservation delta function. From the
superamplitude Mn,0 we can recover the ordinary amplitudes by projection on any
η monomial. In particular, if we project onto the monomial η4

1η
4
2 we get

Mn,0(g−
1 , g

−
2 , g

+
3 , · · · , g+

n ) = 〈12〉4

〈12〉 · · · 〈n1〉
, (2.3.8)

which is the famous Parke-Taylor amplitude [60, 69] originally conjectured by Parke
and Taylor for the n-gluon amplitude in pure YM. The two color ordered amplitudes
are identical because all tree level pure gluon amplitudes in N = 4 SYM are actually
equal YM amplitudes.

For reasons that will be clear later, it is convenient to consider the superamplitude
divided by the MHV tree level amplitude, which we will indicate with the symbol
An. More specifically, for a fixed NkMHV sector we have

Mn,k(xi, ηi) = Mn,0(xi, ηi) × An,k(xi, ηi) . (2.3.9)

In particular we have An,0 = 1.

2.3.1 The squared superamplitude

As with the superamplitude, the product of the full superamplitude (the sum over
all NkMHV sectors) with itself can be written as a superfunction. We refer to this
as the superamplitude squared. Given that the expansion of NMHV sectors of the
superamplitude reads

An =
n−4∑
k=0

An,k , (2.3.10)

the superamplitude squared can be written as

A2
n =

n−4∑
k=0

k∑
k′=0

An,k′An,k−k′ , (2.3.11)

where we stress the fact that these products are between functions of anti-commuting
variables. Each product An,k′An,k−k′ has uniform degree in η equal to 4(k′+(k−k′)) =
4k. Therefore, we can define the superamplitude squared helicity sectors as

(A2)n,k =
k∑

k′=0
An,k′An,k−k′ . (2.3.12)
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At loop level the amplitude is a double sum over MHV degree and loop level:

An =
∞∑

l=0

n−4∑
k=0

∫
dµl An,k,l . (2.3.13)

Here the amplitude An,k,l is symmetric respect to the loop variables {AB1, · · · , ABl}
and we define the integration measure as weighted by 1/l! compared to l copies of
the 1-loop measure:

dµl[(AB)1, .., (AB)l] := dµ1[(AB)1]..dµ1[(AB)l]
l! . (2.3.14)

Then when we take the square of the amplitude we obtain

A2
n =

∞∑
l=0

n−k∑
k=0

l∑
l′=0

k∑
k′=0

∫
dµl′dµl−l′An,k′,l′An,k−k′,l−l′ :=

∞∑
l=0

n−k∑
k=0

∫
dµl (A2)n,k,l .

(2.3.15)

Thus by the NkMHV l-loop squared amplitude we mean

(A2)n,k,l =
l,k∑

l′=0,k′=0

 l
l′

An,k′,l′An,k−k′,l−l′ . (2.3.16)

The numerical factor arises from matching the measures
∫
dµl′dµl−l′ = ( l

l! )
∫
dµl.

Note however that we have not specified the distribution of the l loop variables
between the two factors An,k′,l′ and An,k−k′,l−l′ . The most natural choice is to have a
completely symmetric distribution in which case there are exactly ( l

l! ) inequivalent
ways to do this and the squared amplitude simply sums over all these inequivalent
distributions (2.3.16).

2.4 Twistors and momentum twistors

As we already mentioned, N = 4 SYM at the origin of the moduli space is a
superconformal quantum field theory (SCFT). This means that it is a supersymmetric
theory invariant under the conformal group, which is composed by the Poincaré
transformations plus the special conformal transformations and dilatation. Here we
will see how to linearise the action of the superconformal group in spacetime and
the dual superconformal group in momentum space.

2.4.1 Twistors

Famously, the action of the conformal group can be linearised using a a set of
variables called twistors, originally introduced by R. Penrose [70] to describe flat
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Minkowski spacetime. One way to approach twistor is through the so-called embed-
ding formalism, originally proposed by Dirac in [71] . We start by observing that
the four dimensional conformal group is isomorphic to SO(2, 4) which is also the
Lorentz group of 6d flat spacetime with signature (−,−,+,+,+,+). So, if we find
an embedding of 4d Minkowski spacetime in 6d, the non-linearity of the conformal
group will emerge from the composition of the 6d Lorentz group with the projection
from 6d to 4d.

Such embedding can be obtained by considering all XI , with I = 1, · · · , 6, such
that

X ·X = 0 . (2.4.1)

Moreover, we will consider the equivalence class X ≡ tX, that is we consider X as
elements of the projective space P5. Readers unfamiliar with projective space could
benefit from reading the first part section 3.1 before continuing. This constraint
together with the equivalence class relation lower the degrees of freedom of X from
6 to 4. We can choose a reference 6-vector I and write distances in Minkowski
spacetime as

x2
ij = (Xi −Xj)2

(I ·Xi)(I ·Xj)
= −1

2
Xi ·Xj

(I ·Xi)(I ·Xj)
. (2.4.2)

Note that x2
ij is invariant under the rescaling of Xi or Xj, so it is a well defined

function in P5. The −1/2 factor can be absorbed in the definition of I and for
this reason is absent in some equations in the literature. Now we want to spinorise
X. This means to contract X with the 6d Clifford algebra elements, which we will
indicate as ΓIJ

a with a = 1, · · · 6 and I, J = 1 · · · , 4. We will define therefore

XIJ = XaΓIJ
a , (2.4.3)

where XIJ is called the twistor line2.
A twistor line XIJ is anti-symmetric in the indices IJ and therefore it can be

written as
XIJ = XI

aX
J
b ε

ab , (2.4.4)

where X1, X2 are two points in P3 called twistors. We have therefore, that a point
in Mikowski space xµ corresponds to a twistor line X in P3 given by the points W
such that

X [IJWK] = 0 . (2.4.5)

2We use the symbol X to indicate the twistor hoping that is nature of twistor, 4-vector or dual
coordinate will be clear from the context.
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We can spinorise also the reference vector I, for which we will use the same
symbol, so that, dropping the 1/2 factor, (2.4.2) becomes

x2
ij = 〈XiXj〉

〈IXi〉〈IXj〉
, (2.4.6)

where the function 〈· · ·〉 indicates the determinant of the matrix made by the elements
contained in the argument. In this case 〈XiXj〉 = εABCDX

AB
i XCD

j and 〈IXj〉 =
εABCDI

ABXCD
j . This spinoral version of I is usually called the infinity twistor. The

complexification of the conformal group corresponds to SL(4). This implies that
the numerator in (2.4.6) is conformal invariant, since the determinant is an SL(4)
invariant function, while the denominator is not since I does not transform under
the action of the conformal group. An important fact is that the determinant is
the generator of SL(4) invariant polynomials and therefore 〈XiXj〉 represents the
building block of conformal invariant functions.

When discussing correlator integrands we will have to deal with loops variables.
For correlators, loop variables have the same degrees of freedom as external variables
and therefore we can represent them using twistor lines as well.

In supersymmetric theories the conformal group is enhanced to the supercon-
formal group. We therefore are interested in generalizing twistors in Minkowski space
to supertwistors [72] in (xµ, θA

α ) Minkowski superspace, which is the space where the
chiral correlator we will define in section 2.6 is defined. Before doing this, we first
take a step back and define twistors in an alternative but equivalent way from which
their supersymmetrization will be more obvious.

We start by associating xµ
i to the 2 × 2 matrix

xȧb = σȧb
µ x

µ , (2.4.7)

as is usually done when introducing spinor helicity variables. Differently from
massless momenta, in this case the matrix xȧb is not degenerate, since for generic x
det(x) = ||x||2 6= 0. Any 2 × 2 matrix can be then written as

xȧb = |x〉ȧ
s [x|sb = |x〉ȧ

1 [x|1b + |x〉ȧ
2 [x|2b . (2.4.8)

This construction is completely analogous to the massive spinor helicity formal-
ism [32], where one spinorises the momenta pµ with p2 = m2. Notice that this
relation is invariant under a SU(2) transformation of the index s and the rescaling
|x〉s → t |x〉s , |x]s → t−1|x]s. This means that the pair (|x〉s , |x]s) is equivalent to
(M s′

s |x〉s′ , (M−1)s′
s |x]s′), where M ∈ GL(2). To check the degrees of freedom, we

can choose representatives such that |x〉ȧ
s = 1ȧ

s , from which we see that the pair of
spinors have 4 d.o.f. as expected. Then, we can define a map between xȧb to the
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spinors |µ]s as

[µx|sb = 〈x|sȧxȧb . (2.4.9)

The inverse of (2.4.9) is simply given by the fact that x has non vanishing determinant
and therefore it is invertible. The related twistors are then defined as two vectors
XI

1 , X
J
2 , where their four components correspond to(

X1
s X2

s X3
s X4

s

)
=
(
|x〉1

s |x〉2
s |µx]1s |µx]2s

)
. (2.4.10)

Notice that [µx|s scales with the complex little group as 〈x|s. Therefore, for complex
momenta, the twistors are defined up to a rescaling

XI
s ∼ λsX

I
s with λs 6= 0 , (2.4.11)

which means each twistor has 3 degrees of freedom and is an element of P3. Moreover,
the two twistors are defined up to a GL(2) transformation and therefore the GL(2)
invariant object we should consider is the twistor line XIJ = XI

aX
J
b ε

ab, as in the
embedding space derivation.

To extend twistors to supertwistors, consider now points in the N = 4 chiral
superspace (xµ, θA

α ), where θ is a Grassmannian variable associated to the QA
α super-

symmetry generator in the coset construction. Using the notation xȧb
i = |i〉ȧ

s |i]sb we
can define a pair of new Grassmann variables for each θi as

χa
s,i = 〈isθA

i 〉 . (2.4.12)

Notice that consistently χA
s,i transforms under the SU(2) gauge as the twistor XI

s,i .
A supertwistor is then defined as

Xs,i =
Xs,i

χs,i

 ∈ C(4|4)/GL(1) , (2.4.13)

where C(4|4)/GL(1) indicates that the first 4 components are bosonic defined up to
rescaling and the second 4 components are anti-commuting variables. The super-
twistor line Xi is then defined as

X IJ
i = X I

a,iX J
a,iε

ab , X IJ
i ∈ C2×(4|4)/GL(2) , I, J = 1, .., 8 . (2.4.14)

2.4.2 Momentum twistors

In section 2.2 we saw how planar amplitudes can be rewritten in terms of dual
variables xµ. We can also define the equivalent of the dual variables xµ for the
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Grassmann variable η as

|θiA〉 − |θi+1,A〉 = |i〉 ηiA . (2.4.15)

Beware that θ in this case has nothing to do with the Minkowski superspacetime θ
and we use the same symbol suggestively in light of the variable identification that
occurs in the amplitude/correlator duality. Amplitudes written in these variables
are invariant by definition under translations xµ

i → xµ
i + aµ and supertranslations

|θiA〉 + |φA〉 . As we just did for translation, one can consider all the transformations
of the superconformal group represented on the dual coordinates space, like it were
the ordinary spacetime. This group is called the dual superconformal group [73, 74].
Surprisingly, one finds that superamplitudes stripped (divided) by the MHV tree-
level amplitudes, which we indicated as An,k in (2.3.9), are dual superconformal
invariant3. Moreover, superconformal symmetry together with dual superconformal
symmetry generates an infinite dimensional algebra known as the Yangian [10]. One
can then prove that the stripped amplitudes are invariant under the dual conformal
group exploiting the duality between amplitudes and (super-)Wilson loops [76–80],
some aspects of which we will describe in detail later in this thesis.

Dual coordinates xµ
i transform like spacetime four-vectors under the dual con-

formal group with the extra constraint p2
i = (xi+1 − xi)2 = 0 for xi with i ≤ n.

We can represent each xµ
i using twistors xAB

i , just this time we are in momentum
space. The constraint p2

i translate to the constraints x2
ii+1 = 〈xixi + 1〉 = 0, which

geometrically means that the line xi intersects the line xi+1. We can name the
intersection point as

zi = Xi ∩Xi+1 . (2.4.16)

The variable zi will be the unconstrained elements of P3 and are called momentum
twistor variables and their super symmetric extension super momentum-twistors
[12,14] . We can fix the GL(2) gauge such that

zi = X2,i = X1,i+1 . (2.4.17)

The action of the dual superconformal symmetry is linear on the Xs and as a
consequence also on the zs.

To extend momentum twistors to super momentum-twistors, we can consider the
Grassmannian equivalent of dual coordinates θA

αi, that are defined by the relation

θA
αi − θA

α(i+1) = |i〉α η
A
i . (2.4.18)

3The actual superamplitude is invariant under a similar group, where special conformal trans-
formations are shifted by a constant term [75].
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Then we define the super momentum-twistors Grassmann variables as

χA
i = 〈iθA

i 〉 = 〈iθA
i+1〉 , (2.4.19)

which is the equivalent of (2.4.12).Super momentum-twistors are then defined as

Zi =
zi

χi

 ∈ C4|4 , i = 1, .., n , (2.4.20)

where C4|4 indicates that the first 4 components are complex numbers and the last 4
components are Grassmann odd variables. The advantage of using super momentum-
twistors is that the dual superconformal group generators are particularly simple
and read

GI
J =

n∑
i=1

ZI∂ZJ . (2.4.21)

The complexification of the group generated by GI
J for I, J ≤ 4 corresponds to the

complexified conformal group SL(4). The only invariants of the special linear group
are determinants. Four momentum twistors can be stacked together to form a 4 × 4
matrix whose determinant we indicate with

〈zizjzkzl〉 = 〈ijkl〉 = det(zi, zj, zk, zl) . (2.4.22)

These brackets provide the building blocks of the χ-independent part of the amplitude.
In particular, we can use (2.4.6) to write the denominator of propagators as

x2
ij = 〈(i−1)i(j−1)j〉

〈I(i−1)i〉〈I(j−1)j〉 , (2.4.23)

where I =
( 0 0

0 0
1 0
0 1

)
. Notice that in this expression the numerator is dual conformally

invariant, while the denominator is not. We can say then that a function of mo-
mentum twistor is dual conformal invariant if it can be written in an infinity twistor
free form. This is of course the case for An,k which we said is dual superconformal
invariant.

Due to dual conformal invariance, we can write any superamplitude An,k purely
as a function of momentum super-twistor, without the need of the infinity twistor I.
We have seen that dual conformal building blocks are given by the brackets 〈zizjzkzl〉,
but what about the χ dependent dual superconformal building blocks? In the next
part of this thesis, we will see that they have an elegant representation in terms of
bosonized super momentum-twistors. This formulation gives a new perspective for
the superamplitude that will allow us to interpret the amplitude as a differential
form on the Grassmannian.
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Finally we discuss how to represent loop integrands. Starting from the dual
variable xi for i > n, it is clear that this can be represented exactly as the twistors.
In the literature, the twistor of the variable xi is written as AiBi. The denominator
of the propagators adjacent to an internal region of the dual graph will be given by

x2
ij = 〈AiBi(j−1)j〉

〈IAiBi〉〈I(j−1)j〉 for i > n and j ≤ n ,

x2
ij = 〈AiBiAjBj〉

〈IAiBi〉〈IAjBj〉
for i, j > n .

(2.4.24)

In some cases it is useful to consider loops as the direct momentum space analogue
of supertwistors. We can then write the loop supertwistors as

(
Ai Bi

χAi
χBi

)
.

Amplitude integrands can always be written in a dual conformal form, but loop
level amplitudes need to be renormalized. It turns out that in N = 4 SYM the dual
conformal symmetry is anomalous [81]. Nevertheless, the anomaly coefficient can be
predicted and the amplitude can be factorized in two parts: one which is not dual
conformal symmetric but can be easily predicted and an anomaly free non-trivial
part [82]. So, despite being an anomalous symmetry, dual conformal symmetry,
and more generally the Yangian symmetry, remains a key ingredient for amplitude
computations at loop level.

2.5 BCFW recursion in supermomentum twistor
space

A remarkable achievement of modern amplitude techniques is the BCFW recursion;
an algorithm that allows for the computation of amplitude integrands in a wide
class of massless planar theories. In particular, for N = 4 SYM the recursion can
be written on superspace [83], on supertwistor space [84] and on supermomentum
twistor space [9] even at loop level. In the latter formulation, amplitudes have
a particularly compact form and are manifestly dual conformal invariant. Here
we want to describe the super-BFCW algorithm in supermomentum twistor space
highlighting some of its properties.

Consider a set of constant super momentum-twistors (Z1, · · · ,Zn). We now want
to analyze the analytic properties of Ân,k(w) = 1

w
An,k(Ẑ1(w),Z2, · · · ,Zn), where

Ẑ1(w) = Z1 + wZn, as a function of w. The first observation is that

Resw=0(Ân,k) = An,k . (2.5.1)
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For the global residue theorem we can then write

An,k =
∑

i

Resw=w∗
i

(
Ân,k(w)

)
, (2.5.2)

where the w∗
i represent all the poles of the amplitude, excluding the pole w = 0.

From color ordered Feynman diagrams it is clear that the poles of the amplitude
can only come from either a propagator going on-shell or from w → +∞. Each
residue in (2.5.2) can be then associated with a subset of diagrams contributing
to the amplitude and written in terms of product of lower loop, multiplicity, or
NMHV degree amplitudes exploiting the factorization properties of amplitudes when
a propagator goes on-shell (see section 7.4 of [75] for reference).

The starting point of the recursion is given by the tree-level 5-point NMHV
amplitude A5,1(Z1, · · · ,Z5). The explicit form of A5,1 is completely fixed by dual
superconformal symmetry and cyclicity and reads

A5,1(Z1, · · · ,Z5) = δ4(χ1〈2345〉 + cyclic)
〈1234〉 〈2345〉 〈3451〉 〈4512〉 〈5123〉

, (2.5.3)

where the Grassmannian delta function is defined as

δ4(χ1〈2345〉 + cyclic) =
4∏

A=1
(χA

1 〈2345〉 + cyclic) . (2.5.4)

For general argument (Zi,Zj,Zk,Zl,Zm), the superfunction A5,1 is also known as
an R-invariant and it is indicated as [i, j, k, l,m].

Here, we first give an explicit formula for the recursion and then we will unpack
all the terms in the formula and the notation. The loop level BCFW recursion
relation [9] can be written as

A(L)
n,k = An−1,k(Z1, · · · , Zn−1)+

+
L∑

L′=0

k−1∑
k′=0

n−2∑
j=3

[j−1, j, n−1, n, 1]A(L′)
n−j+1,k′(ZIj , Zj , · · · , Ẑnj )A(L−L′)

j+1,k−k′−1(ZIk
, Z1, · · · , Zj−1)+

+
∫

d4χAd4χB [A, B, n−1, n, 1]A(L−1)
n+2,k+1[Z1, · · · , ẐnAB , ZA, ZB̂] ,

(2.5.5)

where

Ẑnj
= (n−1, n) ∩ (1, j−1, j) , ZIj

= (j, j−1) ∩ (n−1, n, 1) ,
ẐnAB

= (n−1, n) ∩ (A,B, 1) , ZB̂ = (n−1, n) ∩ (A,B, 1) ,
(2.5.6)

and intersections in projective space can be expanded as

(ij) ∩ (klm) = Zi〈jklm〉 − Zj〈iklm〉 . (2.5.7)
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This extremely powerful formula can then be used then to compute all amplitude
integrands at any multiplicity and loop order. The recursion always gives the
amplitude in terms of a product of R-invariants where the Grassmannian components
of the loop are integrated. To make a practical use of this formula we need to
understand how to compute the product of Grassmannian delta functions and how
to integrate out the χAi

, χBi
variables.

The first problem can be solved by writing the Grassmannian delta functions in
the following general form

δm×k(C · χ) :=
m∏

A=1

k∏
a=1

(Ciaχ
A
i ) =

m∏
A=1

(∑
I

〈CI〉
∏
i∈I

χA
i

)
, with I ∈

[n]
k

 ,

(2.5.8)
where here and in the following we will use a short-hand notation I, J etc to represent
an ordered set of particle numbers. We define [n] := {1, 2, ..., n} and then

(
[n]
k

)
to

be the set of all ordered sets of k elements in [n]. Therefore, the term 〈CI〉 =
det(Ci1a, · · · , Cika) represents the maximal minor of the matrix C given by the
columns I = (i1, · · · , ik). It is easy to verify that (2.5.4) can be rewritten in this
new notation as

δ4×1(C · χ) , with C11 = 〈2345〉, · · · , C51 = 〈1234〉 . (2.5.9)

The product of two delta functions can be then written as

δm×k1(C1 · χ)δm×k2(C2 · χ) = δm×(k1+k2)(
C1

C2

 · χ) , (2.5.10)

where
C1

C2

 is the matrix obtained by stacking the two matrices one over the other.

Now we need to understand how to integrate the expression
∫

d4χAd4χBδ
m×k(C ·

χ). The only terms that will survive the integration are the terms in (2.5.8) labelled
by an I containing the indices A,B. Notice that the integral is invariant under
the rescaling of the loop super momentum-twistors. Moreover, the expression is
invariant under an SL(k) transformation on the rows of C. Combining these two

transformations we can rewrite C in the form
C̃ 0

0 12×2

. We will then have

∫
d4χAd4χBδ

m×k(C · χ) =
m∏

A=1

(∑
I

〈C̃I〉
∏
i∈I

χA
i

)
, with I ∈

[n]−{A,B}
k − 2

 .

(2.5.11)
Geometrically, this operation corresponds to projecting C onto the space orthogonal
to the two column-vectors CA, CB.
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2.6 The supercorrelator

In this section, we will describe the correlation functions of the operators in the
stress-tensor supermultiplet T (xµ, θA

α , θ̄
A
α̇ ) in planar N = 4 SYM. This operator is

the half-BPS operator with the lowest conformal weight in the theory and its lower
component in the multiplet is equal to

OABCD
2 := Tr(φABφCD) − 1

4!ε
ABCDTr(φEFφEF ) , (2.6.1)

where the trace is over the color indices and generalize Op := Tr(φp) + · · · , see [85]
for the details of the definition.

The operator O2 has been intensely studied in planar N = 4 SYM for its role in
the AdS/CFT correspondence [86,87] and more recently for its surprising connection
to flat space amplitudes, which have been reviewed this year in [88]. Notice that,
unlike for the amplitude, we don’t need to perform any color ordering procedure
since the correlators we consider do not carry color indices. But we can of course
expand the correlator in the t’Hooft coupling and then expand each term in powers
of 1/Nc as we do for the planar limit of the amplitude. A diagrammatic notion of
non-crossing propagators/planarity is recovered for Feynman diagrams in twistor
space [89].

The two main properties of the perturbative expansion of the supercorrelator
we will focus on are the supercorrelator/superamplitude duality [56, 57] and the
hidden permutation symmetry of the correlator between external spacetime points
and loop variables [90]. We will be using these properties to describe the correl-
ahedron conjecture [51] and to discuss the results presented in [1] on the squared
amplituhedron.

The chiral part of the vector multiplet is conveniently described as a N = 4
superfield

WAB(x, θ, 0) = φAB + 2i
√

2θα[AλB]
α (x) + i

√
2θ[A

α θ
B]
β F

αβ(x) + · · · , (2.6.2)

where φ and λ are the scalar and spinors in the theory as described in (2.3.1), F is the
field strength and the dots stand for non-Abelian terms proportional to the coupling
constant. Remember, the multiplet transforms in the adjoint representation of the
gauge group and is not itself a gauge-invariant operator. The simplest non-trivial
operator we can build out of it is the stress-tensor supermultiplet T , which can be
written as a function of the vector multiplet W as

T ABCD = Tr(WABWCD) − 1
4!ε

ABCDTr(WEFWEF ) . (2.6.3)

Instead of studying directly T we will consider a projection respect to its R-symmetry
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indices. The motivation for doing so comes from observing that T ABCDεABCD = 0,
that it is the field has a direction in which is trivial and we would like to get rid of this
redundancy4. To do so, consider an auxiliary variable yAB = yA

a y
B
b ε

ab. Projecting
O2 respect to y, we obtain

O2(xµ, θ, y) := yAByCDOABCD
2 =

= yAByCD(Tr(φABφCD) − 1
6ε

ABCDTr(φEFφEF )) = yAByCD(Tr(φABφCD) .

(2.6.4)

The introduction of the variable y also has a deeper meaning in the context of
the coset representation of the superconformal group and emerges naturally in the
construction of the so-called analytic superspace [91–93]. It makes sense therefore to
consider the projection of the vector supermultiplet and stress-ternsor multiplet

W (x, y, θ, θ̄) = yABW
AB(x, θ, θ̄) , T (x, y, θ, θ̄) = Tr(W 2) . (2.6.5)

We can now define the chiral correlator as

Gn(x, y, θ) = 〈T (x1, y1, θ1, 0), · · · , T (xn, yn, θn, 0)〉 , (2.6.6)

where we have set all θ̄ = 0. Since the amplitude lives in chiral superspace, setting
θ̄ = 0 is necessary to construct an object for which the correlator/amplitude duality
might hold. Moreover, the full correlator in some cases can actually be reconstructed
from its chiral part [94, 95], so we don’t lose any generality by restricting to the
chiral sector while obtaining simpler formulas.

In the same way the superamplitude can be expanded into NMHV sectors, we can
expand the supercorrelator into NMHV sectors depending of the degree of the Grass-
mannian variables θ. We call Gn,k the NkMHV sector of the correlator. Moreover,
we can then expand on loop orders and define G(l)

n,k as the l-loop contribution to the
Gn,k. The 2 and 3-point correlator do not receive loop corrections and their lowest
component read

G2(x, y) = N2
c − 1

2(4π)2

(
y2

12
x2

12

)
,

G3(x, y) = N2
c − 1

(4π)3

(
y2

12y
2
23y

2
13

x2
12x

2
23x

2
13

)
,

(2.6.7)

where y2
ii+1 = yAB

i yCD
i+1εABCD = 〈yiyi+1〉. The four-point function G4 is the first

4In the SO(6) representation of R-symmetry group this corresponds to the fact that OIJ
2 =

Tr(ΦIΦj) − 1
6 δIJTr(φKφK) is symmetric traceless tensor.
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non-protected quantity. At Born-level the connected correlator reads

G
(0)
4,0 = 2(N2

c − 1)
(4π2)4

4∏
i=1

y2
ii+1
x2

ii+1
. (2.6.8)

The loop integrand G
(l)
4,0 only receives contribution from connected diagrams, since

G2 is exact at Born level, and has been computed in the planar limit up to 10
loops [96–98].

The term G
(0)
n,0 instead, corresponds the Born-level MHV sector; it is known at

all multiplicity and its connected component reads

G
(0)
n,0 = 2(N2

c − 1)
(−4π2)n

n∏
i=1

y2
ii+1
x2

ii+1
+ (Sn − permutations) . (2.6.9)

From now on we will always indicate with G(0)
n,0 the connected correlator. Notice that

differently from the superamplitude, but exactly like the stripped superamplitude An,
the term with the lowest degree in the Grassmann variables in the supercorrelator,
that is Gn,0, has degree zero.

2.6.1 Hidden permutation symmetry of Gn,n−4

The supercorrelator integrand Gn enjoys two permutation symmetries, an Sn among
the n external points on superspace and Sl among the l loops variables on ordinary
spacetime. In [90] it was proven that it is possible to extract all the maximally nilpo-
tent correlators G(l)

n,n−4 from an Sn+l permutation invariant function f (l)(x1, · · · , xn+l)
defined by the equation

f (l)(x) := 1
2

G
(l)
4,0(x, y)

G
(0)
4,0(x, y)ξ(4)(x)

, (2.6.10)

where ξ(4) = x2
12x

2
23x

2
34x

2
14(x2

13x
2
24)2. This property can be proved using the Lag-

rangian insertion method, which also gives a similar, direct relation between G
(l)
n,k

and G
(0)
n+l,k+l described again in [90]. The function f (l) has the following properties:

it ’s conformal invariant, has scaling dimension 4 in all xi, simple poles in all x2
ij and

it is of course permutation invariant. Here we will limit our discussion to the case
of the maximal nilpotent correlator.

We will state the precise relation between f (l) and G(l)
n,n−4 expressing the correlator

as the Grassmann derivative of a potential G. The upshot of this construction is that
the potential will not depend on the auxiliary variables y, which in turn will make the
correlator/amplitude duality particularly easy to apply in practical computations.
Moreover, the potential will be the quantity which conjecturally the correlahedron
represents.
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The potential G is implicitly defined by the relation

Gn(x, y, θ) =
(

n∏
i=1

D4

)
Gn(x, θ) , (2.6.11)

where
D4 = yIJ

i yKL
i ∂θαI

i
∂θβJ

i
∂θK

iα
∂θL

iβ
. (2.6.12)

Notice that Gn,k is defined up to terms killed by the Grassmann derivative. Then,
thanks to the hidden permutation symmetry of the correlator, the maximally nilpo-
tent potential can be expressed at any loop and multiplicity for n > 4 as

G(l)
n,n−4 = 2(N2

c − 1)
(−4π2)n+l

Inf
(n+l) , (2.6.13)

where In is the unique maximal n-point superconformal invariant and reads

In = δ4×(2n−4)(X⊥ · θ) , (2.6.14)

where X⊥ is the (2n − 4) × 2n matrix orthogonal to the 4 × 2n matrix X =
(X1, · · · , Xn), which has the twistor lines as columns.

2.6.2 The correlator/superamplitude duality

The correlator/superamplitude duality can be compactly stated as lim
x2

ii+1→0

Gn,k

G
(0)
n,0

 ∣∣∣∣∣
Zi=Xi∩Xi+1

= A2
n,k , (2.6.15)

or, using the potential G, as(∫ n∏
i=1

d4χ2,i lim
x2

ii+1→0
(
∏

i

x2
ii+1)Gn,k

) ∣∣∣∣
Zi=Xi∩Xi+1

= A2
n,k . (2.6.16)

To make sense of this formula we first have to explain why the limit is finite and in
which sense the left-hand side is dependent on super momentum-twistors.

This limit in (2.6.16), where consecutive x’s become light-like separated, is known
as the polygonal light-like limit, since the x’s can be thought of as the vertices of a
polygon with light-like edges. It is known from the OPE expansion of the correlator
that the latter has simple poles on the region x2

ij = 0, that is limx2
ij→0

(
x2

ijGn(x, y, θ)
)

is finite.
In twistor space the equation (xi − xj)2 = 0 corresponds to

〈XiXj〉 = 〈X1,iX2,iX1,jX2,j〉 = 0 , (2.6.17)

which means that the two lines lie on the same plane (see section 3.1), and therefore
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they intersect on a point which we will suggestively call Zi := Xi ∩Xi+1 . We then
fix the GL(2) gauge such that X2,i = X1,j = Zi. Having xii+1 = 0 for all i means
that all consecutive twistor lines intersect, so we have n intersection points Zi. We
can then generalize this relation to supertwistors defining

Zi := X1,i+1 = Xi ∩ Xii+1 . (2.6.18)

So the operations that we have to perform to obtain An from G∏xii+1 are

• take the limit xii+1 → 0 ,

• fix a gauge such that X2,i = X1,i+1 → Zi ,

• integrate out the Grassmann variables χ2,i .

Notice that in the third step we lower the Grassmann degree of the correlator
potential by 4×n. Therefore, we are left with a Grassmann degree 4(n+k)−4n = 4k
which is consistent with the Grassmann degree of A2

n,k.
The duality (2.6.15) holds both at tree level and for the loop integrand. Loop

variables do not carry any Grassmann degree of freedom and can be straightforwardly
mapped to the loop dual coordinates. In twistors coordinates we then have the
identification

Xi = AiBi , with i > n . (2.6.19)

Notice that the permutation symmetry of the correlator loop variables directly map
to the permutation symmetry of the amplitude loop variables.

For the maximally nilpotent correlator this fairly complex algebraic operation,
thanks to (2.6.13), simply reduces to

A2
n,n−4,l = 2An,n−4,0 lim

x2
ii+1→0

ξ(n)f (n+l−4) , (2.6.20)

where the tree-level MHV amplitude An,n−4,0 is equal to

An,n−4,0 = δ4×k(Z⊥ · χ)∏n
i=1 x

2
ii+2

, (2.6.21)

except for n = 4 where A4,0,0 = 1 by definition and

ξ(n) =
n∏
i

x2
ii+1x

2
ii+2 , with xnn+1 = x1n , xnn+2 = x2n . (2.6.22)

As an example let’s derive the expression of the A2
5,1 = 2A5,1 superamplitude squared

from the correlator. Following (2.6.20), we need the expression f (1). Its expression
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can be found in [98] for example and is given by

f (1) = 1
x2

12x
2
13x

2
14x

2
15x

2
23x

2
24x

2
25x

2
34x

2
35x

2
45
. (2.6.23)

So we have
A2

5,1,0 = 2δ4×k(Z⊥ · χ) 1
x2

13x
2
24x

2
35x

2
14x

2
25
. (2.6.24)

By identifying x2
ii+2 = 〈ii+ 1i+ 2i+ 3〉 and δ4×k(Z⊥ · χ) = δ4(〈1234〉χ5 + cyclic) we

obtain the expression for the 5-point NMHV amplitude we have given in (2.5.3).
Again from f (1) we extract A2

4,0,1 = 2A4,0,1. From (2.6.20) we get the expression

A2
4,0,1 = 2 x2

13x
2
24

x2
15x

2
23x

2
34x

2
14

= 2 〈1234〉2

〈AB12〉〈AB23〉〈AB34〉〈AB14〉
, (2.6.25)

as expected.
As a final remark, the formula (2.6.20) can be specialized to compute A4,0,l

directly using a diagrammatic representation of the terms contributing to f (l) called
f-graphs. So, since f (l) is known for l ≤ 10, we can use the f-graphs to write an
explicit formula for A4,0,l up to ten loops.
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Amplituhedron Basics

We have seen that superamplitudes can be written in a manifestly dual supercon-
formal invariant form and can be computed at any loop order and multiplicity by the
BCFW recursion relation. Surprisingly, even more rich mathematical structures are
hidden in the superamplitude integrand. The superamplitude bosonization in fact
connects the An,k superamplitude to a top differential form on the Grassmannian
Gr(k, k+4), that is the space of affine k-hyperplanes in Rk+4, allowing for completely
different kinds of questions to be asked.

This construction was originally proposed in [14] for NMHV amplitudes, where
the differential form formulation not only proved to be a great tool for the analysis of
the singularity structure of the amplitude but it showed that the latter corresponds to
the boundaries of a particular projective polytope1. The superamplitude bosonization
was then extended to arbitrary amplitudes in [15], where it was conjectured that the
singularities of the amplitude lie on the boundaries of a geometrical object called
the Amplituhedron.

In this chapter, we will review the mathematical tools needed to define and
extract amplitudes from the amplituhedron. We will start by explaining how to
define regions in the Grassmannian, where particular attention will be given to
convex projective polytopes. Then we will talk about how the superamplitude
can be expressed as a differential form on the Grassmannian and computed as the
canonical form of the amplituhedron. We will finish by introducing the correlahedron
and squared amplituhedron.

3.1 Projective Geometry

Projective geometry is an incredibly powerful tool to map complex geometric prob-
lems to elementary linear algebra problems. The basic idea of projective space is

1A polytope is the higher dimensional generalization of a polygon
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Figure 3.1: Points in P2.

that one can represent points in a plane as lines passing through the origin in three
dimensions. As depicted in the image 3.1, this correspondence can be built by fixing
a plane not passing though the origin and considering the intersection between a
plane and homogeneous lines. In general, two points are needed to identify a line
but, since each an homogeneous line is a line passing through the origin, one point
is enough to determine it. In this image, the points are labelled by the Pi. You will
notice that, if one multiplies the coordinates of one of the Pi’s by a constant, the
effect will be to move it along the line it represents. So for example, both P and
3P will be equivalent because they represent the same line. More formally, given a
vector space V , usually called the embedding space, and a field K, the projective
space P(V ) is defined as V −{0} under the equivalence relation P ≡ λP with P ∈ V

and λ ∈ K−{0}. The projective spaces we will consider in this work are the complex
projective space P(Cd+1) with K = C and the real projective space P(Rd+1) with
K = R. We will indicate both with the symbol Pd since often for our purposes the
two spaces will be interchangeable or when it is clear from the context which we are
referring to.

One of the most useful formula in projective space the one that gives the expansion
of a vector on a base in a vector or projective space. These will have many geometrical
applications in particular the computation of the intersection of pairs of hyperplanes.
Consider d+ 1 vectors {w1, · · · , wd+1} in Rd or equivalently on Cd. We would like
first to write wd+1 as

wd+1 = C ·W = c1w1 + · · · cdwd (3.1.1)
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and find an explicit expression for the cs. We start from the trivial identity

εi1···id+1wa1
i1 · · ·wad+1

id+1
= 0 . (3.1.2)

Then we expand this expression as

ε1i2···id+1wa1
1 w

a2
i2 · · · , wad+1

d+1 + · · · + εd+1i2···id+1wa1
d+1w

a2
i2 · · ·wad+1

id+1
= 0 , (3.1.3)

from which, using the definition of the determinant, we can derive that

w1〈w2 · · ·wd+1〉 − w2〈w1w3 · · ·wd+1〉 + · · · +
+(−1)iwi〈w1 · · ·wi−1wi+1 · · ·wd+1〉 + · · · + (−1)dwd+1〈w1 · · ·wd〉 = 0 .

(3.1.4)

We can then solve for any of the wi to derive its expansion as a linear combination
of the other ws. Notice that this formula is invariant under rescaling and therefore
holds also in projective space Pd−1, where it is sometimes called the generalized
Schouten identity.

3.1.1 The inside of a polygon

If the determinant 〈1, · · · , d〉 is equal to zero it means that the d vectors in the
bracket are on the same hyperplane, but what information does it give us if it is
different from 0? Since the vectors can be rescaled, we can set the determinant to
any value different from zero, so the only information we have is that the vectors are
linearly independent. One interesting idea is to be more restrictive and consider half-
lines instead of lines. This amounts to restricting the equivalence relation to P ≡ λP

with λ > 0. This space is called oriented projective space and is sometimes indicated
as P̃d−1. In the space P̃2 for example we can use the function f(A) = sign(〈P1P2A〉),
where P1, P2 and A are points in P̃2, to divide it into a positive, negative and
null region. Figure 3.2 gives a illustration of this function. Asking for multiple
determinant functions to be positive at the same time defines more complex regions
in oriented projective space.

Now we will explore the first way in which the amplituhedron can appear: the
convex polygon. It is in this projective formulation that A. Hodges [14] recognized
that the NMHV amplitude could be represented as the volume of a polytope. Lets
start from the simplest polygon, the triangle.

Consider the set of points Y inside a triangle of vertices {P1, P2, P3} such that
〈123〉 > 0 as illustrated in figure 3.3. Using physics to get some intuition, we can
consider that each of these vertices has a mass ci, and we want to calculate their
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Figure 3.2: Illustration of the geometrical interpretation of the sign
of the determinants 〈P1P2A

′〉 and 〈P1P2A〉.

common centre of mass. The centre of mass will correspond to the weighted average:

Y = c1P1 + c2P2 + c3P3

c1 + c2 + c3
, ci > 0 . (3.1.5)

The centre of mass will always lie somewhere among the three points depending on
the values of the individual masses. It is also clear that we can use two masses to
span the interior of the triangle which is 2 dimensional. Since we are considering the
projective triangle, we can rescale Y, P1, P2, P3 by a positive constant and rewrite Y
as

Y = c1P1 + c2P2 + c3P3 , ci > 0 . (3.1.6)

where the ci can also be expressed explicitly in terms of determinants using (3.1.4),
and read

c1 = 〈Y 23〉
〈123〉

, c2 = −〈Y 13〉
〈123〉

, c3 = 〈Y 12〉
〈123〉

. (3.1.7)

From this expression, we can see that the triangle can also equivalently be defined
as the set of all Y such that

〈Y 23〉 > 0 , 〈Y 31〉 > 0 , 〈Y 12〉 > 0 , 〈123〉 > 0 . (3.1.8)

This projective construction of the inside of a triangle can be generalized in a
straightforward way to the case of polygons. Suppose this time that instead of three
points, we have n points {P1, · · · , Pn} ∈ P2 . Following the center of mass argument,
we can describe the inside of n points as

Y = C · P = c1P1 + c2P2 + · · · + cnPn , ci > 0 , (3.1.9)
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Figure 3.3: Illustration the projective triangle P1P2P3.

Figure 3.4: Example of a 5-point convex and non-convexity config-
uration.

where C = (c1, · · · , cn) is an n-vector and P = (P1, · · · , Pn) is an n× 3 matrix. This
space is also known as the convex-hull of n points. Differently from the triangle, this
time there is a new element coming into play; points can be arranged in different
ways. In the case of a convex polygon, if one takes a line along one of the edges, like
the line P1P2, it is clear that all the other vertices have to lie on the same side of the
line, that is 〈P1P2Pi〉 > 0 for all i > 2. Consider now the two configurations in image
3.4. In the right-hand figure, the points P1 · · ·P5 do not correspond to a convex
polygon and their convex-hull is given by the quadrilateral P1, · · · , P4. The non-
convexity can be detected by the fact that 〈514〉 and 〈513〉 for example have different
signs, therefore B5B1 cannot be the edge of a convex polytope. So, if we have n
ordered points and we want to use them to represent a convex polygon, we must
impose that all 〈ijk〉 > 0 for i < j < k. If we consider the matrix P a

i = (P a
1 , · · · , P a

n )
, where i runs over the number of points and a is the dimension of the embedding
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space, the convexity condition is equivalent to saying that it exists an ordering such
that all the ordered minors of the matrix P are positive. This definition of the
interior of a polygon is highly redundant since we are using n variables to describe
a 2-dimensional region. An alternative definition for the inside of an n-point convex
polygon can be given as

〈Y iî+ 1〉 > 0 , ∀i ≤ n, with Pn̂+1 = −P1 ,

〈ijk〉 > 0 , ∀ i < j < k .
(3.1.10)

The inequalities giving the polytope can then be derived in terms of the 〈ijk〉 brackets
by parametrizing Y as c1P1 + · · · + cnPn obtaining

〈Y iî+ 1〉 = c1〈1iî+ 1〉 + · · · cn〈niî+ 1〉 > 0 . (3.1.11)

The equations 〈Y iî+ 1〉 = 0 gives us the equations of the lines containing the edges
of the polytope.

3.1.2 The inside of a polytope

The generalization of a polygon to higher dimensions is called a polytope. Any
convex polytope can be described as the convex-hull of its vertices. The polytope
with the minimal number of vertices is called a simplex. In d dimension a simplex
has d + 1 vertices. So for example in d = 1 we have a segment, in d = 2 we have
a triangle and in d = 3 we have a tetrahedron. The vertices of an n-point convex
polytope must satisfy

〈i1 · · · id〉 ≥ 0 , ∀ i1 < · · · id ≤ n , (3.1.12)

while its interior can be described as the convex-hull of its n vertices as

Y = c1P1 + · · · cnPn , with ci > 0 . (3.1.13)

In projective space we can always fix one of the ci to 1, so the vector C = (c1, · · · , cn)
has n − 1 degrees of freedom. In the case of a simplex n = d + 1, the positive
coefficients of the vector c are in one to one correspondence with its interior.

It is not hard to see that the facets, that is the codimension-1 boundaries, of
a polytope correspond to the equations 〈Y i1 · · · id〉 = 0 for {i1, . . . , id} such that
〈Y i1 · · · id〉 > 0 for any values of the c parameters. Expanding 〈Y i1 · · · id〉 using
(3.1.13) we obtain

〈Y i1 · · · id〉 =
∑

j 6=i1,··· ,id

cj〈ji1, · · · id〉 . (3.1.14)

Since 0 < cj < ∞, the right hand side is positive only if all the brackets appearing
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Figure 3.5: Example an oriented line in P̃2.

in the sum are positive. We have therefore that the facets of the polygon, written
as inequalities, are given by

〈Y (i1i1 + 1) · · · i d
2
(i d

2
+ 1〉 > 0

− 〈Y i1i1 + 1 · · · i d
2
(i d

2
+ 1)1n〉 > 0

 for d odd ,

〈Y 1i1i1 + 1 · · · i d−1
2

(i d−1
2

+ 1)〉 > 0
− 〈Y i1i1 + 1 · · · i d−1

2
(i d−1

2
+ 1)n〉 > 0

 for d even . (3.1.15)

It can be shown straightforwardly that this set of constraints completely defines
the polytope. However, this is not a completely trivial fact. We will see in section
3.4.1 that the amplituhedron, for example, requires additional conditions to be fully
characterized.

3.1.3 The Grassmannian

Two linearly independent vectors Y1, Y2 span a plane. A plane in the embedding
vector space represents a line in projective space, as it is illustrated in figure 3.5.

If we stack Y1 and Y2 we can form a 2 × d matrix Y I
α =

Y1

Y2

. Notice that two

matrices Y ′ and Y span the same plane, and therefore the same line in projective
space, if there exists a matrix S ∈ GL(2) such that

Y I
α = Sβ

αY
′I

β . (3.1.16)

A line in projective space is therefore defined by a 2 × d matrix Y modulus a
GL(2) transformation. More generally the space of k-planes in Pd−1 is called the
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Grassmannian Gr(k, d) and is given by the space of k × d matrices mod GL(k)
transformations. In a similar way the space of oriented k-planes in P̃n−1 is called
the oriented Grassmannian G̃r(k, d) and is given by the space of k × d matrices
mod GL+(k) transformations. Be aware that the k in k-plane always refers to the
dimension of the plane in the embedding space, so for example a 1-plane corresponds
to a projective point.

One way to parametrize Y is to use the GL(k) symmetry to choose a representat-
ive of the form Y =

(
1k×k, Ak×(d−k)

)
. All the matrix elements of A are independent,

therefore a generic Y ∈ Gr(k, d) has k(d−k) degrees of freedom. This representation
of Y has a clear geometrical interpretation. Notice that writing Y in the gauge (1, A)
is equivalent to

Yα = Zα + aα,d−3Pd−3 + aα,d−2Pd−2 + aα,d−1Pd−1 + aα,dPd , (3.1.17)

which means that Yα lives in the plane (α(d−3)(d−2)(d−1)d). An alternative way to
express this parametrization then is to say that we characterize Y by its intersection
points

Yα = Y ∩ (α(d−3)(d−2)(d−1)d) . (3.1.18)

We can generate all sorts of parametrizations by choosing different planes. The
intersection of homogeneous planes has the desirable property that in d dimensions
a k1-plane always intersects a k2-plane in a (k1 + k2 − d)-plane. If k1 + k2 − d < 0
the two planes in general do not intersect. For example, two lines in P2, that is
k1 = k2 = 2, always intersect in 4 − 3 = 1 homogeneous line, that is a projective
point. The intersection point of two planes P = P1 · · ·Pk1 and W = W1 · · ·Wk1 is
given by the formula

(P ∩W ) = 1
(k1 + k2 − d)!(k2 − d)!ε

i1···ik1Pi1 · · ·Pik1+k2−d−1〈Pik1+k2−d
· · ·Pik1

W 〉 ,

(3.1.19)

which can be straightforwardly derived from (3.1.4). The intersection of two planes
is symmetric. In this formulation, we are writing (P ∩ W ) a k1 + k2 − d-plane on
P but we could have as well written this formula expanding (P ∩ W ) on W . We
would like also to point out that the intersection of two hyperplanes gives a unique
hyperplane in projective space but in oriented projective space instead it gives two
solutions which are equal up to a sign.

Finally, let’s look at yet another way to parametrize Y . The GL(k) invariant
data of Y is given by ratios of Y maximal minors since the latter are SL(k) invariant.
Maximal minors are also called Plücker coordinates. Not all Plücker coordinates
are independent though and their mutual constraints are called Plücker relations.
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Given I = {i1, · · · , ik} a list of k integers such that ij ≤ d, we will indicate with
∆I(Y ) the Y ∈ Gr(k, d) minors involving the columns contained in I. If we fix a
base {P1, · · · , Pd} so that 〈1 · · · d〉 = 1, then the minors of Y can be written as

〈Y PI〉 = ∆Ī(Y )〈PĪPI〉 = sign(I ∪ Ī)∆Ī(Y ) , (3.1.20)

where Ī is the ordered complement of I in 1, .., d and PI = Pi1 . . . Pik
. As an example

of Plücker relations, let’s consider a line Y in P3. Exploiting the same trick we used
to derive the generalized Schouten identities, we antisymmetrize over the six vectors
Y1Y2P1P2P3P4 obtaining

εa1a2a3a4 (Y a1
1 Y a2

2 〈1234〉 + · · · − 〈Y1Y212〉P a1
3 P a2

4 ) = 0 . (3.1.21)

Then, if we contract this expression with Y a3
1 Y a4

2 we obtain

〈Y 12〉〈Y 34〉 + 〈Y 14〉〈Y 23〉 + 〈Y 13〉〈Y 24〉 = 0 . (3.1.22)

Examples of lines in P3 relevant to physics are of course the twistor lines and loop
variables AB in the twistor representation. Plücker relations between the 〈ABZiZj〉
propagator are essential to consider in order to study the analytic properties of the
integrand.

3.2 Superamplitude bosonization

One nice way to deal with the Grassmann odd nature of the superamplitude An,k

is to attach 4k additional Grassmann odd variables φαA, α = 1, .., k, A = 1, .., 4 to
each χ, thus obtain commuting variables Ziα := χA

i φαA [14, 15]

Zi =
zi

χi

 → Zi(χi) =


zi

χi · φ1
...

χi · φk,

 . (3.2.1)

We then rewrite the superamplitude in terms of these bosonised supertwistors Zi.
More precisely we define a map Bk,4 from superamplitudes (functions of n momentum
supertwistor space variables), to bosonised superamplitudes (functions of n bosonised
supertwistors in k+ 4 dimensions together with a single k-plane in k+ 4 dimensions,
Y )

Bk,4 : An,k(Zi) 7→ An,k(Zi, Y ) . (3.2.2)
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The map Bk,4 is defined by insisting that if the bosonised Zs are written in terms
of χ · φ as in (3.2.1), and Y takes the special value Y0 below, then the result is the
superamplitude times the product of all the φs:

An,k(Zi(χi), Y0) = N(k, 4) ×
k∏

α=1

4∏
A=1

φαA × An,k(Zi) ,

Y0 =
04×k

1k×k

 . (3.2.3)

Here N(k,m) is a normalisation factor to be discussed shortly. For now note that as
long as An,k(Zi(χ), Y0) is homogeneous of degree 4k in the χs, then it will inevitably
take the form of the RHS for some function of the χs, An,k(Zi), due to the Grassmann
nature of the φs2.

Since the bosonised χs are obtained as a product of Grassmann odd quantities,
they will satisfy various non-trivial nilpotency relations between them (eg (Ziα)5 =
0) which means that (3.2.3) does not uniquely define the form of the bosonised
superamplitude An,k(Zi, Y0) if we think of it as an ordinary function of complex
variables. However, the claim is that it does have a unique form with a given structure
involving an emergent SL(4 + k) symmetry. In particular, a generic NkMHV-type
dual superconformal invariant can be written in a manifestly SL(4 + k) invariant
form as the product of 4, (k + 4)-brackets3

〈I1〉 〈I2〉 〈I3〉 〈I4〉 , (3.2.4)

where here and in the following we will use a short-hand notation I, J etc to represent
an ordered set of particle numbers. We define [n] := {1, 2, ..., n} and then

(
[n]
k

)
to be

the set of all ordered sets of k elements in [n]. So here Ia ∈
(

[k+4]
k

)
. Any bosonized

superamplitude can we written as a sum of terms of the form (3.2.4) times a rational
function of the ordinary 4-momentum twistors.

Furthermore, 4-brackets involving twistors (2.4.22) can also be promoted to
(k + 4)-brackets of bosonised supertwistors by including the (4+k) × k matrix Y0,
via the identity

〈ijkl〉 = 〈Y0ijkl〉 , with Y0 =
04×k

1k×k

 . (3.2.5)

Then there appears to be a unique way of writing a function An,k(Zi, Y ) which

2Note that the relation is more commonly written in the form An,k(Zi) = N(k, 4)
∫

d4kφAn,k(Z)
which is implied by (3.2.3) but is not as strong, since An,k(Z) could have terms of lower degree in
the φs and still satisfy this integral form.

3In fact, one can always write it as a single bracket to the power of m, 〈I1〉, but it is useful to
consider the more general case.



3.2. Superamplitude bosonization 41

satisfies (3.2.3), and which has manifest SL(4 + k) symmetry.
Let us consider a simple example to illustrate this. The 5 point NMHV super-

amplitude A5,1, whose expression is given in equation (2.5.3). The corresponding
bosonised superamplitude will have the form

A5,1(Zi, Y0) = [12345] := 〈12345〉4

〈Y01234〉 〈Y02345〉 〈Y03451〉 〈Y04512〉 〈Y05123〉
. (3.2.6)

The amplitude A5,1 now manifests fully the SL(k + 4) symmetry if we allow the
symmetry to act on Y0 as well as the Zs. It is also straightforward to check that it
satisfies (3.2.3) with N(1, 4) = 4!. We therefore treat the Zs as projective vectors
in Pk+4, promote Y0 from a constant to a variable Y ∈ Gr(k, k + 4) and study the
analytic properties of An,k(Z, Y ).

We will generalize this construction, as is by now standard, by considering the
momentum twistor dimension and the χs R-symmetry index dimension instead to
be a generic positive integer m rather than 4. Then a generic invariant is expressed
on a k +m dimensional bosonized space and will read

〈I1〉 〈I2〉 . . . 〈Im〉 , (3.2.7)

where Ia ∈
(

[k+m]
k

)
.

It is quite natural to further view the bosonised amplitude as a top form of the
Grassmannian Gr(k, k+m) that Y is an element of. The dimension of Gr(k, k +m)
is mk, so the amplitude will be a 4k differential form on the Grassmannian. This
measure has the covariant form

k∏
a=1

〈Y dmYa〉 , (3.2.8)

where Ya indicates the ath column of Y and 〈Y dmYa〉 := 〈Y
m︷ ︸︸ ︷

dYa · · · dYa〉. Notice that
the measure has weight k(m+k) in Y and thus attaching the latter to the amplitude
it will have weight 0 in the Y s as well as the Zs.

This construction also extends to loops (for m = 4). As we showed in section 2.4.2,
a loop is represented by a pair of bosonised supertwistors (AB) where A,B ∈ C4+k.
Bosonised amplitudes will depend on loops through the brackets 〈Y ABZiZj〉. Its
covariant measure reads 〈Y ABd2A〉 〈Y ABd2B〉. Loop variables always appear in
the same bracket with Y . Therefore they are naturally defined on Y ⊥, that is the
space projecting through Y , and are elements of Gr(2, 4).

Summarising, the bosonised superamplitude An,k,l can be written as a rational
differential form depending on Y ∈ Gr(k, k + 4) and l loop variables which are
lines in Y ⊥ so effectively (AB)i ∈ Gr(2, 4), together with n Z’s in Gr(1, k + 4).
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Remarkably the resulting differential form is the unique canonical form obtained
from a simple geometrical object, the amplituhedron. In the next section, we will
give a brief review of this geometrical formalism.

Finally, we discuss the normalization N(k,m) appearing in the map from super-
space to amplituhedron space (3.2.3). This is present simply due to the combinatorics
involved in extracting the φs from the amplituhedron-type expression. It can be
motivated and derived through the example of the anti-MHV k = n− 4 amplitude.
This has a simple expression in amplituhedron space:

An,n−4(Zi, Y ) = 〈1 · · ·n〉4∏
i 〈Y i(i+ 1)(i+ 2)(i+ 3)〉 . (3.2.9)

But in order for this to give the corresponding superspace expression we need to pull
out the φs, yielding a numerical factor. Explicitly then, for general m, the numerical
factor N(k,m) is fixed by

det(φi · χj)m = N(k,m)
k∏

i=1

m∏
A=1

φiA

k∏
i=1

m∏
A=1

χA
i . (3.2.10)

So form = 1, for example, we don’t have any R-symmetry index and every term in the
(single) determinant contributes the same giving a factor of k!. Taking into account
the re-ordering of the Grassmann variables then gives N(k, 1) = (−1)b k

2 ck!. More
generally, it has been found in [1] by explicit computation that the normalization
coefficients are always consistent with the following expression

N(k,m) = (−1)b mk
2 c(m!)k

k∏
j=1

(m+ j)k−j

jk−j
. (3.2.11)

3.3 The canonical form

In [30] positive geometries and their canonical forms were defined. This definition is
based on two important mathematical concepts: orientation forms and multivariate
residues. We will start by giving a brief review of these topics in the context of
algebraic geometry to then define the canonical form and give some examples.

3.3.1 The orientation form

A manifold M is oriented if it possesses a continuous top differential form O that
is always non-vanishing in M. The orientation is then equivalently defined by this
volume form modulo positive scaling.

Here we would like to review how given an oriented manifold one can derive
the induced orientation of the boundary. Suppose then M has a boundary ∂M of
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1
2

34

x

y

Figure 3.6: An oriented square. The square orientation is repres-
ented by a spiral, while the boundary orientation are
represented by arrows.

codimension one. The orientation O∂ induced by O on ∂M will be the projection
of O on ∂M. We will now define what we mean by projection. To be more explicit,
we can choose a basis of the dual space {dx1, · · · , dxd}, where d is the dimension of
M such that

O = O(x1, · · · , xd)dx1 · · · dxd , (3.3.1)

where the product between the differentials is understood to be a wedge product.
Let the boundary be defined by f(x) = 0 with f(x) > 0 inside and f(x) < 0 outside
the region (at least nearby). Then O∂ is defined simply as

df ∧ O∂ = O|∂M . (3.3.2)

Note that the standard convention in math literature differs by a sign, that is df
represents an outward pointing differential. We make this choice so that the segment
x > 0 with positive orientation form O(x) = dx has orientation O|x=0 = 1.

Let’s look now at some examples and then how to compute df in practice. Con-
sider a square in 2 dimensions as illustrated in fig: 3.6. We choose for our square an
orientation form

ω = dxdy . (3.3.3)

Segment 12 has outward-pointing 1-form df = −dy and so its orientation ω12 will be
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given by

(−dy)(ω12) = ω = −dy dx , (3.3.4)

which implies ω12 = dx.

3.3.2 Multivariate residues

Multivariate residues have been intensely studied in the mathematics literature and
can have different definitions. We are interested in the so-called Leary residues [99].
They have been used in recent amplitudes development to implement generalized
unitarity methods [100–102] and to study the connection between amplitudes branch-
cuts and integrand poles [103–106] and of course in the context to positive geometries.

Multivariate residues are most conveniently defined in the language of differential
forms. Consider a d-dimensional space X and a subspace C of X, defined by the
equation f(x1, · · · , xd) = 0 where f is an irreducible polynomial. If ω is a differential
k-form defined on the complement X − C, then we say that ω has a pole of order n
on C if

ω = df
fn

Ψ + θ , (3.3.5)

where ψ and θ are regular and non-vanishing on S and θ is has at most a pole of
order n− 1 on S. In the special case of a simple pole, that is n = 1, the residue of
ω on C is defined as the restriction of Ψ to the subvariety C

ResC(ω) = Ψ|C . (3.3.6)

In practical computations, we often want to write Ψ|C as a rational differential form
on a patch of C. We explain how to do this when C is a rational variety in B.

3.3.3 Canonical form definition

A positive geometry (PG) is by definition a geometry that has a canonical form,
and both the concept of positive geometry as well as its canonical form are defined
recursively. A D-dimensional positive geometry is defined as the pair (X,X≥0)
possessing a canonical form Ω(X,X≥0) satisfying the following conditions

• X is a complex projective algebraic variety of complex dimension D, known as
the embedding space. In practice for our application the algebraic variety will
be a Grassmannian but the definition is given in this more general setting.

• X≥0, is a closed, oriented, D-dimensional semi-algebraic subset of X(R), the
real slice of X.
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• There is a unique top form Ω(X,X≥0) called the canonical form.

• Every boundary component (C,C≥0) is itself a positive geometry of dimension
D − 1.

• The canonical form has no singularities inside X≥0, but has simple poles on
the boundary. The recursive step is then that the residue of the canonical form
on each boundary component is equal to the canonical form of the boundary
component itself:

ResC (Ω(X,X≥0)) = Ω(C,C≥0) . (3.3.7)

• The recursion is initiated by defining 0-dimensional positive geometries, for
which X≥0 is just a single point and ω(X,X≥0) = ±1 depending on the
orientation.

In the following, we will follow convention and often simplify notation and refer
to the positive geometry simply by X≥0 instead of (X,X≥0).

Note that X≥0 is defined as a semi-algebraic subset of X(R) which itself is a
subset of Pn. A semi-algebraic set is defined by a set of homogeneous real polynomial
equations, p(x) = 0, and inequalities, q(x) > 0. Now inequalities q(x) > 0 are
problematic in projective spaces since homogeneous coordinates are invariant under
x → −x which may flip the sign and change the inequality. For this reason the
prescription is to first define the region in Rn+1/{0} and then project onto Pn to
obtain X≥0.

Apart from the 0-dimensional oriented points, the simplest example of positive
geometries is the oriented segment. The canonical form of the segment from a to b,
that is with orientation O(x) = dx, is

[a, b] = •

a
•

b
, Ω([a, b]) = dx

x− a
− dx

x− b
. (3.3.8)

Then the boundaries are given by f(x) = x − b = 0 and f(x) = x − a = 0 and we
see from (3.3.7) that the point a has canonical form 1 and b has canonical form −1,
which correspond to the sign of the projection of O on those points.

3.3.4 Canonical form properties

The canonical form has a series of fundamental properties that help with its compu-
tation that we would like to highlight.
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Uniqueness

The uniqueness of the canonical form is equivalent to the statement that the algebraic
variety on which the positive geometry lives has geometric genus zero ie has no non-
zero holomorphic volume forms [30]. Since holomorphic forms have no poles, they
could be added to any canonical form to obtain a new canonical form satisfying all
the requirements and thus we would not have a unique canonical form. Conversely,
under the assumption that PG have no holomorphic forms, we can proceed by
induction assuming that the canonical form in d − 1 dimensions is always unique.
Consider two canonical forms Ω1,Ω2 for the same PG. By definition, both forms have
poles only on the boundary components. The residue on a boundary component is
the canonical form of the boundary component, by the recursive definition of the
canonical form. But since by induction we assumed that the canonical form in d− 1
dimensions is unique then we conclude that for any residue Res(Ω1 − Ω2) = 0, and
so Ω1 − Ω2 has no poles and is thus a holomorphic form and so must vanish. We
conclude that Ω1 = Ω2 and so the canonical form is unique.

Opposite orientation

Given two PGs X ′
≥, X≥ that differ only by the orientation, then the two canonical

forms have opposite sign, that is Ω(X ′
≥) = −Ω(X≥). We can prove this statement

by observing that flipping the sign of the orientation also flips the sign of all the
induced orientations down to 0-dimensional boundaries. Therefore, the maximal
residues of the two geometries will have opposite sign. Then, using the same logic
of the proof of the uniqueness of the canonical form, the statement can be proved
by induction.

Cartesian product

Given two PGs X≥, Y≥, the canonical form of the Cartesian product X≥ ⊗ Y≥ :=
{(x, y)s.t. x ∈ X≥, y ∈ Y≥} is equal to the product of the canonical form

Ω(X≥ ⊗ Y≥) = Ω(X≥)Ω(Y≥) . (3.3.9)

This equation holds because the codimension-1 boundaries of X≥ ⊗ Y≥ are given by
the union of the ∂X≥ ⊗ Y≥ and the X≥ ⊗ ∂Y≥ codimension-1 boundaries. Also

Res∂X≥⊗Y≥ (Ω(X≥)Ω(Y≥)) = Ω(Y≥) Res∂X≥ (Ω(X≥)) . (3.3.10)

Using the inductive step Ω(∂X≥ ⊗ Y≥) = Ω(∂X≥)Ω(Y≥), it is then easy to prove
that (3.3.9) holds.

This property allows computing straightforwardly the canonical form of a simplex.
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As we have seen in section 3.1.2, parametrizing Y as Y = P1 + c2P2 · · · cd+1Pd+1 the
inside of a simplex is given by the inequalities c2 > 0 ∧ · · · ∧ cd+1 > 0, which, it
corresponds to a Cartesian product of segments. Therefore its canonical form, which
we indicate with [1, · · · , d+ 1], can be written in these coordinates as

[1 · · · d+1] =
d+1∏
i=2

dci

ci

. (3.3.11)

We can write the canonical form covariantly in terms of determinants as

[1 · · · d+1] = 〈Y ddY 〉〈1 · · · d+ 1〉d

〈Y 12 · · · (d+1)〉〈Y 2 · · · (d+1)1〉 · · · 〈Y (d+1)12 · · · d〉
. (3.3.12)

In particular, the canonical form of a triangle will read

[123] = dc2dc3

c2c3
= 〈Y d2Y 〉〈123〉2

〈Y 12〉〈Y 23〉〈Y 13〉
. (3.3.13)

Union of geometries

The canonical form of the union of positive geometries is a key and subtle property
that will be central to the generalization of the canonical form discussed in the
second part of this thesis.

The union of two completely disjoint positive geometries X1, X2 is itself a positive
geometry and the canonical form is simply the sum of the two canonical forms:
ω(X1 ∪X2) = ω(X1) + ω(X2).

A more interesting case to consider is that of two positive geometries X1, X2

which only overlap on their boundary. Firstly consider the case where they share
a codimension 1 boundary. The union can only form a positive geometry if the
orientations of X1 and X2 agree. If the orientations do agree then the canonical
forms along the common boundary of X1 and X2 will cancel (as it must for this to
be a positive geometry as this will lie in the interior of the union). A simple example
is that of two triangles sharing an edge:

1

43

2 1

43

2

Positive geometry Not a positive geometry (3.3.14)

This can be then generalized to the union of an arbitrary number of PGs. Consider
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a PG X≥0 and a set of PGs X(i)
≥0 tiling X≥0. By a tiling we mean the X(i)

≥0 cover X≥0

with non-overlapping regions, so

X≥ =
⋃
X

(i)
≥0 , (3.3.15)

and the orientations of the tiles match on codimension-1 boundaries. Then the
canonical form of X≥0 is the sum of that of the tiles

Ω(X≥0) =
∑

i

Ω(X(i)
≥0) . (3.3.16)

For this relation to hold true, it is fundamental that X≥ is a positive geometry. In
fact, the union of PGs with matching orientation is not always a positive geometry.
For example, consider a union of two positive geometries sharing a boundary of lower
dimension, for example, two triangles touching at a vertex:

3

2

1 5

4

3

2

1 5

4

Not a positive geometry Positive geometry (3.3.17)

Here the case where the orientations agree is not a positive geometry whereas the
case where they disagree is. To see this let’s consider the canonical forms in the two
cases. The canonical form of a triangle {i, j, k} with standard orientation is

[ijk] = 〈Y d2Y 〉 〈ijk〉2

〈Y ij〉 〈Y jk〉 〈Y ki〉
, (3.3.18)

and thus the canonical form of the union of the two triangles, if it exists, will be
given by [123] + [345] or [123] − [345] in the two cases respectively. In the first case
the double residue corresponding to the residue at vertex 3 is4

Res〈Y 13〉→0
(
Res〈Y 23〉→0 ([123] + [345])

)
= −2 , (3.3.19)

which is different from ±1, 0. In the second case instead, the residue is simply zero.
Double residues at the other points are equal to ±1, 0 since only one triangle at a
time will contribute. Thus only the second geometry is a positive geometry. Note the
difference with the previous case where the orientations had to agree for a positive

4Note that 〈Y 23〉 → 0 ⇔ 〈Y 35〉 → 0.
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geometry, here instead they have to disagree for it to be a positive geometry!

Push-forward

Given two manifold X,Y , the push-forward [107] is a map from the space of differ-
ential forms on X to the space of differential forms on Y . The map φ might not
be injective, but we can break the domain into deg(φ) regions where φ is invertible
and for each region we will have an inverse φ−1

1 , · · ·φ−1
deg(φ). The push-forward of a

differential form ω on Y on a patch (y1, · · · yd) to a patch (x1, · · ·xd) of X is then
defined as

Ψ∗(ω)(y1, · · · , yd) =
deg(φ)∑

i

ω ◦ φ−1
i (y1, · · · , yd) Ji dy1 · · · dyd , (3.3.20)

where Ji is the Jacobian of φ−1
i on (y1, · · · , yd).

Consider two positive geometries X≥ ⊂ X and Y≥ ⊂ Y of the same dimension and
a rational orientation preserving map φ : X → Y . Then, given Ψ∗ the push-forward
from X to Y , the canonical form of Y≥ is given by

Ω(Y≥) = Ψ∗(Ω(X≥)) . (3.3.21)

As an example, consider the map y = φ(x) = x2 . This is rational and has inverse
for x > 0 equal to x = φ−1

1 (y) = √
y and for x < 0 equal to x = φ−1

2 (y) = −√
y.

A segment x > 0 will be mapped by φ to a segment y > 0. These two PGs have
canonical form dx

x
and dy

y
respectively. We can then see that indeed the canonical

form of the segment y > 0 is given by the push-forward of dx
x

through φ

d√
y

√
y

+
d(−√

y)
−√

y
= dy

y
. (3.3.22)

To our knowledge, this property has not been proved in full generality, but it
has been shown to hold in a high number of non-trivial examples, in particular in
the interpretation of the CHY formula [48] as the push-forward between positive
geometries through the scattering equation [35,49]. Moreover, under some technical
assumptions, it was proved that the push-forward commutes with the residue oper-
ation, which is a strong indication that a proof of this property should be indeed
possible.
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3.4 The amplituhedron

The tree amplituhedron An,k is the subspace of Gr(k, k + 4) defined as

tree amplituhedron: An,k(Y ;Z) := {Y = C · Z ∈ Gr(k, k + 4)| C ∈ Gr>(k, n)},
for Z ∈ Gr>(k + 4, n) ,

(3.4.1)

where Gr>(k, n) is the space of oriented k-planes for which all the maximal ordered
minors are positive and is called the positive Grassmannian [108]. The positive
Grassmannian is inherently real and therefore An,k is defined as a region in the real
oriented Grassmannian G̃r(k, k + 4) := Rk×4/GL+(k), that is the space of oriented
k-planes in k+4 dimensions. The amplituhedron is usually then viewed as being the
projection of this onto the (unoriented) real Grassmannian Gr(k, k + 4). However,
we instead find it useful to remain on G̃r(k, k + 4) and view the amplituhedron
directly on this space. This allows for a natural universal orientation for any subset.
The amplitude itself is extracted from the geometry by taking its canonical form
(see section 3.3) and will therefore also initially be defined on the real Grassmannian,
but can be then analytically continued to the complex numbers. This definition of Y
through the matrix C is in general degenerate, that is two different C’s in Gr(k, n)
can correspond to the same Y ∈ Gr(k, k + 4). We can write Y using the C matrix
Plücker coordinates as

Y =
∑

1≤i1<···<ik≤n

det(Ci1 , · · · , Cik
)Zi1 · · ·Zik

, (3.4.2)

where Ci is the i-th column of the matrix C. Using (3.4.2) we can see that the
brackets 〈Y ii+ 1jj + 1〉 are always positive,

〈Y ii+ ijj + 1〉 =
∑

1≤i1<···<ik≤n

det(Ci1 , · · · , Cik
) 〈Zi1 · · ·Zik

ZiZi+1ZjZj+1〉 > 0 ,

(3.4.3)

where we used that Z ∈ Gr>(k+4, n) (3.4.1). Each term in the sum is positive since
it is given by the product of an ordered C minor and an ordered Z minor. The j = n

case is special and one can check that the bracket 〈ii+ 1n1〉 is positive for k odd
and negative for k even. If we consider an amplituhedron for k 6= n− 4, i.e. k not
maximal. The brackets 〈Y ii+ ijj + 1〉 are the only brackets that have a fixed sign
for all Y . This implies that the codimension one boundaries of the amplituhedron
are a subset of the region described by the equation 〈Y ii+ 1jj + 1〉 = 0.
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3.4.1 The amplituhedron and flipping number

In [109] an equivalent, more direct definition of the amplituhedron was given as
a certain subspace of the set of oriented k-planes Y in k + 4 dimensions bounded
by inequalities of the form 〈Y ZiZjZlZm〉 > 0, together with a further topological
condition to be described, but importantly with no reference to the auxiliary positive
matrix C present in the original definition (3.4.1). This definition as been proved
to be equivalent to the original definition first for m = 2 in [110] and then in full
generality for the tree amplituhedron in [33].

At tree-level the alternative definition of the amplituhedron (3.4.1) is as the set

An,k :=

Y ∈ Gr(k, k + 4)

∣∣∣∣∣∣∣∣∣
〈Y ii+ 1jj + 1〉 > 0 1 ≤ i < j − 1 ≤ n− 2
〈Y ii+11n〉 (−1)k > 0 1 ≤ i < n− 1
{〈Y 123i〉} has k sign flips as i = 4, .., n


for Z ∈ Gr>(k + 4, n) ,

(3.4.4)

Here the inequalities 〈Y ii+ 1jj + 1〉 > 0 and 〈Y ii+ 1n1〉 (−1)k+1 > 0 correspond
to the locations of the proper poles of the amplitudes and are sometimes called
proper boundaries. The second set of constraints is that the string {〈Y 123i〉} as
i ranges from 4 to n must change sign exactly k times, although the precise place
where the sign changes is not important. This is a purely topological condition and
〈Y 123i〉 = 0 will not be a physical boundary, unless i = 4, n.

This sign flip constraint is clearly not manifestly cyclic. Cyclicity then de-
mands that if the string {〈Y 123i〉} has k sign flips, then all the strings of the form
{〈Y jj+1j+2i〉} must have the same number of flips. Indeed, an even stronger state-
ment can be proved. If the proper boundary inequalities hold, then all the strings of
the form {〈Y j1j1+1j2i〉} have the same number of flips as i 6= j1, j1 + 1 runs from
j2+1 to j2 − 1 [109].

The loop amplituhedron can also be written in a similar form. The loop variables
in the amplituhedron picture are represented by 2-planes (AB)i living in Y ⊥. The
loop amplituhedron An,k,l is defined as the objects {Y, (AB)1, .., (AB)l}, with Y

belonging to the tree level amplituhedron, and each (AB)i satisfying the following
inequalities

An,k,l :=


Y, (AB)1, ., (AB)l

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Y ∈ An,k

〈Y (AB)jii+ 1〉 > 0, ∀ j, ∀i = 1, ., n−1
〈Y (AB)j1n〉 (−1)k+1 > 0 ∀ j

{〈Y (AB)j1i〉} has k+2 flips as i = 2, .., n, ∀j
〈(AB)i(AB)j〉 > 0 ∀i 6= j


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for Z ∈ Gr>(k + 4, n) ,
(3.4.5)

3.5 Correlahedron and squared amplituhedron

We have seen how dual superconformal invariants can be bosonized and how the
superamplitude and the superamplitude squared can be associated to a differential
form on the Grassmannian. The same can of course be done for superconformal
invariants and in particular for the correlator. Much less is known about the cor-
relator as a form on the Grassmannian compared to the superamplitude and its
geometrical interpretation as a positive geometry is still pretty much an open ques-
tion. A proposal with many compelling features for the geometry of G(0)

n,n−4 was made
in [51] called the correlahedron. Here we will describe the details of the bosonization
of the correlator, the correlahedron geometry and its connection to the squared
amplituhedron.

3.5.1 Correlator potential as a differential form

As we have seen, the maximal nilpotent correlator potential Gn,n−4 is a Grassmann
polynomial of degree 2n−4. All its dependence on Grassmann variables is contained
in the term δ4×(2n−4)(X⊥ · χ). Following the same steps for the bosonization of
super momentum-twistors, we attach 4(2n− 4) additional Grassmann odd variables
φαA, α = 1, .., k, A = 1, .., 4 to each χ, thus obtaining

Xs,i =
Xi

χs,i

 → Xs,i =


Xi

χi · φ1
...

χs,i · φk,

 , (3.5.1)

where we will be using the letter X to indicate both twistors and bosonized super-
twistors. Then we can write the unique maximal superconformal invariant as

δ4×(2n−4)(X⊥ · χ) = 1
N(2n−4, 4)

∫ 2n−4∏
i=1

d4φi〈X1 · · ·Xn〉4 . (3.5.2)

Using (2.6.13), we can then write the bosonized maximal correlator as a differential
form on Gr(2n− 4, 2n) of the form

Gn,n−4 =
2n−4∏
α=1

〈Y d4Yα〉〈X1 · · ·Xn〉4f (n−4) , (3.5.3)
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where we normalized by the (N2
c − 1)/(4π2)n coefficient. We will use the letter G to

indicate both the supercorrelator G(x, y, θ) and the bosonized potential correlator
form G(Y,X) trusting that what we mean will be clear from the context. In this
thesis, we will just discuss Gn,n−4, but clearly any superconformal invariant can be
bosonized as discussed in [51].

3.5.2 The correlahedron geometry

The correlahedron Gn,n−4 is a geometrical object defined in Gr(2n − 4, 2n) and
specified by the inequalities

G := 〈X1 · · ·Xn〉 > 0 , 〈Y XiXj〉 > 0 , for all i < j ≤ n , (3.5.4)

where Xi ∈ Gr(2, 2n) and are equivalent to points in bosonized chiral superspace.
This is a very natural conjecture given the permutation symmetry of the correlator
and given that its codimension one poles are given by the equations 〈Y XiXj〉 = 0.

It is not possible to interpret directly the bosonized correlator as the canonical
form of the correlahedron. One reason is that the correlator form in Gr(2n− 4, 2n)
has double poles, as we will see explicitly in equation (3.5.14) in the context of the
light-like limit of the correlator. On the other hand, it is clear that this description
of the correlahedron geometry is somehow redundant. To see this, we observe
that Gr(2n− 4, 2n) is dual to Gr(4, 2n) that is Y ⊥. So, we can give an alternative
description of the maximal correlahedron as a geometrical object given by the 4-plane
X ∈ Gr(4, 2n), specified by the inequalities

〈XiXj〉 > 0 , for all i < j ≤ n (3.5.5)

where 〈XiXj〉 are the minors of X. This geometry correspond to a region in the
configuration space of 2n points Xs,i in R4. The correlahedron as defined in (3.5.5)
is clearly better described as a region in the configuration space of 2-planes, where
pairs of points X1,i, X2,i are defined up to an SL+(2) symmetry. Each SL(2)+ fix 3
degrees for freedom, so the correlahedron space goes from 4(2n− 4) to 4(n− 4) + n

degrees of freedom.
Similar ideas to reduce the dimension of the geometry have been successfully

used in [51] to compute G5,1 as the canonical form of the correlahedron geometry
and we believe represent a promising avenue for a better definition of correlahedron
and its “canonical form” .
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3.5.3 Light-like limit in the Grassmannian

The correlator amplitude duality (2.6.16) involves two operations, one is multiplying
by ∏i〈XiXii+1〉 and the other is to integrate out the χ2,i Grassmannian degrees of
freedom. In bosonized space the procedure is the same, just we need also to integrate
over φi for i = n+ 1, · · · 2n so that we get

1
N(n, 4)

∫ n∏
i

d4χ2,id4φi+n〈X1 · · ·Xn〉 = 〈X1,1 · · ·X1,n〉4 = 〈Z1 · · ·Zn〉4 , (3.5.6)

as expected. The equivalent operation on the Grassmannian corresponds to taking
residues on all 〈Y XiXi+1〉 = 0 and to make a projection.

We can compute the residue by parametrizing Yp as

Yp = rpZ∗ + σsXs,p + τ sXs,p+1 , for p ≤ n , (3.5.7)

and then taking the limit rp → 0. Notice that every Yp has four degrees of freedom,
so one variable between σ1, σ2, τ 1, τ 2 must be a constant and we will choose one of
the σs. Now we have that

Resrp=0
〈Y d4Yp〉

〈Y XpXp+1〉
=

=
(

Resrp=0
drp

rp

)
〈Y Z∗d3Yp〉

〈Y1 · · ·Yp−1Z∗Yp+1 · · ·Y2n−4XpXp+1〉
= 〈σdσ〉〈dτdτ〉

. (3.5.8)

We can see from this computation how taking the 〈Y XiXi+1〉 = 0 residues effectively
amount to multiply by 〈Y XiXi+1〉. Notice that by taking n residues we obtain
a 4(2n − 4) − n dimensional form but the superamplitude squared An,n−4 form is
4(n− 4) dimensional.

The χ, φ integration procedure corresponds to project on (Y1 · · ·Yn)⊥ and to factor
out a term purely dependent on the Y1, · · ·Yn degrees of freedom. This operation
reduce the degree of the form by 3n and was called in the original paper freeze and
project, where the word freeze indicates that after the projection we fix the (Y1 · · ·Yn)
to be constant.

After projecting, the lines Xi and Xii+1 intersect in a point which will correspond
in the duality to the bosonized momentum twistor Zi. This means that Zi must be
such that 〈Y XiZi∗〉 = 〈Y Xi+1Zi∗〉 = 0, where ∗ indicates an arbitrary vector Z∗. A
solution is given by

Zi = σi ·Xi . (3.5.9)
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In fact, Zi trivially satisfies the first equation and for the second equation we have

〈Y Xi+1Zi∗〉 = 〈Y1 · · ·Yi−1(σi ·Xi)Yi+1 · · ·Y2n−4Xi+1(σi ·Xi)∗〉 = 0 . (3.5.10)

Notice that we can write the solution also as

Zi = τi ·Xi+1 . (3.5.11)

In fact, before projecting, Zi is defined up to a translation by any Yp with p ≤ n

since such contribution is killed in the projection. Using both the equivalent ways
of writing Zi, we can rewrite 〈Y XiXj〉 as a function of the Zi as

〈Y XiXj〉 =

0
〈Y Zi−1ZiZj−1Zj〉
(τi−1·σi)(τj−1·σj)

. (3.5.12)

We can also rewrite 〈X1 · · ·Xn〉 as

〈X1 · · ·Xn〉 = 〈Y1 · · ·YnZ1 · · ·Zn〉∏n
i τi−1 · σi

. (3.5.13)

Therefore, observing that scaling of the Xi contained in the 〈XiXj〉 brackets has
degree 4, we will have that the light-like residue of the correlator projected on
(Y1 · · ·Yn)⊥ can be written as

A2
n,n−4 = Res〈Y XiXi+1〉=0 (Gn,n−4)

∣∣∣
(Y1···Yn)⊥

=

=
n∏

i=1

〈σdσ〉〈dτdτ〉
(τi−1 · σi)2 〈Z1 · · ·Zn〉4

n−4∏
α=1

〈Ŷ d4Ŷα〉f (n−4)(〈Ŷ ZiZi+1ZjZj+1〉) ,

(3.5.14)

where Ŷi = Yi+n. Removing the τ, σ dependent factor we obtain the desired result.
We can also take the so-called non-maximal light-like limit which corresponds

to taking light-like separated a number p < n of points. In that case, we project on
(Y1 · · ·YnYn+1 · · ·Y2n−p)⊥, but instead of freezing all the degrees of freedom of the Y ,
we push-forward half of the degrees of freedom of the Yi for n < i ≤ 2n − p to the
Xi again for n < i ≤ 2n− p promoting them to dynamical loop variables. We refer
to the correlahedron original paper for the details of this construction.

3.5.4 The squared amplituhedron

The Grassmannian version of the light-like limit allows making a natural guess for the
geometry of the square of the superamplitude. In fact, supposing that a “canonical
form like” procedure exists to extract the correlator from the correlahedron geometry,
the residue 〈Y XiXi+1〉 = 0 should geometrically correspond to go to the boundary
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〈Y XiXi+1〉 = 0 of the correlahedron. Moreover, using the parametrization (3.5.7)
for which Yi ∈ XiXi+1 for i ≤ n, the freezing and project procedure also should
correspond to project the correlahedron boundary on (Y1 · · ·Y2n−p)⊥ obtaining a
geometry in Gr(n− 4, n).

In [51] this procedure, called the geometrical light-like limit, is explored in detail,
and the geometry obtained is called the squared amplituhedron, since the authors
conjectured that its canonical form should correspond to the square of the super-
amplitude.

We define the squared amplituhedron Hn,n−4,l, following the more recent ap-
proach of [1], as the union of two regions. The latter are distinguished purely by
their properties under cyclic transformations: twisted or untwisted

Squared amplituhedron: Hn,n−4,l := H +
n,n−4,l ∪ H −

n,n−4,l , (3.5.15)

with

H ±
n,k,l :=


Y, (AB)1, .., (AB)l

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

〈Y ii+ 1jj + 1〉 > 0 1 ≤ i < j − 1 ≤ n− 2
± 〈Y ii+11n〉 > 0 1 ≤ i < n− 1
〈Y (AB)jii+1〉 > 0 ∀ j, ∀i = 1, .., n−1
± 〈Y (AB)j1n〉 > 0 ∀ j

〈(AB)i(AB)j〉 > 0 ∀i 6= j


for Z ∈ Gr>(k + 4, n) .

The squared amplituhedron is a much simpler geometry to study than the correlahed-
ron. In particular, in [1] it has been proved to be a (generalized) positive geometry
and that its canonical form indeed corresponds to the square of the superamplitude
for k = n− 4.

A point that has not been stressed much in the literature regarding the derivation
of the squared amplituhedron geometry from the correlahedron is that the inequalities
describing it depend in general on the configuration of the plane (Y1 · · ·Y2n−p). One
of these configurations corresponds to (3.5.15). This can be easily seen from equation
(3.5.12). In principle, therefore, there are other geometries that could be associated
to the square of the superamplitude. However, as we will see more in detail in
section 6.6, two different geometries can have the same canonical form. It could be
therefore that all these configurations have the same canonical form. A careful study
of this dependence represents an interesting topic for future investigation and could
provide further evidence for the correlahedron conjecture or unveil new interesting
geometrical structures.
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Chapter 4

WPGs and Internal Boundaries

The content of this chapter has been published in the paper [2], excluding the content
of section 4.4 which is only presented in this thesis.

Here, we investigate multiple residues of amplitudes and the corresponding amp-
lituhedron boundary structure. In particular, we point out new features which have
not been appreciated before [2].

First, we note that a direct consequence of amplitudes arising from positive
geometries is that the amplitude should have unit maximal residues. This arises
geometrically simply from the fact that maximal residues correspond to dimension 0
geometries, ie points, which can only differ by their orientation. Tree-level amplitudes
indeed appear to have unit maximal residues. The tree level superamplitudes can
be computed by summing a certain set of on-shell diagrams [108] arising from
the BCFW recursion relation [68]. The on-shell diagrams manifestly have only
logarithmic singularities and non-vanishing maximal residues equal to ±1 and have
a natural geometric interpretation in amplituhedron space [15]. It was recently
proven that they provide a tessellation of the amplituhedron [29] and it would be
interesting to see if the details of this proof can also be used to prove that the
non-vanishing maximal residues only equal ±1.1

What we will observe however is that, unlike at tree level, the maximal residues
of the loop amplitude integrand take many different values in Z. Examining the
corresponding geometry, the loop amplituhedron, we find starting from 2 loops that
it contains a novel feature, namely internal boundaries, deep within its boundary
structure and find these are the geometric source of the non-unit residues. By
an internal boundary we mean a codimension 1 surface separating two regions of

1It does not automatically follow since there are simple examples of geometries which can be
tessellated with positive geometries but which themselves are not positive geometries, as we will
see.
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opposite orientation, as below:

internal boundary:

We emphasise that such internal boundaries do not appear in the amplituhedron
itself, but deep within its boundary structure. That is, we claim that a certain
boundary component of a boundary component of a...of the loop amplituhedron will
contain an internal boundary.

There has been tremendous progress in understanding the geometry of the tree
level amplituhedron and its canonical form [21–23,25–29,33]. On the loop amplituhed-
ron and its tilings on the other hand are much less is known. A first exploration
of the boundaries of the MHV loop amplituhedron was started in [16], where the
2-loop MHV amplitude was computed by tiling the amplituhedron and several cuts
were discussed. Then a systematic investigation of the boundaries of the MHV loop
amplituhedron was carried out up to four loops in [111] and extended to negative
mutual positivity conditions in [112]. Internal boundaries, however, appear to have
been missed in the construction of the stratification of the loop amplituhedron in pre-
vious works. One possible reason for this is that these boundaries cannot be labelled
by the Plücker coordinates that are naturally used to describe the amplituhedron:
〈Y ijkl〉, 〈ABij〉 and 〈AiBiAjBj〉. For example, internal boundaries arise when com-
puting the all-in-one-point cut of [113] via consecutive single residues. By carefully
looking at the boundary corresponding to three loop lines (A1B1), (A2B2), (A3B3)
all intersecting the point A, one finds that 〈AB1B2B3〉 = 0 represents an internal
boundary.

We conclude that we need to generalise the definition of ‘positive geometry’ to
allow for such internal boundaries and to incorporate the loop amplituhedron. Thus,
we define generalised positive geometries (GPGs) which include internal boundar-
ies. Then we introduce a corresponding extension of the recursive definition of the
canonical form, by adding an additional term for internal boundaries which should
appear with a factor of 2. In doing so, the loop level amplitude can still be obtained
as the canonical form of the amplituhedron geometry.

In practise, the most convenient way to compute canonical forms of positive
geometries is via tessellation (eg via cylindrical decomposition) rather than explicit
use of the recursive definition. It is important to note that tessellations work for
these generalised positive geometries (GPGs) just as for positive geometries. The
canonical form of a GPG can be computed simply by summing over the canonical
forms of the tiles in a tessellation. Indeed, tessellation is closed for GPGs: any
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geometry that can be tessellated in GPGs is itself a GPG. This differs from positive
geometries, which are not-closed under union. We will see examples of geometries
that can be tessellated in positive geometries, but which are not themselves a positive
geometry.

While the above generalisation of positive geometry to include internal bound-
aries is perfectly adequate to deal with the loop amplituhedron, it immediately
suggests an even more general type of geometry which may be of wider use, namely
‘weighted positive geometry’. Any oriented geometry is defined by specifying a region
(the geometry) together with its orientation form. However, in order to compute
the canonical form of a geometry containing internal boundaries, such as the loop
amplituhedron, one needs some extra information encoding which points belong to
an external boundary and which belong to an internal boundary. It then seems very
natural to define a new object called the weighted geometry (WG). A WG is given
by a pair (w,O), where w is an integer valued function we call the weight function
and O is the orientation form. The value of the weight function on a point intuitively
represents the number of coinciding oriented geometries at that point. For example,
an ordinary oriented geometry X≥0 can be described as a weighed geometry with
weight function w(x) = 1 for all x ∈ X≥0 and zero elsewhere, while an internal
boundary will have w(x) = 2 instead (an internal boundary can be viewed as two
external boundaries coinciding).

The space of weighted geometries is naturally equipped with two key operators: a
sum and a projection onto boundary. The sum generalizes the union of disconnected
oriented geometries by allowing for overlaps (the weights on the overlap simply
sum). The projection onto boundary operator instead allows one to define the
induced weight function and orientation on the boundary of a WG. As a consequence,
boundaries of WGs are WGs. This construction allows for a recursive definition of
the canonical form and weighted positive geometries (WPG), that treats internal
and external boundaries on the same footing and makes the tiling properties of the
canonical form trivial. In fact, the canonical form turns out to be a linear operator
with respect to the sum of WPGs. Then, because a tiling of a geometry X≥0 in this
new language is nothing but a sum of WPGs, it follows trivially that the canonical
form of a sum (union) of WPGs is equal to the sum of the canonical forms.

We start by presenting a simple example of a maximal residue at two loops
equal to ±2 rather than ±1, and give its geometrical interpretation as an internal
boundary. Then we formally define generalized positive geometries (GPGs), which
allow internal boundaries, and their canonical forms. We discuss tilings of GPGs
and the key property that any geometry that can be tiled by GPGs is a GPG, a
property not shared by positive geometries. We describe the algebraic cylindrical
decomposition algorithm, originally presented in [51], to compute the canonical form,
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and use it to identify a class of GPGs. Finally, we introduce a generalisation of
GPGs which we call weighted positive geometries.

This chapter is structured as follows. In section 4.1 we present a simple example of
a maximal residue at two loops equal to ±2 rather than ±1, and give its geometrical
interpretation as an internal boundary. In section 4.2 we formally define generalized
positive geometries (GPGs), which allow internal boundaries, and their canonical
forms. We discuss tilings of GPGs and the key property that any geometry that can
be tiled by GPGs is a GPG, a property not shared by positive geometries. Then, we
introduce a generalisation of GPGs which we call weighted positive geometries. In
section 4.3, we describe the algebraic cylindrical decomposition algorithm, originally
presented in [51], to compute the canonical form, and use it to identify a class of
GPGs. We conclude this chapter in section 4.4 discussing the internal boundary of
a geometry defined by a conic and and a plain in P2.

4.1 Two loop maximal cuts and internal
boundaries

The purpose of this section is to show that the loop level amplitude can have
maximal residues which are not ±1, 0 and give the geometrical interpretation of
this fact. Consider the four point two-loop MHV amplitude integrand written as a
volume form in momentum twistor space

MHV(2) = 〈A1B1d2A1〉〈A1B1d2B1〉〈A2B2d2A2〉〈A2B2d2B2〉〈1234〉3

〈A1B1A2B2〉〈A1B114〉〈A1B112〉〈A2B223〉〈A2B234〉
×

×
[

1
〈A1B134〉〈A2B212〉

+ 1
〈A1B123〉〈A2B214〉

]
+ A1B1 ↔ A2B2 . (4.1.1)

Here we have external momentum twistors Z1, .., Z4 ∈ C4 and loop integration
variables AiBi ∈ C4 which define a plane through the origin aAi + bBi ∈ C4 i.e. a
line in projective twistor space. Then the bracket notation denotes the determinant
of the 4 × 4 matrix formed by taking the four twistors inside as columns. We also
surpress the Zs, so eg 〈A1B112〉 := det(A1, B1, Z1, Z2) etc.

Now we compute the multi-residue corresponding to taking a sequence of residues
on

〈A1B112〉 = 0, 〈A1B134〉 = 0, 〈A2B212〉 = 0 , 〈A2B234〉 = 0, 〈A1B1A2B2〉 = 0 ,
(4.1.2)

followed by a residue on a hidden pole which appears at 〈12B1B2〉 = 0. To do this
we first parametrise the 4×4 Z = (Z1Z2Z3Z4) matrix as the identity and the loops
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as Ai

Bi

 =
1 ai 0 −bi

0 ci 1 di

 . (4.1.3)

For this choice, the brackets read

〈AiBi12〉 = bi, 〈AiBi23〉 = di, 〈AiBi34〉 = ci , 〈AiBi14〉 = ai ,

〈A1B1A2B2〉 = −(b1 − b2)(c1 − c2) − (a1 − a2)(d1 − d2) , 〈1234〉 = 1 ,
〈AiBid2Ai〉〈AiBid2Bi〉 = daidbidciddi . (4.1.4)

Omitting the differential, the amplitude (4.1.1) in these coordinates reads

MHV(2) = − a2d1 + a1d2 + b2c1 + b1c2

a1a2b1b2c1c2d1d2 ((a1 − a2) (d1 − d2) + (b1 − b2) (c1 − c2))
. (4.1.5)

Now we take the first four residues in (4.1.2) namely b1 = 0, c1 = 0, b2 = 0, c2 = 0.
We see that the complicated factor in the denominator factorises thus revealing a
new pole2 and we get

− a2d1 + a1d2

a1a2d1d2 (a1 − a2) (d1 − d2)
. (4.1.6)

Then we take the residue in a1 at a1 = a2, obtaining

− (d1 + d2)
a2d1d2 (d1 − d2)

. (4.1.7)

We continue by taking the residue in d1 at d1 = d2, obtaining

− 2
a2d2

, (4.1.8)

up to an overall sign due to the ordering of the differential d2aid2bid2cid2di. This
form has clearly maximal residues equal to ±2, in apparent contradiction of the
consequence of this being the canonical form of a positive geometry.

Geometrical interpretation

Let’s try to understand how this factor of two appears geometrically from the
amplituhedron. First we take boundaries corresponding to the four residues at
{〈A1B112〉 = 0, 〈A1B134〉 = 0, 〈A2B212〉 = 0, 〈A2B234〉 = 0}. The order in which
these are performed is not important and the resulting geometry has each loop line
(AiBi) described by a point Ai in the segment 12 and a point Bi in 34, together

2Such poles have been observed in the amplitude previously and been dubbed composite
residues [11]. See also the example in the introduction.
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with a further mutual positivity condition 〈A1B1A2B2〉 > 0. It is natural then to
parametrise Ai, Bi as Ai = Z1 + aiZ2 and Bi = Z3 + diZ4, so that the geometry is
described by the inequalities

ai > 0, di > 0, −(a1 − a2)(d1 − d2) > 0 . (4.1.9)

Notice that the mutual positivity inequality factorizes in to the product of two
terms a1 > a2, d1 < d2 or a1 < a2, d1 > d2. This is just the geometrical version of
composite residues mentioned in the introduction and above (4.1.6). Because of this
factorisation, the corresponding geometry is given by two regions

R1 := {a1, a2, d1, d2 | a1 > a2 > 0 ∧ d2 > d1 > 0} ,

R2 := {a1, a2, d1, d2 | a2 > a1 > 0 ∧ d1 > d2 > 0} . (4.1.10)

This geometry is illustrated in the picture

R1

R2

•

(4.1.11)

where the x axis corresponds to increasing a1 − a2 and the y axis increasing d2 − d1.
These regions share only a codimension 2 boundary that is contained on the

surface (a1 − a2) = 0, (d1 − d2) = 0. Both regions R1,R2 come equipped with an
orientation induced by the bulk geometry, which in this case is the same for both
regions. Each of these two regions is clearly a positive geometry, with canonical
forms

Ω(R1) = − 1
a1d2(a1 − a2)(d1 − d2)

,

Ω(R2) = − 1
a2d1(a2 − a1)(d2 − d1)

. (4.1.12)

The sum of these correctly reproduces the corresponding residue of the amplitude (4.1.6).
Since the two regions share a lower codimension boundary we have to see what hap-
pens on this boundary to decide if the union is or isn’t a positive geometry. We
can consider for example the (d2 − d1) = 0 boundary by sending d2 → d1. This
corresponds to projecting onto the x axis of (4.1.11) and thus looks as
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•
R′

1R′
2 (4.1.13)

We again get two regions

R′
1 := {a1, a2, d1 | d1 > 0 ∧ a1 > a2 > 0} ,

R′
2 := {a1, a2, d1 | d1 > 0 ∧ a2 > a1 > 0} , (4.1.14)

but now, since we approach the boundary from two different directions, as we explain
in detail in appendix 3.3.1, the two induced orientations are opposite. The region
R′

1 and R′
2 share a codimension 1 boundary (a1 − a2) = 0 where the orientation

changes sign. We call this an internal boundary.
We see that the boundary (4.1.14) is in fact not oriented (rather it flips orientation

on the internal boundary a1 = a2). Part of the definition of positive geometry in [30]
is that it is oriented and (by the recursive nature of the definition so are all boundaries
etc.) We conclude that a generalisation of the concept of positive geometry is needed
to accommodate the loop amplituhedron.

Since both R′
1 and R′

2 by themselves are positive geometries on the other hand,
their respective residues at (a2 − a1) = 0 are equal to the canonical form of this.
Therefore the residue on the internal boundary of Ω(R′

1) + Ω(R′
2) will be equal to

twice the canonical form of a positive geometry. Note that if R′
1 and R′

2 instead had
the same orientation as each other then (a2 − a1) = 0 would be a spurious boundary
and the resulting residue would vanish.

We have thus seen that the loop amplitude has non unit maximal residues and
the geometrical origin of this is that the amplituhedron contains internal boundaries.
In the next section we will see how to formalize what we have observed in this
simple example and generalize the definition of the canonical form to geometries
with internal boundaries which will then accommodate the loop amplituhedron.

4.2 Generalized Positive Geometries and WPGs

Two intervals of the same orientation which share a common boundary point are
equivalent to the larger interval

[a, b] ∪ [b, c] = •

a
•

b
•
c = •

a
•
c

(4.2.1)
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with the shared boundary point absent. This is then reflected in the addition of the
corresponding canonical forms

Ω([a, b]) + Ω([b, c]) = Ω([a, c]) . (4.2.2)

In this case the point b is sometimes called a spurious boundary.
However two intervals of different orientations sharing a common boundary point

[a, b] ∪ [c, b] = •

a
•

b
•
c (4.2.3)

are not a positive geometry (for example it is not oriented). Nevertheless it is natural
to associate to this geometry the corresponding canonical form

Ω([a, b]) + Ω([c, b]) = 2 dx

x− b
− dx

x− a
− dx

x− c
. (4.2.4)

The point b is then special, separating two regions of opposite orientation, and we
refer to this as an ‘internal boundary’. It has residue twice that of each of the two
individual boundaries there. This is of course exactly what we have seen occurring
for the two loop amplitude in the previous section.

4.2.1 Generalised Positive Geometry and its Canonical
Form

This then motivates a generalisation of the concept of positive geometry to incorpor-
ate such internal boundaries. Internal boundaries separate two regions of opposite
orientation. So we define a generalised positive geometry as one whose internal
and external boundaries are both generalised positive geometries. Both external
and internal boundaries must lie inside a space defined by f(xi) = 0 for some non-
factorisable polynomial f . A particular subspace f(xi) = 0 could contain both
internal and external boundaries each of which must be (generalised) positive geo-
metries with respective canonical forms ωint and ωext. Then we define the canonical
form recursively as

Resf=0Ω = ωext + 2ωint (4.2.5)

Or equivalently
lim
f→0

fΩ = df ∧ (ωext + 2ωint) . (4.2.6)

We see an extra term compared to the original canonical form for positive geomet-
ries (3.3.7) giving the factor of 2 associated with internal boundaries. The starting
point for the recursion is the same as before, so the 0-dimensional geometries are
oriented points with canonical form ±1 according to the orientation. Note that the
orientation of the interior boundary is unambiguously inherited from that of the
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bulk just as for the exterior boundaries.
So consider the 1d example in (4.2.3). This has external boundaries (with

negative orientation) at fa(x) = x − a = 0 and fc(x) = x − c = 0 and an internal
boundary with positive orientation at fb(x) = x − b = 0. Then one sees that the
canonical form (4.2.4) satisfies the recursive relation (4.2.5) at all three points.

Now consider a 2d example.

R1 =

(4.2.7)

Here the x axis contains both an external boundary and an internal boundary. The
canonical form can be straightforwardly obtained by simply adding together the
canonical forms of the two triangles3 giving

Ω(R1) = dx dy

xy(x+ y − 1) + 2dx dy
y(x+ y + 1)(x− y − 1) . (4.2.8)

Now we can see how this satisfies the recursive definition (4.2.5) along the x axis.
Taking f = y in (4.2.5) we have

Resy=0 Ω = dx
(1
x

− 1
x+1

)
+2dx

( 1
x−1−1

x

)
= Ω([−1, 0]) + 2Ω([0, 1]) , (4.2.9)

which is exactly as predicted by (4.2.5) since the external boundary on the x axis is
the interval [−1, 0] and the internal boundary is [0, 1].

Note that internal boundaries give a contribution to the canonical form of twice
that of a standard external boundary. One might think therefore that a leading
singularity of any such a generalised positive geometry must be 0,±1 (as for a
positive geometry) or ±2 if there is an internal boundary present. However there
can be internal boundaries inside internal boundaries, leading to higher maximal
residues. A very simple example of this is the region consisting of the entire plane,

3This key tessellation feature of positive geometries and the canonical forms is inherited by (and
is indeed more powerful for) the generalised positive geometries as we will see.
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but with the four quadrants having alternating orientations

R2 =

(4.2.10)

Here each quadrant has exactly the same canonical form dx dy/(xy) and so the
geometry has non-zero canonical form

Ω(R2) = 4dx dy
xy

. (4.2.11)

So taking the residue on the (internal) boundary x = 0 gives limx→0(xΩ) = 2dx ∧(
2dy
y

)
= 2dx ∧ ωint with ωint = 2dy

y
satisfying (4.2.5). Here the internal boundary in

x = 0 is (−∞, 0) ∪ (∞, 0) and this itself has an internal boundary at y = 0. Thus it
has canonical form 2dy

y
(as we get directly from (4.2.4) by taking b → 0, a, c → ∞

and x → y). So the leading singularity at x = y = 0 is 4.
It is also possible to get a odd leading singularity. For example, simply take

three of the four quadrants from the previous example

R3 =

(4.2.12)

This geometry has canonical form

Ω(R2) = 3dx dy
xy

. (4.2.13)

Here taking the residue on the boundary x = 0 gives limx→0(xΩ) = dx∧
(

dy
y

)
+2dx∧(

dy
y

)
in agreement with (4.2.5). This time x = 0 contains the external boundary

(−∞, 0) as well as the internal boundary (0,∞) both of which have canonical forms
dy
y

. The leading singularity at x = 0, then y = 0 is 3.
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4.2.2 Weighted Positive Geometry and its Canonical Form

Although the definition of the canonical form (4.2.5) is extremely compact, it has
the downside of treating external and internal boundaries on a different footing. On
the right hand side we have a weighted sum of canonical forms, so it’s tempting to
rewrite this as the canonical form of a weighted sum of geometries. In this section we
make this intuition precise by generalising what we mean by a geometrical region to
include a weight taking arbitrary integer values. This articulates the idea of having
multiple coinciding geometries which we naturally have when two regions meet on
an internal boundary. This concept will allow us to give an explicit formula for
maximal residues.

Firstly, recall that orientation on a space can be described by a top form where
we are only really interested in the sign of the top form. So orientation is the
equivalence class of real top forms modulo positive rescaling, O ∈ Ωd/ ∼ where
O ∼ λO for any λ > 0. Now we extend this to define the weighted orientation as
a pair (w,O) : X →

(
Z,Ωd(X)

)
/ ∼ where here the equivalence relation involves

positive or negative rescaling with the negative case also flipping the weight w

(w,O) ∼ (sign(λ)w, λO′) λ 6= 0 . (4.2.14)

Thus changing the orientation is equivalent to flipping the sign of w. In practise we
can of course always choose coset representatives of (4.2.14) such that w > 0 and
we will mostly assume this from now on.

Weighted geometries have a natural additive structure. At any point x ∈ X we
define the sum of two weighted geometries (w1, O1) ⊕ (w2, O2) as

(w1, O1) ⊕ (w2, O2) = (w1 + sign(λ)w2, O1) , (4.2.15)

where λ is such that O1 = λO2
4. Notice, that because of (4.2.14) this sum is

symmetric and the identity element (0, O) is unique.
So now we define a weighted geometry entirely by specifying its weight function

and its orientation, rather than directly defining a region X≥. The region X≥ can
be reconstructed by simply defining it as the set of points where w 6= 0. Boundaries
are then places where the weighted orientation is discontinuous and they divide
regions inside which the weighted orientation is continuous (and therefore w is
constant). We will shortly define a canonical form for weighted geometries, the
existence and uniqueness of which will define weighted positive geometries (WPG).
For multivariate residues to be well defined, we insist that these boundaries must be

4Note that the x dependence is suppressed in the equation and that the function sign(λ(x)) is
negative if the two orientations O1(x) and O2(x) are opposite and positive if they match.
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subsets of algebraic varieties – so these regions are semi-algebraic sets.
A key aspect of this construction is that both weights and orientation on the

boundaries are uniquely induced from those in the bulk. This happens as follows.
Any boundary component, C can be defined through a polynomial p(x) = 0. Then
one side of the boundary is p(x) > 0, with weight and orientation (w+, O+), whereas
the other side is p(x) < 0 with (w−, O−). Now the region p(x) > 0 naturally induces
the orientation O+|C on the boundary of the region p > 0 in the standard way (see
appendix 3.3.1), so O+ = dp∧O+|C. The region p(x) < 0 on the other hand naturally
induces the orientation O−|C on the boundary, where O− = −dp ∧O−|C5.

Given a codimension-1 variety C ∈ X, then we define a projection operator ΠC

that maps weighted orientations (w,O) on X to weighted orientations on C as

ΠC(w,O) = (w+|C, O+|C) ⊕ (w−|C, O−|C) . (4.2.16)

Choosing representatives such that w > 0, we can give the following two dimensional
illustration of the induced weights and orientations (denoted with arrows):

w

w′

w

w′

w

w′

w+w′ w−w′ w′−w

(w > w′) (w < w′)

(4.2.17)

Note that w or w′ could have been zero in which case we have an external boundary.
This definition implies that, for w(x) = 1 in X>0 and 0 otherwise, w|C will be equal
to 2 on internal boundaries, to 1 on external boundaries and 0 otherwise. In this
formulation internal and external boundaries are not distinguished. Furthermore
note that if w+ = w− and λ < 0 (See (4.2.14)) then there are equivalent weighted
orientations on both sides (meaning the induced orientations are opposite) and thus
there is no genuine boundary there (it is a spurious boundary).

An important observation now is that the projection Π is a linear operator

ΠC

(
(w1, O1) ⊕ (w2, O2)

)
= ΠC(w1, O1) ⊕ ΠC(w2, O2) , (4.2.18)

which can be easily proven from the definitions.
Now we can define a weighted positive geometry as a weighted geometry possess-

ing a canonical form. The definition of the canonical form of a weighted geometry is

5The minus sign arises from the fact that the normal vector pointing inward the region p < 0 is
−∂p.
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defined recursively such that the residue of the canonical form on C is the canonical
form of the geometry projected on C:

ResCΩ(w,O) = Ω(ΠC(w,O)) . (4.2.19)

The recursion starts by defining the canonical form of a zero dimensional weighted
geometry (for which O is a 0 form, simply a scalar) as the product of w with the
sign of O

Ω(w,O) = w sign(O) (In zero dimensions) . (4.2.20)

In zero dimensions therefore the canonical form is a linear operator

Ω
(

(w1, O1) ⊕ (w2, O2)
)

= Ω
(
w1 + sign(λ)w2, O1

)
= (w1 + sign(λ)w2) × sign(O1)

= w1sign(O1) + w2sign(O2) = Ω(w1, O1) + Ω(w2, O2)
(4.2.21)

where recall O1 = λO2. It follows by induction from the recursive definition (4.2.19)
and linearity of the projection operator Π (4.2.18) that this linearity property of Ω
then holds for spaces of arbitrary dimension:

Ω
(

(w1, O1) ⊕ (w2, O2)
)

= Ω(w1, O1) + Ω(w2, O2) . (4.2.22)

Remarkably we have the feature that we can freely sum arbitrary (even overlapping)
WPGs! It also follows directly from this that

Ω
(

(λw,O)
)

= λΩ(w,O) . (4.2.23)

Now given a sequence of boundaries {C1, · · · , Cn}, we can follow n steps of the
recursion (4.2.19) and write the multi-residue of a canonical form as the canonical
form of the multiply induced boundary

ResC1,··· ,CnΩ(w,O) = Ω(ΠC1,··· ,Cn(w,O)) , (4.2.24)

Then taking n = d, the dimension of X, we obtain an expression for the maximal
residues in terms of the canonical form at a point (4.2.20)

ResC1,··· ,Cd
Ω(w,O) = wC1,··· ,Cd

× sign (OC1,··· ,Cd
) , (4.2.25)

where (wC1,··· ,Cd
, OC1,··· ,Cd

) = ΠC1,··· ,Cd
(w,O). This last equation can also be used as

a direct, non-recursive, definition of the canonical form by giving all its maximal
residues (the canonical form is completely determined by its maximal residues).

Note that generalised positive geometries, defined in previous subsections, should
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simply be WPGs for which the weight function (in the bulk) is w = ±1, 0 everywhere.
Similarly positive geometries are WPGs for which the weight function w = ±1, 0
everywhere (so they are also GPGs) but also the induced weight function on all
nested boundary components is also always ±1, 0.

To check this we need to show that the canonical form for the GPGs defined
by (4.2.5) and that for the WPGs (4.2.19) are equivalent. By equivalent we mean
that given any GPG X≥0 with orientation O we associate a weighted geometry with
orientation O and weight w such that w(x) = 1 for all x ∈ X≥0 and zero otherwise,
and then

Ω(X≥0) = Ω(w,O) . (4.2.26)

Now notice that the projection of (w,O) onto C (described in (4.2.16) and above)
will have induced weight 1 or 2, depending on whether it is an external or internal
boundary. So we can write ΠC(w,O) = (wext, Oext) ⊕ (wint, Oint) where wext = 1 on
external boundaries and zero elsewhere whereas wint = 2 on internal boundaries and
zero elsewhere. Then, it follows that if we apply (4.2.19) we get

ResCΩ(w,O) = Ω
(

ΠC(w,O)
)

= Ω((wext, Oext) ⊕ (wint, Oint)) =

= Ω(wext, Oext) + 2Ω
(
wint

2 , Oint

)
. (4.2.27)

Now since wext and 1
2wint are both functions respectively equal to 1 on internal and

external boundaries and equal to 0 otherwise, they represent with their orientations
the external and internal boundaries as GPGs. This is then precisely the original
defining equation of the canonical form (4.2.5). Since we showed that the recur-
sion (4.2.19) and (4.2.5) have the same form it follows that the two definitions of
the canonical form give the same result.

Finally, let us illustrate with a slightly more involved example, returning to the
case considered in (4.2.12) from this new perspective

R3 =

11

10

2

1

21

(4.2.28)

Here we see the induced weights 2,1 on the codimension 1 boundaries x = 0, y = 0.
Considering these boundaries themselves they then induce the weight 2 + 1 = 3
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at the origin with positive orientation on the y axis, negative on the x axis. This
is in line with (4.2.25) and the corresponding maximal residue Resy=0,x=0ΩR3 =
−Resx=0,y=0ΩR3 = 3.

4.2.3 Tilings of WPGs

As we have seen in section 3.3.4, it can happen that a non positive geometry can be
tiled by positive geometries - so the space of positive geometries is not closed under
the union. This is because even if the orientation of the X(i)

≥0 tiling X≥0 matches on
codimension 1 boundaries this does not imply that they will necessarily match on
the boundaries of boundaries etc. This can then give rise to internal boundaries. As
examples consider the following two geometries:

32

1

5

4

1 2

34

5
6

7 8

9

(4.2.29)

Both can be tiled by positive geometries. The first can be tiled as the oriented union
of two triangles while the second as the oriented union of 4 rectangles with matching
orientation. Both examples are not positive geometries themselves however. This
can be seen graphically observing the orientation of the boundary, the edge 14 in the
first example and 59 in the second look like (4.2.3) and have an internal boundary.

Both of these examples are generalised positive geometries however. And we
claim more generally that if X≥0 is tiled by a set of generalized positive geometries
X

(i)
≥0 tiling X≥0 then X≥0 is a generalized positive geometry and its canonical form

is given by (3.3.16). This is essentially trivial from linearity of the WPG canonical
form and the definition of a GPG as a WPG with weight 0,±1 everywhere.

A beautiful consequence of the WPG formalism is that it also yields a simple
proof of the tiling property of positive geometries (3.3.16). Indeed this follows
trivially from the fact that the canonical form is a linear operator for weighted
positive geometries (4.2.22). Translating (3.3.16) into WPG language, on the right
hand side we have the canonical form of a region which is equivalently a weight
function (w,O) with w = 1 in the region and 0 outside. This region has a tesellation
with tiles (wi, Oi) with

(w,O) =
⊕

i

(wi, Oi) . (4.2.30)
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Now linearity of WPGs give

Ω(w,O) =
∑

i

Ω(wi, Oi) , (4.2.31)

which proves (3.3.16).

4.3 GCD algorithm and explicit characterisation
of GPGs / WPGs

In the previous subsection we gave an implicit (recursive) definition of generalised
positive geometry and weighted positive geometries. Here we speculated on whether
it is possible to give more explicit characterisations, so we can know in advance
if a particular region is a GPG/WPG or not. The fact that GPGs/WPGs are
closed under tiling as discussed in the previous subsection already suggests they
ought to be more amenable to a direct characterisation than PGs. For example any
characterisation of PGs would have to exclude the two examples in (4.2.29).

We first note that if we restrict ourselves to a specific class of geometry which
we call multi-linear geometries then the characterisation is very simple. Multi-linear
geometries are geometries defined by multi-linear inequalities in some coordinates.
Note that although this may be a big restriction of the full space of positive geometries
it nevertheless provides a very wide class of cases. Crucially it is straightforward to
see that the amplituhedron is a multi-linear geometry. The defining inequalities of
the amplituhedron are given in terms of either minors of a C matrix, or alternatively
determinants of the form 〈Y Li...〉. Thus by choosing components of either the C
matrix, and/or the Y, Li as coordinates, the resulting inequalities will be multi-linear
in those coordinates (simply because the determinant is a multi-linear function of
its components).

Note here that it is important not to confuse multi-linear geometries with linear
geometries. Many of the toy examples one considers are linear geometries where
defining inequalities can be given which are linear in all variables. These then have
straight edges, flat planes etc. Multi-linear geometries can however be curvey. For
example in 2d, boundaries of multi-linear geometries have the form axy+bx+cy+d =
0 (in some coordinates) which correspond to hyperbolas as well as straight lines. On
the other hand circles or ellipses would include the non multi-linear terms x2, y2 and
are not multi-linear. They can however be boundaries of positive geometries [30].
We will shortly return to this point.

We first claim that any multi-linear geometry is a (generalised) positive geometry.
We can show this by explicitly and uniquely computing the canonical form for multi-
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linear geometries using a algorithm called Generic Cylindical Decomposition (GCD).
Given a multi-linear geometry, first use cylindrical decomposition (see also [51])
which recasts any region as a disjoint union of regions Ri of the form

Ri := {x1, · · · , xd} st



a1 < x1 < b1

a2(x1) < x2 < b2(x1)

· · ·

ad(x1, · · · , xd−1) < xd < bd(x1, · · · , xd−1)

(4.3.1)

for some functions aj, bj. Now changing variables to:

x′
j = −xj − aj

xj − bj

, (4.3.2)

then Ri becomes

Ri := {x′
1, · · · , x′

d} st x′
j > 0 for all j . (4.3.3)

In the new coordinates Ri is thus a simplex-like positive geometry with canonical
form

Ω(Ri) =
d∏

j=1

dx′
j

x′
j

. (4.3.4)

An algorithm for computing such decomposition is readily available on Mathematica
[114] under the function GenericCylindricalDecomposition. We discussed in sec
3.3.4 under a rational map the canonical forms map to each other. So as long as the
change of variables (4.3.2) is rational then we have that in the original coordinates

Ω(Ri) =
d∏

j=1

(
1

xj−aj

− 1
xj−bj

)
dxj (4.3.5)

and the canonical form of the full region can then be obtained by summing the
contributions from all the Ri. We see how multi-linearity is crucial here. The
inequalities in (4.3.1) must arise from the defining inequalities of our region which
are multi-linear. This ensures that the resulting functions ai and bi will be rational
functions and thus the change of variables (4.3.2) is rational.

Let us illustrate some of these points now with a couple of examples shown in
figure 4.1.

Firstly we have a region R1 sandwiched between a hyperbola and a line. It is
defined by the inequalities x > 0, xy > 7, x + y < 8. Cylindrical decomposition
rewrites this as a single region written in the form of (4.3.1) as 1 < x < 7 7

x
< y <
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Figure 4.1: Two examples of positive geometries obtained by sand-
wiching a conic and a straight line. The first, involving
a hyperbola, is a multi-linear geometry whereas the
second is not multi-linear, but is still a positive geo-
metry.

8 − x. Then the simple replacement rule of (4.3.5) yields the canonical form

Ω(R1) =
(

dx

x− 1 − dx

x− 7

)(
dy

y − 7
x

− dy

x+ y − 8

)
= − 6 dx dy

(x+ y − 8)(xy − 7) .

(4.3.6)

The second example R2, found in [30], is not a multi-linear geometry. This is
the region between a circle and a line and is defined by the inequalities x2 + y2 <

1, y > 1/10. Let us see what happens if we attempt the same procedure to obtain
its canonical form. Here cylindrical decomposition rewrites the region as

−3
√

11
10 < x <

3
√

11
10 ,

1
10 < y <

√
1 − x2 . (4.3.7)

But now we encounter a problem. We see that, due to the square root
√

1 − x2,
the change of variables needed in (4.3.2) will no longer be rational and the above
procedure no longer works.

So we have seen that cylindrical decomposition gives the unique canonical form
as long as all the resulting functions ai, bi in (4.3.1) are rational. This is clearly
the case for multi-linear geometries, but could also be the case for more general
geometries. Further it may be possible to change coordinates so that only in the
new coordinates the cylindrical decomposition map (4.3.2) is rational. So in general
we can characterise generalised positive geometries to be those for which there exist
coordinates and an ordering of these coordinates such that cylindrical decomposition
yields a map (4.3.2) which is rational.

For example let us return to the region R2 in figure 4.1 for which the cylindrical
decomposition method of obtaining the canonical form didn’t work as it produces
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an irrational map (4.3.2). Now the circle is the classic example of a rational variety.
This is a variety that has a parametrisation ti in terms of which its embedding
coordinates xi(tj) are rational functions and there is a rational inverse map ti(xj).
In this case it has a rational parametrisation given by

x(t) = 2t
1 + t2

y(t) = 1 − t2

1 + t2
. (4.3.8)

with an inverse map from R onto the circle embedded in R2 which is also rational

t(x, y) = x

1 + y
. (4.3.9)

Here the parameter t has the geometrical interpretation of the projection of a point
on the circle, from the point (0,−1) to the x axis. But this projection can clearly
be extended to any point in R2 not just those points on the circle. So consider the
change of variables from x to t, (t, y) → (x, y) = (t(1 + y), y). In the new variables
the region R2 then has cylindrical decomposition

− 3√
11

< t <
3√
11
,

1
10 < y <

1 − t2

t2 + 1 , (4.3.10)

which is now rational. The replacement rule (4.3.5), then gives the canonical form

Ω(R2) = − 6
√

11dt dy
(10y − 1) (t2(y + 1) + y − 1) = − 6

√
11dxdy

(10y − 1) (x2 + y2 − 1) , (4.3.11)

which is in precise agreement with the canonical form for this geometry found in [30]
(see figure 1) using the recursive definition of the canonical form.

In general, if a codimension 1 boundary of a region is a rational variety, then
changing coordinates from xi to ti, xn will rationalise the final step in the cylindrical
decomposition involving that boundary. In other words cylindrical decomposition
in those variables will give the boundary in the form xn < xn(ti) which is a rational
function as we saw in the above example which gave y < y(t) = (1−t2)/(1+t2)).
This all suggests there should be a more intrinsic definition of a GPG/WPG in terms
of rational varieties.

We would like to conclude this section highlighting that when applying the
GCD algorithm it is important to check the orientation of the coordinate map. If
the sign of the measure, ∏i 〈Y dmYi〉 is positive, the coordinate chart is orientation
preserving, if negative it is orientation reversing and if zero it is degenerate. The
reversed orientation contributes with minus sign to the canonical form. If the measure
vanishes anywhere in the geometry, we need to split it into regions where the measure
is everywhere non-vanishing and sum the result for the different regions with the
sign contributions coming form the sign of the measure.
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As a simple example consider the triangle defined by Z1 = (1, 0, 1), Z2 =
(1, 0,−1), Z1 = (0, 1, 0). On the oriented projective space (equivalent to a sphere)
the coordinate chart Y = (x, y, 1) does not contain this triangle (Z2 clearly lies
outside this coordinate chart) so we need the additional chart Y = (x′, y′,−1). The
first chart covers the northern hemi-sphere and the second the southern hemisphere.
The triangle is defined by the inequalities 〈Y i i+1〉 > 0. In the first chart this gives
the region y > 0, x > 1, yielding canonical form dxdy/((x− 1)y) and in the second
chart it gives the region y′ > 0, x′ > 1, yielding canonical form −dx′dy′/((x′ − 1)y′).
The additional minus sign in the second case arises from the orientation of the
coordinates map 〈Y d2Y 〉 = 2dxdy = −2dx′dy′, negative in the second chart. Now
after we have obtained the canonical forms in the two charts we need to add them
together. One way to do this is to covariantise the two forms above and then add
them together. In order to covariantise it will be useful to introduce the additional
vertex Z∗ = (1, 0, 0), the point where the boundary of the triangle meets the equator
hence moving from the northern to the southern hemisphere. The result will just be
the sum of the two triangles obtained by splitting the big triangle along the equator
(see picture).

Z1

Z2

Z3

Z∗Y1
Y2

Y3

However it is also possible to add the two forms together directly at the level
of coordinates. To do this we first realise that now, at the level of the form, we
can safely project from the sphere to P 2. For the second chart we then have that
(x′, y′,−1) ∼ (−x′,−y′, 1) and we can map safely back to (x, y) coordinates as
x = −x′, y = −y′. We then have the second form directly in x, y coordinates as
−dx′dy′/((x′ − 1)y′) = −dxdy/((1 + x)y). Now we are using the same co-ordinates
for both terms, we can safely sum the two contributions together. Finally we can
covariantise the final result if we like giving

dx dy

(x− 1)y − dx dy

(x+ 1)y = 2dx dy
(x− 1)(x+ 1)y = 〈Y d2Y 〉 〈123〉2

〈Y 12〉 〈Y 23〉 〈Y 31〉
, (4.3.12)

the correct canonical form for the triangle.
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4.4 Conics and internal boundaries

In this section we look at the geometry of a conic cut by a plane in projective space
to show yet another example of the emergence of internal boundaries in very basic
geometries.

The generic equation of a quadratic space can be written as

QIJY
IY J = 0 . (4.4.1)

For det(Q) 6= 0, in real projective space we can always chose coordinates such that
the equation reads

x2 + y2 + z2 = 0 , (4.4.2)

or

x2 + y2 − z2 = 0 . (4.4.3)

In R3, the first equation has only the trivial solution x = z = y = 0. The second
equation instead corresponds to a double cone in the z direction. A subtle but
important difference to the case of a projective or Grassmannian polytope like the
amplituhedron is that equation (4.4.1) is invariant under the map Y → −Y . As
a consequence, the projection from the oriented projective space to the projective
space, that is defined by equivalence relation Y ∼ −Y , for the region QIJY

IY J > 0
is two to one. We can break this symmetry for example by adding a linear constraint
WIY

I > 0, which defines the region

QIJY
IY J > 0 ∧ WIY

I > 0 , (4.4.4)

where in real projective space W is a line intersecting the conic in two points. This
region for W = (0, 1,− 1

10) and QY Y = 1 − x2 − y2 is described in fig: 4.2. Notice
that in the oriented projective space this region is given by two disconnected parts
while in projective space it corresponds to the conic minus the line W . In fact, by
mapping Y ∼ −Y we can notice that the equation WIY

I > 0 reduce to WIY
I 6= 0 in

projective space. The canonical form of a conic is simply zero since it doesn’t have
any codimension 2 boundary, but this simple deviation from the conic allows instead
for a non-trivial canonical form. By computing the orientation induced by (4.4.4)
to its image in projective space, one can observe that it is discontinuous on the line
Y · W = 0, that is the line W is an internal boundary of the geometry. Using the
tiling property of the canonical form, we can then write the latter as the difference
of the canonical form of the two portion of the circle. These canonical forms are
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Figure 4.2: Region in between a quadric and a plane in projective
space

equal but with opposite sign and given in [30] in a covariant form as
√
QQWW 〈Y d2Y 〉
(QY Y )Y ·W

. (4.4.5)

Consistently with the definition of generalized positive geometries, we can observe
that the residue on the line W is equal to two times the canonical form of the segment
W1W2, where W1 and W2 are the two intersection point given by Q ∩ W ,and that
the residue on the circle, which is isomorphic to P1, is equal to the canonical form
of the segment W1W2 minus the canonical form of the segment W2W1. The points
W1 and W2 then represents codimension 2 internal boundaries and consistently the
residue in both points is equal to ±2.

A particularly interesting projection is the one giving a hyperbola. In this case
the quadric can be written in coordinates as

xy > 1 . (4.4.6)

We can think to have a further constraint given by a projective line W at infinity.
For this choice the projection form the oriented projective space to the projective
plane is orientation preserving and therefore both regions have the same orientation.
Using the GCD algorithm to compute the canonical from we obtain

2 dxdy

xy − 1 , (4.4.7)

consistently with (4.4.5).
Finally, for degenerate a quadric, that is for Det(Q) = 0, this equation can also

be rewritten using only determinants by rewriting QIJ as

QIJ = εILMεJNOQ
L
1,1Q

M
1,2Q

N
2,1Q

O
2,2 . (4.4.8)
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Substituting (4.4.8) in (4.4.1) we get

Y IQIJY
J = Y IεILMQ

L
1,1Q

M
1,2εJNOQ

N
2,1Q

O
2,2Y

J = 〈Y Q1,1Q2,2〉〈Y Q2,1Q2,2〉 , (4.4.9)

Which correspond of the product of two lines Q1 and Q2. These boundaries are
given by factorizable polynomials which are the signature of codimension 2 internal
boundaries. In fact, a new internal boundary emerges at Q1 ∩Q2, that is the vertex
of two kissing triangles.

4.5 Summary

In this chapter, we highlighted some fundamental properties of the N = 4 loop
amplitudes, namely that non-vanishing maximal residues are not always ±1 as has
generally been assumed, and that this fact is reflected in the presence of the loop-
amplituhedron internal boundaries: codimension-1 defects separating two regions of
opposite orientation. This phenomenon requires a generalisation of the concept of
positive geometry and canonical form to include such internal boundaries.

We propose first a generalization of the canonical form (4.2.5) and of positive
geometries, which we call generalized positive geometries (GPGs), based on distin-
guishing between internal and external boundaries. So, the residue of the canonical
form of a boundary of a GPG is equal to the canonical form of its external boundary
plus two times the canonical form of its internal boundary. Although this generaliz-
ation is sufficient to describe the loop-amplituhedron and its canonical form it has
the unpleasant feature that boundaries of GPGs are described by a union of two
regions, that is external and internal boundaries, and the latter comes with a weight
2. In other words, the boundaries of GPGs are not always GPGs.

This suggests the utility of a further generalisation to ‘weighted positive geomet-
ries’. A weighted geometry is defined by a piece-wise constant function w, the weight
function, and an orientation O. The boundaries of the geometries then correspond
to the discontinuities of the pair (w,O). Weighted geometries come equipped with
two fundamental operations the sum and the projection. The sum of two weighted
geometries (4.2.15) corresponds, for matching orientation, to the sum of their weight
functions. The projection (4.2.19) of the pair (w,O) on a algebraic variety instead
roughly corresponds to its discontinuity on the variety, so the discontinuities of
(w,O) are codimension-1 weighed geometries . The canonical form is then simply
defined on weighted geometries as the dlog form with simple poles on and only on
the algebraic varieties containing the (w,O) discontinuities and with residues equal
to the canonical form of the discontinuities. The recursion terminates with the
canonical form of weighted points (4.2.25).
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One of the upshots of this construction is that the canonical form now acts linearly
on the space of WPGs. This feature allows for a particularly simple definition of a
tiling. Given a WG given by the sum of a collection of WGs, we call the latter a
tiling of the former.

In section 4.3 we speculate on what properties should boundaries of WPGs have.
We conclude that all WGs with multilinear-boundaries are WPGs and their canonical
form can be computed using the GCD algorithm, of which we gave a review.

We concluded with section 4.4 where we presented a 2-dimensional example
of codimension-1 internal boundaries emerging from the projection of a geometry
from the oriented projective space to the projective space. This projection in fact,
depending on the projection plane, is orientation preserving on half of the oriented
projective space and orientation reversing in the other half. We explored in detail the
case of a geometry defined by a linear and a quadratic inequality, showing how the
internal boundary emerges in this case and how its canonical form can be computed.



Chapter 5

Loop-Loop Cuts

The content of this chapter has been published in the paper [2].

Another feature of the geometry of the amplituhedron which seems to have not
been emphasised in the literature previously is the geometrical equivalent of the
fact that multiple residues are not in general uniquely defined. One way to define
multiple residues is via the residue form [115] (see also [11]) which essentially defines
it via a sequence of single residues. However, taking these in different orders can
give completely different results. There is a direct analogue of this fact in terms
of taking boundaries of the corresponding geometry. Rather than talking about
codimension 2 boundary components, instead it is the precise boundary component
of the boundary component which will give the multiple residue defined by taking
the corresponding simple poles in sequence. Taking these boundary components in
different orders can give different results.

Consider the solid 3d geometry below, which will serve as a very simple example
to illustrate the dependence on the order of taking boundaries.

Figure 5.1: Example of a geometry where the path taken to reach
the boundary is relevant.
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Here we have a 3d shape which looks like a house with a flat roof on the left and an
angled roof on the right. The planes in which the two roofs lie intersect along the
top of the front wall which we will call the ‘front eaves’. While one might wish to
talk about the codimension two boundary component corresponding to the entire
front eaves, taking appropriate boundaries of boundaries can give results which differ
from this. One could first take the flat roof boundary component and then take the
front eave boundary of that. This results in only the left half of the front eaves. If
on the other hand we first take the slanted roof boundary component and then the
font eaves boundary of that, we obtain the right half of the front eaves. Finally we
could instead first take the boundary component on the front wall, and then the
boundary component of that at the top, resulting in the entire length of the front
eaves. We thus arrive at three different results from taking a sequence of boundary
components.

This is completely consistent with what we get from multiple residues. Indeed,
this example can be made completely precise and the corresponding canonical form
and residues taken. We choose coordinates such that the flat roof lies on the plane
z = 0, the slanted roof on y = z and the front wall y = 0 (we also put the two
side walls at x = −1, x = 1, the back wall at y = 1 and the floor at z = −1).
The corresponding canonical form, which can easily be obtained by summing the
canonical form of the living space and the roof, is

Ω = 1
(x− 1)x(y − 1)z(y − z) − 2

(x− 1)(x+ 1)(y − 1)yz(z + 1) . (5.0.1)

The residue corresponding to the front boundary of the flat roof is Resy=0Resz=0Ω =
−dx/(x(x+1)) = Ω[−1, 0], which is the canonical form of the one dimensional interval
−1 ≤ x ≤ 0. On the other hand, the residue corresponding to the front boundary of
the slanted roof is Resy=0Resz=yΩ = −dx/(x(x − 1)) = Ω[0, 1], the canonical form
of the one dimensional interval 0 ≤ x ≤ 1. Finally, the residue corresponding to the
top boundary of the front wall is Resz=0Resy=0Ω = 2dx/((x− 1)(x+ 1)) = Ω[1,−1].
All cases correspond in the end to the codimension two line z = 0, y = 0 but the
precise way we get there gives different results.

An important example of this phenomenon is the case of all l loop lines inter-
secting in a single point, which is a configuration closely related to the deepest cut
of [113]. At 4 points, from 4 loops onward, different orderings of single residues give
algebraically different results, as we will show in section 5.1.3. With this in mind,
we do a detailed analysis of the all-in-one-point cut and find quite a complicated
structure in general, although it seems one can always keep taking further loop loop
residues to reduce to the 3 loop all-in-one-point-and-plane cut.

Here, we turn our attention to a specific boundary of the loop amplituhedron,
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that is the all-in-one-point cut, and we compute its geometry and discuss its internal
boundary. Finally, we take further cuts on the result of the all-in-one-point cut and
obtain a new all loop formula.

5.1 All-in-one-point cut

We now look at a particular boundary of the loop amplituhedron related to a set
of cuts on the integrand of MHV amplitudes explored in [113, 116], referred to as
the deepest cut. This provides another example of an internal boundary as well as
illustrating the other important point mentioned in the introduction, namely that
the order of taking residues (or going to boundaries) can yield completely different
results.

In general the deepest cut places all internal propagators on-shell

〈(AB)α(AB)β〉 = 0 ∀ α, β = 1, ..., l , (5.1.1)

while leaving all external propagators 〈(AB)αii+ 1〉 generic. Geometrically there
are two possible final configurations which solve (5.1.1): first, all loop lines passing
through a single point A, or second, all loop lines lying on the same plane. In [113]
the canonical form corresponding to these two solutions was found at any loop order.
We find that this form can not be reproduced from any sequence of single residues
(or any linear combination of such) acting on the amplitude and so some more
complicated operation is presumably needed to reproduce it1. Furthermore there
are many inequivalent ways of approaching this final all-in-one-point configuration
via different sequences of single residues, as becomes especially apparent starting
at four loops. In this section we systematically investigate all cuts ending in the
all-in-one-point configuration.

We will begin by discussing the three loop all-in-one-point cut, computing its
geometry and discussing the internal boundary that arises, before considering higher
loops. Although we will limit the discussion to the 4-point MHV amplituhedron
geometry, the derivation of the geometry is completely independent of the tree level
inequalities 〈Y ijkl〉 and 〈ABij〉. The results obtained in section 5.1.3 for the loop-
loop inequalities of the all-in-one-point cut hold for any multiplicity and any NMHV
degree by simply promoting the brackets 〈ABiBjBk〉 to 〈Y ABiBjBk〉.

1We thank Nima Arkani-Hamed and Jaroslav Trnka for valuable discussions on this point
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5.1.1 Three-loop all-in-one-point cut

The first case of an all-in-one-point cut is at two loops. Although we saw above that
this contains a previously undetected internal boundary, since the all-in-one-point
cut is this boundary it doesn’t affect anything and the corresponding residue is
simply the canonical form of two lines satisfying 1 loop inequalities as predicted
in [113]. We will return to this in section 5.2.1.

We thus turn to three loops. The integrand of the three-loop MHV amplitude is
given by

MHV(3) =
∏3

i=1〈AiBid2Ai〉〈AiBid2Bi〉〈1234〉3

〈A1B114〉〈A1B112〉〈A1B134〉〈A2B212〉〈A2B223〉〈A3B334〉〈A1B1A3B3〉〈A2B2A3B3〉
×

×
[1

2
〈1234〉

〈A3B312〉〈A2B234〉
+ 〈A1B123〉

〈A3B323〉〈A1B1A2B2〉

]
+ symmetry .

(5.1.2)

Here the ‘+ symmetry’ is a sum of 23 more terms: the 3! terms generated by
permutation symmetry over the loop variables (simultaneous permutation of Ai and
Bi) together with the four terms from cyclic symmetry of the external twistors,
giving 24 terms in total in the sum. The first term in square brackets is the three-
loop ladder integrand, and after summing it generates 12 unique terms (all with
coefficient 1), while the second term is the so-called 3-loop ‘tennis court’ diagram
generating 24 unique terms (again all will have coefficient 1).

In order to achieve an all-in-one-point final configuration – with three loop lines
passing through a single point A – we must take three residues at 〈AiBiAjBj〉 =
0 (5.1.1). By inspection, one can see that the first term in square brackets in (5.1.2)
(the ladder integral) does not contain all three poles 〈AiBiAjBj〉 and therefore
vanishes after taking these residues. From this point forward then we will only
concern ourselves with the second term.

The key factor which all surviving terms contain is

F =
∏3

i=1〈AiBid2Ai〉〈AiBid2Bi〉
〈A1B1A2B2〉〈A2B2A3B3〉〈A1B1A3B3〉

. (5.1.3)

We will then first consider the residue at 〈A1B1A2B2〉 = 0 followed by 〈A1B1A3B3〉 =
0. This corresponds geometrically to first intersecting the line A2B2 with A1B1 and
then A3B3 with A1B1 (see 5.2). To do this, we parametrise A2 and A3 as

A2 = A1 + a2B1 + b2Z∗ ,

A3 = A1 + a3B1 + b3Z∗ ,
(5.1.4)

where Z∗ is an arbitrary twistor. In this parametrisation, the limits b2 → 0 and
b3 → 0 correspond to the points A2 and A3 moving to lie on the line A1B1 re-
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•A1

•B1

• A3=A1+a3B1

•
B3

•
B2

• A2=A1+a2B1

Figure 5.2: A geometrical depiction of the third residue taken when
calculating the three loop all-in-one-point cut. Note the
lines that pass through the points B2 and B3 do not
in general lie on the same plane, but they do not (yet)
intersect.

spectively. Using this parametrization, we have for example that 〈A2B2d2A2〉 =
db2da2〈A1B2Z∗B1〉 etc. and the factor (5.1.3) produces db2db3/(b2b3). Taking the
residue then gives

Res
〈A1B1A2B2〉=0
〈A1B1A3B3〉=0

F = da2da3〈A1B1d2A1〉
∏3

i=1〈AiBid2Bi〉
〈A2B2A3B3〉

. (5.1.5)

With the parametrisations (5.1.4), with b2 = b3 = 0 we see that the remaining
singularity of F factorises into two terms 〈A2B2A3B3〉 = (a2−a3)〈A1B1B2B3〉. This
is another example of composite residues discussed in the introduction and section 4.1.
The first factor a2−a3 = 0 corresponds to the three loop lines intersecting in one
point, while 〈A1B1B2B3〉 = 0 corresponds to the three lines lying in the same plane
(and thus intersecting pairwise). We focus on the all-in-one-point case (a2−a3) → 0
(intersecting A3B3 with A2B2 by sliding the intersection point A3 along the line
A1B1 to meet the intersection point A2 see figure 5.2). We change variables from
(a2, a3) to (a2, ξ) where ξ = (a2−a3), so da2da3 = dξda2 and the residue at ξ → 0 of
(5.1.5) is

Res
ξ=0

(
dξda2

ξ

〈A1B1d2A1〉
∏3

i=1〈AiBid2Bi〉
〈A1B1B2B3〉

)
= 〈Ad3A〉∏3

i=1〈ABid2Bi〉
〈AB1B2B3〉

. (5.1.6)

On the right-hand side we have written the expression manifestly as a function of the
common intersection point of all three lines A = A1 + a2B1, thus da2〈A1B1d2A1〉 =
〈Ad3A〉.

Substituting (5.1.6) into (5.1.2) gives the all-in-one-point cut of the three loop
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amplitude :

〈Ad3A〉∏3
i=1〈ABid2Bi〉

〈AB1B2B3〉
×

×
(

〈1234〉3〈AB123〉
〈AB114〉〈AB112〉〈AB134〉〈AB212〉〈AB223〉〈AB323〉〈AB334〉

+ symmetry
)

(5.1.7)

where the sum occurs by applying cyclic symmetry of the external momenta and
permutation symmetry of the Bis. We see that after taking the three consecutive
residues required to reach this final configuration, a new pole 〈AB1B2B3〉 appears
explicitly in the denominator of the integrand. This is not the same as the result
given for the all-in-one-point cut in [113] which is instead the canonical form of the
intersection of the hyperplane 〈AiBiAjBj〉 = 0 with the amplituhedron. 2 Taking
further residues of this all-in-one-point cut, starting with the pole 〈AB1B2B3〉 one
ends up with a maximal residue of 2 (see appendix C.1 for this computation) which,
as discussed in section 4.1 suggests the existence an internal boundary.

In the next subsection we therefore look at the geometrical region corresponding
to taking the above all-in-one-point cut. We will find that the pole at 〈AB1B2B3〉 = 0
indeed corresponds geometrically to an internal boundary of the codimension 3
boundary of the four-point three-loop amplituhedron corresponding to the all-in-one-
point cut.

5.1.2 Geometric all-in-one-point cut

We now look to derive the geometry of the all-in-one-point cut. Following precisely
the residues taken in section 5.1.1, we first intersect line L1 with L2, then intersect
L3 with L1, and finally intersect L2 and L3 by sliding A3 along L1.

The four-point loop level amplituhedron is defined as the set of loop lines Li =
(AiBi) with i = 1, .., L satisfying

A(L) =
{
AiBi : 〈AiBik̄l̄〉 > 0, 〈AiBiAjBj〉 > 0, 1 ≤ i, j ≤ L, 1 ≤ k < l ≤ 4

}
(5.1.8)

Here for each loop we have the inequalities of the one loop amplituhedron

〈AiBi12〉 > 0, 〈AiBi13〉 < 0, 〈AiBi14〉 > 0,
〈AiBi23〉 > 0, 〈AiBi24〉 < 0, 〈AiBi34〉 > 0,

(5.1.9)

2Note that if one instead takes an antisymmetric sum over the Bi permutations in (5.1.7), the
result produces a zero in 〈AB1B2B3〉, cancelling the pole and reproducing the deepest cut given
in [113]. We can not obtain this via an operation acting on the amplitude however but rather one
would have to take a different operation on each contributing diagram.
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which can all be conveniently rewritten in terms of the conjugate planes as [113]

〈AiBij̄k̄〉 > 0 1 ≤ j < k ≤ 4 (5.1.10)

where j̄ ≡ (j−1jj+1) and 〈AiBij̄k̄〉 ≡ 〈AiBi(j−1jj+1)∩(k−1kk+1)〉. We then also
have the loop-loop inequalities, 〈AiBiAjBj〉 > 0. The all-in-one point configuration
occurs when all loop lines Li pass through a single point A, so we simply set Ai = A.
Then the loop-loop inequalities trivialise and this all-in-one-point cut geometry is

A(L)
dc = A(L)|Ai=A =

{
A,Bi : 〈ABik̄l̄〉 > 0, 1 ≤ k < l ≤ 4

}
. (5.1.11)

This is the codimension 3 configuration of the amplituhedron corresponding to all
loop lines intersecting in one point.

We now however wish to examine in detail what happens when we take a sequence
of codimension 1 boundaries in order to reach such a configuration. Using the same
parametrisation as (5.1.4), A2 = A1+a2B1+b2Z∗, A3 = A1+a3B1+b3Z∗ the loop-
loop inequalities become

〈A1B1A2B2〉 = −b2〈A1B1B2Z
∗〉 > 0 ,

〈A1B1A3B3〉 = b3〈A1B1Z
∗B3〉 > 0 ,

〈A2B2A3B3〉 = (a2−a3)〈A1B1B2B3〉 + (b2−b3)〈A1Z∗B2B3〉 > 0 .

(5.1.12)

We then consider the boundary at a2 = a3 of the boundary at b3 = 0 of the
boundary at b2 = 0, which corresponds precisely to taking the consecutive residues
of (5.1.5) and below. Here Z∗ is chosen arbitrarily and we can arrange it so that
〈A1B1B2Z∗〉 < 0 and 〈A1B1Z∗B3〉 > 0 and thus b2, b3 > 0. Notice that the third in-
equality factorises when b2, b3 → 0. This is the geometric version of the factorisation
discussed below (5.1.5), related to composite residues and reducible varieties. Thus
the boundary at b2, b3 → 0 is the union of two disconnected regions R1 ∪ R2

R1 : a2 > a3, 〈AB1B2B3〉 > 0 ,
R2 : a2 < a3, 〈AB1B2B3〉 < 0 ,

(5.1.13)

where A = A1 + a2B1. The inequalities, (5.1.13), carve out a region consisting of
two almost disconnected pieces of the same orientation. This geometry is illustrated
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in the picture (the same as for the two-loop internal boundary case (4.1.11))

R1

R2

•

(5.1.14)

where the x axis corresponds to the region a2 = a3 and the y axis corresponds to
〈AB1B2B3〉 = 0. The all-in-one-point cut corresponds to the boundary a2=a3 (so the
x axis). We can then clearly see that the all-in-one-point cut consists of two regions,
〈AB1B2B3〉 ≶ 0, with opposite orientation separated by an (internal) boundary at
〈AB1B2B3〉 = 0:

•
〈AB1B2B3〉 > 0〈AB1B2B3〉 < 0 (5.1.15)

Geometrically the two regions arise from the intersection point A3 approaching
A2 from two different directions along the line A1B1 (see figure 5.2). Importantly,
after approaching the all-in-one-point cut, the mutual positivity conditions between
the loops of (5.1.12) do not trivialise, but instead new inequalities emerge dictated
by the sign of 〈AB1B2B3〉.

So altogether then, incorporating the inequalities resulting from (5.1.9) (rewritten
as in (5.1.10)) we see that the the full geometry of the three-loop all-in-one-point
cut is given by the two regions with opposite orientation

Rdc = Rdc
1 ∪ Rdc

2

Rdc
1 = A(3)

dc ∩ {〈AB1B2B3〉 > 0} positive orientation

Rdc
2 = A(3)

dc ∩
{

〈AB1B2B3〉 < 0
}

negative orientation .

(5.1.16)

Note that the deepest cut geometry A(3)
dc is the union of these two regions with

the same orientation, but the actual result of taking boundaries of boundaries of
boundaries requires the regions to have opposite orientation separated by an internal
boundary. Also note that we made a choice of which loop lines to intersect first
and which to slide etc. and one might expect different choices to give different
results. This is indeed the case at higher loops. At three loops however the resulting
geometry (5.1.16) is the unique geometry one obtains from approaching the all-in-
one-point cut.
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So to summarise we find that the all-in-one-point cut as computed as a residue
corresponds to two regions of opposite orientation separated by an internal boundary.
At higher loops it turns out that the all-in-one-point cut is no longer even unique
but depends on the precise sequence of codimension 1 boundaries taken to reach it.

5.1.3 Higher loop all-in-one-point cut

We commented that at three loops the multiple residue leading to the all-in-one-
point cut is unique and the corresponding geometry given by (5.1.16). For higher
loops, however, there are a number of inequivalent resulting geometries depending
on the sequence of single residues taken. Here, we generalise the discussion of the
previous section to give the inequalities associated to any all-in-one-point cut for
any loop. We show that while the final configuration is always the same – that is
L lines intersecting in a point – distinct paths to reach this configuration can carve
out different oriented regions.

Enforcing that a line in 3d (which has four degrees of freedom) intersects a
specified point kills two degrees of freedom. Thus making all L lines go through a
specified point would reduce by 2L degrees of freedom. However the intersection
point itself A is not fixed and has 3 degrees of freedom, thus only 2L − 3 degrees
of freedom are lost, corresponding to taking 2L− 3 single residues. We distinguish
between two types of residue, each of which has a different geometrical interpretation.
The first is the intersection of two loop lines which are currently not connected by
any set of intersecting lines (see left-hand side of figure 5.3). Taking the maximal
possible number of such intersections results in a maximal tree configuration.3 These
we will refer to simply as intersections. The second type occurs when we merge two
separate intersection points along a line (see right-hand side of figure 5.3) which we
shall call a sliding. An all-in-one-point cut then consists of (L−1) intersections and
(L−2) slidings to make a total of 2L− 3.

To perform an intersection, for example (AiBi) ∩ (AjBj) depicted on the left
in figure 5.3, we parameterise the point Aj as Aj = Ai + aBi + bZ∗ and take the
residue b = 0. Similarly to the discussion at three loops leading to (5.1.5), any
such intersection saturates one positivity condition, 〈AiBiAjBj〉 = 0, and does not
generate any new inequalities. The order in which these are performed is also not
important. The all-in-one-point cut consists of L− 1 intersections, therefore (L− 1)
of the (2L− 3) mutual positivity conditions are trivialised and no new inequalities
arise.

The remaining (L − 2) mutual positivity conditions are handled by slidings.

3More precisely the graph obtained by replacing each loop line with a vertex joined by edges if
and only if the respective loop lines intersect should be a maximal tree on L vertices.
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Li

Lj•

•

Lk

Li1

Li2

Lin
Lj1

Lj2

Ljm

•

•

Figure 5.3: A graphical representation of the two types of residues
discussed here. On the left is an intersection between
lines Li and Lj, which we label as (i, j). On the right
is a sliding between the sets of lines Li1 , Li2 , ..., Lin

and Lj1 , Lj2 , ..., Ljm , which we label as (I, J) ≡
(i1i2...ink, j1j2...jmk).

However, unlike the residues corresponding to the intersections, here new inequalities
are generated. Let us begin by determining what happens when a residue is taken
corresponding to a single sliding, for example the one depicted on the right in figure
5.3. We start off with two sets of lines intersecting at two different points, with one
common loop that the two intersection points lie on.

Let I and J be the sets of labels of the two groups of intersecting lines, k = I ∩J
labels the line in common, and A,A

′ label the intersection points of the groups of
lines I and J respectively, so

A =
⋂
i∈I

Li = Ak + c1Bk ,

A
′ =

⋂
j∈J

Lj = Ak + c2Bk .
(5.1.17)

In this parametrization the mutual positivity relation between loops in I and J reads

〈AiBiAjBj〉 = (c2−c1)〈AkBiBkBj〉 > 0 , for all i ∈ I , j ∈ J . (5.1.18)

As in the three loop case, the brackets factorize, giving rise to two almost disconnected
regions (see (5.1.16). The geometric sliding residue is then calculated by taking the
limits (c2 − c1) → 0±, leaving two regions with opposite orientation. A “positive"
region for which 〈AkBiBkBj〉 > 0 for all i ∈ I, j ∈ J and a “negative" region for
which 〈AkBiBkBj〉 < 0 for all i ∈ I, j ∈ J .

To compute an all-in-one-point cut we must take L − 2 sliding residues, each
of which splits the geometry of the boundary in two parts. If we label slidings by
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the index a = 1, ..., L−2 then we can identify a sub region with fixed orientation
through the string ~s = {s1, · · · , sL−2}, where sa = ±1 and keeps track of the signs
of positively and negatively oriented regions. The resulting geometry is the union of
these regions

Rdc =
⋃
~s

Rdc
~s

Rdc
~s = A(L)

dc ∩ {A,Bi : sa〈ABiBkaBj〉 > 0, a = 1, .., L−2, i ∈ Ia, j ∈ Ja}
(5.1.19)

orientation of Rdc
~s =

∏
a

sa

where we recall that A(L)
dc is the deepest cut geometry, obtained by trivialising

the loop-loop inequalities of the amplituhedron and sending Ai → A (5.1.11). In
particular this region depends explicitly on the sequence of boundaries we took to
approach the geometry through the sets Ia, Ja.

Note that (5.1.19) generalises directly to describe the all-in-one-point cut geo-
metry for amplituhedrons at any number of points. One just needs to add a
Y ∈ Gr(k, k + 4) into each bracket and modify A(L)

dc appropriately.

Example: Four Loop all-in-one-point Cuts

Let us illustrate (5.1.19) by giving an explicit example at four loops. Each 4 loop all-
in-one-point cut is given by 3 intersections and 2 sidings. Denoting the intersection
between lines Li and Lj by (i, j) and a sliding between the sets of lines I and J as
(I, J), we explore the cut

{(1, 2), (1, 3), (1, 4) ; (12, 13), (123, 14)} , (5.1.20)

represented in Figure 5.4a. From (5.1.19), the resulting geometry is given by a union
of four regions:

R1(D1) = A(L)
dc ∧ 〈AB2B1B3〉 > 0 ∧ 〈AB2B1B4〉 > 0 ∧ 〈AB3B1B4〉 > 0 , +

R2(D1) = A(L)
dc ∧ 〈AB2B1B3〉 < 0 ∧ 〈AB2B1B4〉 > 0 ∧ 〈AB3B1B4〉 > 0 , −

R3(D1) = A(L)
dc ∧ 〈AB2B1B3〉 > 0 ∧ 〈AB2B1B4〉 < 0 ∧ 〈AB3B1B4〉 < 0 , −

R4(D1) = A(L)
dc ∧ 〈AB2B1B3〉 < 0 ∧ 〈AB2B1B4〉 < 0 ∧ 〈AB3B1B4〉 < 0 , +

(5.1.21)

where A denotes the final point that all loops intersect, and the orientation of the
regions is indicated on the right by a ‘+′ or ‘−′. In particular, R1, R4 have the same
orientation and R2, R3 have the same orientation but opposite to R1, R4.

We see that this four loop all-in-one-point cut geometry has an internal boundary
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L1
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L2

L3•
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c1
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L3
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L4

•c2

D1 D2

Figure 5.4: Graphical representation of the four loop all-in-one-
point cut labelled in (5.1.20). The all-in-one-point cut
corresponds to drawing a tree configuration, and col-
lapsing the graph so that only one intersection point
remains. The intersections are given by pairs of inter-
secting lines Li, Lj. The slidings are labelled in the
order they should be done, c1, ..., cL−2. Each slide cor-
responds to moving one intersection point along a line
in the direction dictated by the red arrow until it meets
another intersection point.

at 〈AB2B1B3〉 = 0 and external boundaries at 〈AB2B1B4〉 = 0, 〈AB3B1B4〉 = 0.
The corresponding multiple residue has poles in these positions.

Recall that at 3 loops all possible ways of reaching the all-in-one-point cut
configuration result in the same geometry (5.1.16). At 4 loops on the other hand
there are twelve different possible geometries. They are all equivalent to each other
up to permutations. That is they are all given by (5.1.21) after permuting the Bi

(permuting B2, B3 in (5.1.21) gives back the same geometry up to swapping the
overall orientation and so there are only 12 inequivalent permutations rather than
24).4 Thus the corresponding action of taking residues on a permutation invariant
object such as the loop integrand yields the same result for all twelve four-loop
all-in-one-point cuts. From 5 loops however there are genuinely different all-in-one-
point cuts giving different results when the corresponding residues are taken on a
permutation invariant object.

4The choice of all-in-one-point cut D2 = {(1, 2), (1, 3), (2, 4) ; (12, 13), (123, 24)} illustrated in
figure 5.4b looks like a different case at first sight but in fact results in the same geometry as (5.1.21)
after permuting B1 and B2.
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5.2 All in one point and plane cuts

One of the attractive features of the deepest cut defined in [113] was that its canonical
form was defined by a simple formula at all loops. This was because the all-in-
one-point configuration (5.1.11) consists of L independent one loop inequalities
and no loop-loop inequalities and the resulting geometry thus factorises. We have
seen however that any action of taking consecutive boundary components to reach
the deepest cut configuration gives non-unique geometries which are more involved
than (5.1.11) and in particular new loop-loop inequalities of the form 〈ABiBjBk〉 > 0
are generated, spoiling this factorisation. The presence of these brackets makes the
computation of the canonical form much more challenging and also dependent on
the particular sequence off boundaries taken to reach all-in-one-point configuration.

In this section we will show that despite this complication it can still be possible
to find fairly simple all loop geometries by taking further residues after reaching the
all-in-one-point cut configuration that trivialize all the new 〈ABiBjBk〉 inequalities.
The further cuts constrain the loop lines to all lie in the same plane as well as
going through the same point. They are thus simultaneously all-in-one-point and
all-in-one-plane cut configurations. We will thus refer to them as all-in-one-point-
and-plane cuts or point-and-plane cuts for short. They are defined in terms of the
point A which all loop lines go through together with the plane (AP1P2) which all
loop lines lie on. It is useful also to project through the point A and thus reduce the
geometry to 2d, in which case we refer to the plane P instead as a line.

If we project through the common intersection point A, the geometry of the
cut correspond to L points Bi on an oriented line P in P2. Starting at 4 loops,
the 〈ABiBjBk〉 inequalities force some ordering between the points on P . As a
practical consequence, this implies that an all-in-one-point-and-plane cut can itself
also have further loop-loop type boundaries at Bi = Bj. Thus taking the residues
/ boundaries on these effectively reduces the number of free loop variables further.
We call a cut for which we have exhausted all loop-loop type residues a maximal
loop-loop cut. All the maximal loop-loop cuts that we have considered correspond
– up to a permutation of the Bs and an integer factor arising from the number of
internal boundaries taken in reaching there – to the three loop maximal loop-loop
cut (which is also the unique all-in-one-point-and-plane cut)

AL=3
mll =

{
A,P,Bi = P1 + biP2 : 〈ABij̄k̄〉 > 0 : i = 1, 2, 3, 1 ≤ j < k ≤ 4

}
.

(5.2.1)
We conjecture this to hold in general, that is the maximal loop loop cut always
reduces to the three loop one, AL

mll = AL=3
mll .

In this section we will show how to compute the geometry and the canonical
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form of the all-in-one-point-and-plane cut from the amplituhedron. We will start
with the 2 and 3 loop cases, which contain all the main features of the problem.
Then we will look at the geometry of the only 2 independent (up to permutations of
the loop lines) all-in-one-point-and-plane cuts at 4 loops, and finally we will define
a particular cut at arbitrary loops and compute its canonical form.

5.2.1 All-in-one-point-and-plane canonical form at 2 loops

At higher loops one can take further boundaries of the all-in-one-point configuration
so that the lines all lie in a single plane. But at two loops we only have two lines
intersecting in a point so they automatically lie in the same plane. Thus the all-in-
one-point and the all-in-one-point-and-plane cases are identical. Nevertheless it is
useful to rewrite the two loop all-in-one-point case in the same variables we will use
at higher loops, namely in terms of a single line P in P2 (after projection through
A) on which the Bis lie (each now with 1 degree of freedom).

At two loops the all-in-one-point cut is obtained simply by taking the residue in
〈A1B1A2B2〉 of (5.2.9) and is thus given by

A(2)
dc =〈AB1d

2B1〉〈AB2d
2B2〉〈1234〉3〈Ad3A〉

〈AB114〉〈AB112〉〈AB223〉〈AB234〉
×

×
[

1
〈AB134〉〈AB212〉

+ 1
〈AB123〉〈AB214〉

]
+ B1 ↔ B2 . (5.2.2)

The deepest cut formula of [113] is however a completely different-looking yet
identical formula for A(2)

dc obtained by computing the canonical form of its cor-
responding geometry (5.1.11) (we recall that at two loops this correctly reproduces
the corresponding residue but not beyond).

Following [113], the first step in computing the canonical form is to tile the A
geometry into regions where the brackets 〈Aijk〉 have a well defined sign. Let’s derive
such a tiling for the intersection point A = A1B1 ∩A2B2. Since the intersection point
A can occur at any point along a loop line, the allowed space for A can be computed
as the linear combination A = c1A1 + c2B1, where A1B1 lives in the amplituhedron.
Notice, that the intersection point A is defined up to a sign, so we can fix for example
c1 > 0. Solving the inequalities one finds that the allowed regions for A correspond
to 4 twisted cyclic permutations5 of the solution

〈A123〉 > 0, 〈A124〉 > 0, 〈A134〉 < 0, 〈A234〉 > 0 . (5.2.3)

All these cyclically related A regions are tetrahedra, and their canonical forms ωi(A)
(where we assign the label i = 1 to region (5.2.3) and the other values to its cyclic

5Zi → Zi+1 for i = 1, 2, 3 and Z4 → −Z1.
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twisted permutations) can be written as ωi(A) = (−1)iω(A), with

ω(A) = 〈Ad3A〉〈1234〉3

〈A123〉〈A234〉〈A134〉〈A124〉
. (5.2.4)

We can now project through A onto a plane not containing A and the remaining
geometry is two dimensional. The configuration of Zi arising from (5.2.3) is such
that 1, 2, 3 form an anti-clockwise oriented triangle containing 4:

1

3 23 ∩ 14

4

2

(5.2.5)

Now we can analyze the B inequalities

〈AB14〉 > 0 , 〈AB23〉 > 0 , 〈AB34〉 > 0 , 〈AB12〉 > 0 , (5.2.6)

which one can see putsB inside the shaded triangle in (5.2.5), with vertices {4, 3, (23)∩
(14)}. For general i after cycling we have that the Bi are in the triangle with edges
(i+2 i+3), (i i+4), (i+1 i+2) and vertices

Wi1 = i+2 ,Wi2 = i+3 ,Wi3 = (i+1 i+2) ∩ (i i+3) . (5.2.7)

For fixed i, our problem now simply reduces to computing the canonical form of two
points B1 and B2 living independently inside the triangle (Wi1Wi2Wi3). Each point
Bi thus has the canonical form of a triangle and we obtain the two loop deepest cut
form as

A(2)
dc =

4∑
i=1

(−1)i〈Ad3A〉〈1234〉3

〈A123〉〈A234〉〈A134〉〈A124〉

2∏
L=1

〈ABLd
2BL〉〈AWi1Wi2Wi3〉2

〈ABLWi1Wi2〉〈ABLWi2Wi3〉〈ABLWi3Wi1〉
.

(5.2.8)

Remarkably, this is indeed equal to (5.2.2).
But we now wish to rewrite this further in a way appropriate for the higher loop

all-in-one-point-and-plane cut. So instead of considering the Bi living in 2d, we
consider first fixing a line P and then two points B′

1, B
′
2 living on the 1d line P .

The Jacobian of the transformation from B1, B2 to P,B′
1, B

′
2 is given by

〈AB1d
2B1〉〈AB2d

2B2〉 = 〈AZ∗B
′
1B

′
2〉〈AZ∗B

′
1dB′

1〉〈AZ∗B
′
2dB′

2〉〈APdP1〉〈APdP2〉
〈AZ∗P 〉3 ,

(5.2.9)
where Z∗ is a fixed element of P3 such that 〈AB1B2Z∗〉 6= 0. Notice that the 2-loop
deepest cut is symmetric in B1 and B2, but becomes anti-symmetric in B′

1, B
′
2. This
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corresponds geometrically to the fact that switching B1, B2 flips the orientation of
the configuration on the right. We will shortly see how this symmetry is reflected
in the amplituhedron geometry in the new variables. From now on we will drop the
primes on the Bis.

The task is now to translate the geometry of two points in a triangle to that of a
line through a triangle and two points on that line. We start by observing that the
geometry of a line through a triangle can be tiled into 3 regions. These correspond
to the combination of the 3 ways in which the line P can intersect the edges of the
triangle. However it will turn out that we also need to consider which side B1 is of
B2 (due to the orientation switch mentioned above) and so we in fact need to split
into 6 regions.

Wi,3

Wi,2

Wi,1

B1 B2

P

Wi,3

Wi,2

Wi,1

B2 B1

P

(5.2.10)

Let’s consider one of these 6 regions, the one on the left in (5.2.10). It is described
by the inequalities

〈PWi,1〉 > 0 , 〈PWi,2〉 < 0 , 〈PWi,3〉 > 0 ,
〈BlWi,jWi,j+1〉 > 0 , with j = 1, 2, 3 and l = 1, 2 ,
〈Wi,2B1B2〉 < 0 ,

(5.2.11)

with the last inequality ensuring that B1 and B2 are ordered.
Then all 6 configurations can be generated by cyclic permutations of (5.2.11)

together with B1 ↔ B2. We will use p = 1, 2, 3 to label the cyclic permutations
of (5.2.11), with p = 2 corresponding to the case (5.2.11).

The canonical form λi,p(P ) corresponding to a line through the triangle is the
same for all p = 1, 2, 3 and equal to

λi,p(P ) = λi(P ) = −〈PdP1〉〈PdP2〉〈Wi,1Wi,2Wi,3〉
〈PWi,1〉〈PWi,2〉〈PWi,3〉

, with p = 1, 2, 3 . (5.2.12)

For fixed i and p, the geometry of B1 and B2 corresponds to two points living on
the segment with vertices Ii,p = (Wi,p−1Wi,p) ∩ P and Ji,p = (Wi,pWi,p+1) ∩ P .

The canonical form of a point B on a segment (IJ) in P1 can be written in
general as

[I;B; J ] := 〈JdB〉
〈JB〉

− 〈IdB〉
〈IB〉

= 〈BdB〉〈IJ〉
〈BI〉〈JB〉

. (5.2.13)
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For our application the 1d segment lives in P2 (well really in P3 but we already
projected through A onto P 2). We can choose any point to project onto the segment,
call this Z∗,6 then all the two brackets in the above formula can be viewed as 3-
brackets with an additional Z∗ and in turn eventually as 4-brackets with an additional
A (so eg 〈BdB〉 = 〈Z∗BdB〉 = 〈AZ∗BdB〉 etc.)

Then, the canonical form for B1, B2 ordered on the segment (IJ), with I < B1 <

B2 < J can be written as

[I;B1, B2; J ] := [I;B1; J ][B1;B2; J ] = [I;B1;B2][I;B2; J ] , (5.2.14)

and similarly for arbitrary numbers of ordered Bi on (IJ) we define inductively

[I;B1, .., BL; J ] := [I;B1, .., BL−1; J ][BL−1;BL; J ] . (5.2.15)

Now we claim that the canonical form for two free points B1, B2 in a triangle
translates as follows

2∏
l=1

〈ABld
2Bl〉〈AWi1Wi2Wi3〉2

〈ABlWi1Wi2〉〈ABlWi2Wi3〉〈ABlWi3Wi1〉
= λi(P )

3∑
p=1

(
[Iip;B1, B2; Jip]−[Iip;B2, B1; Jip]

)
.

(5.2.16)
Note in particular the minus sign between the canonical forms for the two orderings of
B1, B2. This is because the orientation flips when B1 passes through B2 as discussed
below (5.2.9).

We can finally put all the pieces together and write the canonical form A(L)
dc in

terms of these variables as

A(2)
dc = ω(A)

4∑
i=1

(−1)iλi(P )
3∑

p=1

(
[Iip;B1, B2; Jip] − [Iip;B2, B1; Jip]

)
. (5.2.17)

An interesting aspect of this formula is that each term in the sum has a pole at
B1 = B2. For i, p fixed this represent an internal boundary of the geometry. The
sum of the residues over p though, as expected from (5.2.2), is equal to zero, which
means that this pole is actually a spurious one. Geometrically, we have that when
the only two points on P coincide the latter can rotate unconstrained on the pivotal
point B1 = B2 and therefore its canonical form will be zero.

5.2.2 3-loops all-in-one-point-and-plane canonical form

We can now generalize the two loop result to higher loops. To compute the canonical
form of a point-plane cut, we tile the A and P geometry in the same way we did

6Note that a natural point to choose for Z∗ is the intersection point of the two edges that P is
passing through, Wi,p. Then the intersection points Iip ∼ Wi,p−1 and Jip ∼ Wi,p+1 and thus the
formulae dramatically simplify.



100 Chapter 5. Loop-Loop Cuts

for the two loop case and then we consider the position of Bs on the line P . The
general structure of the canonical form of a specific point-plane cut will depend on
the details of how the cut is taken, but it will always have the general form

A(L)
point-plane = 2nIω(A)

4∑
i=1

(−1)iλi(P )
3∑

p=1

∑
σ∈SL

cσ × [Iip;Bσ1 , .., BσL
; Jip] , (5.2.18)

where cσ = ±1, 0 reflecting the orientation (or absence) of a certain ordering of the
Bis and where nI is the number of internal boundaries approached to reach the
configuration. So for example the two loop case (5.2.17) takes this form with cid = 1
and c(12) = −1. Turning to the three loop case then, we find, by direct computation
of the residues, that the point-plane cut is given by (5.2.18) with cσ = 1 for all 6
permutations σ ∈ S3. Thus unlike the two loop case, for this case, the order of the
Bls on the line P is not relevant and the canonical form simplifies to that of the
product of three Bls

A(3)
point-plane = 2ω(A)

4∑
i=1

(−1)iλi(P )
3∑

p=1

3∏
l=1

[Ii,p;Bl; Ji,p] . (5.2.19)

Let us then see how this arises from the geometry. As we saw in section 5.1.2, the
three loop all-in-one-point cut geometry is given by (5.1.16). In particular, we have
a positively oriented region for 〈AB1B2B3〉 > 0 and a negatively oriented region
for 〈AB1B2B3〉 < 0. Now consider fixing the line P (with B1 and B2 lying on P )
and fixing B3. Now consider passing B1 through B2 on the line P . As we saw in
the two loop case the orientation for the geometry involving B1, B2 will swap, but
simultaneously 〈B1B2B3〉 → −〈B1B2B3〉 and so the overall orientation will also swap
(see (5.1.16)). The result is no orientation change at all. We are now interested in
the geometry of the internal boundary 〈AB1B2B3〉 = 0 so moving B3 also onto the
line P . The point B3 is free to go anywhere on the line P (inside the triangle). The
resulting geometry is indeed just that of three free points on the line P with the
canonical form (5.2.19), including the factor of 2 from taking an internal boundary.

Notice that in this case there are no remaining singularities of the form Bi → Bj

so A(3)
point-plane also represents what we call a maximal loop-loop cut and 2AL=3

mll :=
A(3)

point-plane.

5.2.3 All 4-loop point-plane and maximal loop-loop cuts

We have seen that at 3-loops the all-in-one-point-and-plane cut is unique (5.2.19).
At 4-loops this is not true anymore and we can have two types of geometry (modulo
permutations) resulting from approaching the point-plane configuration in different
ways. Each will be characterized algebraically by different coefficients cσ in (5.2.18)
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and geometrically by different ordering constraints of the Bs on the line P .
We start with the all-in-one-point cut which is unique up to permutations of the

loop lines and the resulting geometry given by (5.1.21). We now consider taking
further boundaries of this geometry so the loops also lie in a plane. There are 3
possible loop-loop boundaries, 〈AB2B1B3〉 = 0, 〈AB2B1B4〉 = 0 and 〈AB3B1B4〉 = 0.
We start by looking at the geometry of the boundary when B3 lies on the line P (on
which B1, B2 lie) followed by the boundary of that geometry found when B4 also
approaches P (shortly we will switch the order of in which we take these boundaries).

The resulting geometry is of the four points Bi on the line P inside the triangle,
with the following restrictions: B1 is not allowed to be between B2 and B3 and the
orientation depends on the relative position of B1 and the pair B2, B3 (with the
position of B4 unconstrained). This geometry is derived in appendix C.2.

The cut resulting from this geometry is then given by the general form (5.2.18)
with

nI = 2 cσ =


1 σ = (2, 3, 1)� (4) or (3, 2, 1)� (4) ,

-1 σ = (1, 2, 3)� (4) or (1, 3, 2)� (4) ,

0 σ = (2, 1, 3)� (4) or (3, 1, 2)� (4) ,

(5.2.20)

where � is the shuffle operation (thus 4 can appear in any position). We have
checked this is indeed correct by explicitly taking the corresponding residues of the
4 loop amplitude and finding perfect agreement.

Now note that even after taking the all-in-one-point and the all-in-one-plane
configuration there are still uncancelled loop-loop poles at B1 = B2 and B1 = B3,
corresponding geometrically to external boundaries.

Using the very simple residue structure of the ordered points on an interval
canonical form, namely

ResBk→Bj
[I; .., Bi, Bj, Bk, Bl..; J ] = −ResBk→Bj

[I; .., Bi, Bk, Bj, Bl..; J ] = [I; .., Bi, Bj, Bl..; J ] ,
(5.2.21)

one can quickly check that the residue of the four-loop point-plane cut (5.2.20) when
B1 = B2 or B1 = B3 precisely reproduces the three-loop point-plane cut (5.2.19) with
appropriate variables and with weight 4 instead of 2 (since this time we approached
two internal boundaries, 〈AB2B1B3〉 = 0 and 〈AB2B3B4〉 = 0). This implies that
the residue corresponding to this 4-loop maximal loop-loop boundary is equal to 2
times the all-in-one-point-and-plane 3-loop residue (C.1.12).

Returning to the all-in-one-point cut, we now consider the only other independent
way of reaching the point-plane geometry (modulo permutation of the loop variables)
by taking 〈AB2B1B4〉 = 0 by sending B4 to the line P followed by sending B3 to
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the line P (the other way around to what we did above). In appendix C.2 we again
examine this carefully geometrically. The end result this time is the geometry of four
points Bi unconstrained on the line P but with the overall orientation dependent on
the ordering of B1, B2. The resulting canonical form is thus given by (5.2.18) with

nI = 1 cσ =

 1 σ = (2, 1)� (3, 4) ,

-1 σ = (1, 2)� (3, 4) ,
(5.2.22)

as we have confirmed by taking the residues explicitly and comparing.
Note that this time there is a remaining loop-loop residue apparent at B1 → B2

(corresponding to an internal boundary). Taking the residue as above this again
leads to the three loop point-plane result (5.2.19) after which no more loop loop
residues are present. This final configuration corresponds to the 3-loop maximal cut
Amll with weight 2.

5.2.4 A cut at arbitrary loop order

We have already seen from the four loop examples of the previous section that the
point-plane cut depends on how you approach the configuration. However one can
give specific ways of approaching the point-plane geometry at any loop order and find
the resulting cut. So we conclude this section by giving precisely such an example
of a cut that can be computed at arbitrary loop order. This means that we are
now specifying an ordered set of residues and giving a closed formula for the result.
The particular case is a generalisation of the second 4-loop case considered in the
previous subsection.

We start defining what we call the simplest all-in-one-point cut. In this all loop
lines first intersect the line A1B1 and then they all slide to the same intersection
point in the same order as their labeling. The geometry of this boundary at L loops
can be obtained from (C.3.4) and is given explicitly in appendix C.3.

After taking the above all-in-one-point cut we then constrain all loops to lie on
the same line P , first B1, B2 then BL, BL−1, .., B3 thus taking the ordered series of
boundaries {〈AB2B1BL〉 = 0, 〈AB2B1BL−1〉 = 0, · · · , 〈AB2B1B3〉 = 0}.

Carefully examining the resulting geometry as is done explicitly in appendix C.3,
we arrive at the final geometry corresponding to this point-plane cut. It is given
by L points Bi lying on the line P , with B3, BL unconstrained and with B1 always
lying between B2 and all of the points B4, .., BL−1. The orientation of the geometry
depends on the relative order of B1, B2. The resulting canonical form at arbitrary
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loop order is thus

A(L)
point-plane =2

4∑
i=1

ω(A)
3∑

p=1
λi,p(P )[Ii,p;B3; Ji,p][Ii,p;BL; Ji,p] ×

×
(

[Ii,p;B2, B1; Ji,p]
L−1∏
l=4

[B1;Bl; Ji,p] + (−1)L−1[Ii,p;B1, B2; Ji,p]
L−1∏
l=4

[Ii,p;Bl;B1]
)
.

(5.2.23)

We tested (5.2.23) by computing this simplest maximal loop-loop residue up to 7
loops from the explicit from of the amplitude obtained in [98] and found complete
agreement. We see that this point-plane cut has further poles when Bl → B1. We
have checked up to 5 loops that taking further residues in these poles eventually leads
to the 3 loop point-plane cut (5.2.19). Indeed our investigations so far indicate that
after taking any all-in-one-point-and-plane geometry at any loop order, there are
always L− 3 boundaries of the form Bi → Bj remaining. After further taking these
boundaries we are then always lead to the three loop point-plane geometry (5.2.19).
It might be possible to prove this starting from the explicit all-in-one-point geo-
metry (5.1.19).

5.3 Summary

The residue of the canonical form of a WPG is equal to the canonical form of the
corresponding boundary. Therefore, the knowledge of the geometry of a boundary
of the amplituhedron and its canonical form gives important information on the
analytic structure of the amplitude.

In this chapter, we started by describing how to compute algebraically the so-
called all-in-one-point cut on any loop amplitude. In particular, we showed that the
all-in-one-point cut is not unique and depends on the order in which the residues
that compose it are taken. Also, we showed that, starting at three-loop, brackets of
the form 〈ABBB〉 are generated and these correspond to poles of the cut.

One of the main results of [2] described in this chapter is the derivation of the
geometry of any all-in-one-point cut. Given an all-in-one-point cut, its geometry is
simply given by (5.1.19). The geometry of the all-in-point cut is characterized by
a new set of loop-loop inequalities of the form 〈ABiBjBk〉 > 0. In the last section,
we showed that it is possible to find fairly simple all-loop geometries by taking
further residues after reaching the all-in-one-point cut configuration that trivializes
all brackets of the form 〈ABiBjBk〉 > 0. In such a cut all loop-lines intersect at a
point and lie on the same plane. We derived the canonical form of one of these cuts
and give its expression in equation (5.2.23).
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Even when we have trivialized all the 〈ABiBjBk〉 brackets more residues involving
pairs of loops are possible. These residues correspond geometrically to making two
loop lines coincide. We call a cut for which we have exhausted all loop-loop type
residues a maximal loop-loop cut. We conjecture that all maximal loop-loop cuts
are always equal to the 3-loop maximal loop-loop cut up to an integer which can
be understood geometrically as the number of internal boundaries crossed in the
residue.



Chapter 6

Geometry of the Product of
Amplitudes

The content of this chapter has been published in the paper [1].

The main purpose of this chapter is to present the results obtained in [1] in
investigating the squared amplituhedron conjecture and the geometry of the product
of parity conjugate superamplitudes. In particular we will present the proof that
at tree-level in all cases with minimal number of points, the squared amplituhedron
indeed gives the square of the amplitude.

We will focus almost entirely on the case of amplituhedron-like geometries with
minimal number of points (maximal MHV degree) ie k = n−m where m = 4 in
the physically interesting case but we often consider general m also. This is a big
simplification and in particular means that the external data is trivialised. For
the amplituhedron itself this case corresponds simply to the anti-MHV amplitude.
However, for amplituhedron-like geometries there is a very rich structure even in this
sector. It contains all amplitudes multiplied by their parity conjugate amplitudes,
but there is evidence that the individual amplitudes themselves can be extracted
from this combination [117]. Furthermore this sector corresponds to taking various
light-like limits of four-point correlators about which there is a wealth of concrete
information. Their integrands have a hidden permutation symmetry [90] and this
has helped obtain their explicit expression up to ten loops [97,98,118].

We will use the following notation to distinguish between geometrical regions, the
corresponding expression in bosonised superspace, and the corresponding expression
in superspace:

geometry bosonised superspace superspace
amplituhedron An,k,l An,k,l An,k,l

amplituhedron-like H (f ;l′)
n,k,l H

(f ;l′)
n,k,l H(f ;l′)

n,k,l
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So in particular the expression in bosonised superspace is obtained form the geometry
by taking the canonical form An,k,l = Ω(An,k,l) and H

(f ;l′)
n,k,l = Ω(H (f ;l′)

n,k,l ) and the
expression in superspace is obtained from the expression in bosonised superspace by
integrating out the auxiliary Grassmannian variables φ appearing in (3.2.3).

The squared amplituhedron (3.5.15) is a similar geometry to the amplituhedron-
like geometry, constrained just by proper boundary inequalities but with no version
of the winding condition and it can thus be viewed as the union of all amplituhedron-
like geometries. The square of the superamplitude with fixed MHV degree k = n− 4
is given by the sum over k′ of the product of the Nk′MHV amplitude, An,k′ and
its conjugate An,n−k′−4. The number of terms in this sum coincides precisely with
the number of inequivalent geometries tiling the squared amplituhedron. It is thus
natural to propose a precise relation namely that: the amplituhedron-like geometry
with flipping number f , H (f)

n,k , gives the product of the NfMHV superamplitudes
and its conjugate,

H
(f)
n,n−4 = An,f ∗ An,n−f−4 . (6.0.1)

We also make a similar proposal at loop level introducing a flipping number for loops
l′

H
(k′,l′)
n,n−4,l =

(
l
l′

)
An,k′,l′ ∗ An,n−k′−4,l−l′ . (6.0.2)

A proposal along these lines was previously made in [109] for the MHV case with
arbitrary number of points H(0;l′)

n,0,l . At first sight this is a different sector to the
case we consider. However, due to factorisation of anti-MHV amplitudes this in
fact corresponds to H

(f ;l′)
n,f,l and we will prove the relation for this case as well as

at tree level. Here the product of amplitudes in superspace becomes a particular
combination we call the star product of bosonised superamplitudes. We will give a
precise definition of this star product.

It is also possible to give an alternative characterisation of amplituhedron-like
geometries analogous to the original definition of the amplituhedron. Tree-level
amplituhedron-like geometries with flipping number f are given in terms of a subset
of the set of matrices C ∈ Gr(k, n) projected through Z. However, rather than this
subset of matrices C having positive ordered maximal minors (which would give the
amplituhedron) instead it is made up by stacking two submatrices C1 (an f × n

matrix) and alt(C2) (a (k−f) ×n matrix) where C1 and C2 have all positive ordered
maximal minors and the matrix alt(C2) is formed from C2 by flipping the sign of
every odd column. A similar alternative characterisation of the amplituhedron-like
geometry can also be made at loop level.

Combinations of onshell diagrams (arising from BCFW recursion) result in tilings
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of the amplituhedron. In a similar way we show that at tree-level pairs of onshell
diagrams give a direct tiling of the amplituhedron-like geometry. This fact can then
be used to prove (6.0.1) for all multiplicity and winding number. We also prove
the proposal at loop level in the simplest case of maximal (or equivalently minimal)
flipping number f giving MHV×anti-MHV at specified loop levels at all multiplicity
and loop order.

Having understood the amplituhedron-like geometries it is interesting to return
to the squared amplituhedron which is the union of amplituhedron-like geometries
with different flipping number. The square of the superamplitude shares with the
superamplitude the property that it has only proper poles and dlog divergences.
Differently from the superamplitude however, its maximal residues are not all nor-
malizable to ±1, 0. This implies that the squared amplituhedron is not a PG but a
GPGs

Finally, all the geometries cited so far are defined by a system of inequalities
depending on the kinematic data as parameters. Thus it is interesting to see if
there are any other obvious further generalisations of the amplituhedron geometry
for example by considering similar defining inequalities but with different choices of
signs. As a modest step in this direction we examine carefully the consequence for
such a geometry of demanding it has a manifest cyclic canonical form. While the
canonical form, i.e. the amplitude, is invariant under the rescaling of the external
data Zi → λZi, the geometry is invariant only under positive rescaling λ > 0.
Nevertheless, geometries related by such a transformation with λ < 0 have the same
canonical form. We thus define geometries to be equivalent if they are related by a flip
of some Zs. This type of observation has already been a fundamental ingredient for
proving perturbative unitarity using the amplituhedron [34]. Examining all possible
versions of manifest geometrical cyclicity we find that all are equivalent to either cyclic
or twisted cyclic geometries, thus drastically cutting down the different geometries
under consideration. As a result of this line of thinking We find an equivalence
relation between amplituhedron-like geometries with complementary flipping number
and new bounds for the values that they can assume. The transformation linking
the two equivalent geometries corresponds to Zi → (−1)iZi, a map that is closely
related to parity [21]. Using similar ideas, we consider also the maximally nilpotent
correlator Gn−4,n and we prove that all the geometries with the minimal requirements
to be compatible with correlator pole structure are equivalent to the correlahedron.

This chapter is structured as follows. In section 6.1 we introduce the formulation
of the superamplitude in dual momentum twistor variables and we review the bo-
sonised superamplitude with some emphasis on its normalization. Then, we define
the superamplitude squared and define a product between functions directly in the
bosonised superamplitude space which we call * product. In section 6.2 we define the
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amplituhedron-like geometries and we state our conjecture for the canonical form
of amplituhedron-like geometries as products of amplitudes at tree as well as loop
level. Then we define the squared amplituhedron as the union of all amplituhedron-
like geometries and we conjecture that its (oriented) canonical form corresponds
to the square of the superamplitude. We also give an alternative definition of the
amplituhedron-like geometry as a projection of the positive and the alternating pos-
itive Grassmannian which we will then use to prove our conjecture at tree level. In
section 6.4 we show how any plane in the amplituhedron-like geometry can be seen
as the product of two planes each belonging to one amplituhedron and we use this
fact along with on-shell diagrams to prove our conjecture at tree level. We then
give a proof of the conjecture at all loops for the product of MHV and anti-MHV
amplitudes. We conclude the section by looking at some explicit computations for
n ≤ 7 and to some generalized amplituhedron-like geometries for m = 2, 6, 8. In
section 6.5 we formulate a refined version of our conjecture for the canonical form
of regions in the amplituhedron-like geometries characterized by a precise set of
inequalities called sign-flip pattern. Finally in section 6.6 we study the equivalence
relations between geometries with a cyclic canonical form and we find that for each
equivalence class we can always choose cyclic or twisted cyclic representatives. We
then consider the maximal nilpotent correlator Gn,n,4 and prove that all consistent
geometries are equivalent to the correlahedron.

6.1 Product of amplitudes in amplituhedron
space

The superamplitude squared (2.3.11) can be bosonized in the same way as the
superamplitude and therefore mapped to a differential form on the Grassmannian,
which we will refer as the amplituhedron space. The superamplitude squared is
given by a sum of products of amplitudes and we would like therefore understand
the outcome of taking the product of amplitudes directly in amplituhedron space.
Note that this can not be given simply by the product of amplitudes in amplituhedron
space, as these will live in different spaces. Instead we define a map we call ∗ which
takes two amplitudes in amplituhedron space and produces a third amplitude in
amplituhedron space which will be equivalent to the product of the two original
superamplitudes under the map (3.2.2),(3.2.3):

Bk1+k2,4

(
An,k1(Zi)An,k2(Zi)

)
= An,k1(Zi, Yk1) ∗ An,k2(Zi, Yk2) . (6.1.1)
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Note that the ∗ takes an object in k1+4 dimensions and an object in k2+4 dimensions
and outputs an object in k1+k2+4 dimensions.

We now give an explicit definition of this ∗ product via its action on arbitrary
dual superconformal invariants (3.2.7). So we consider the product of two dual
superconformal building blocks (3.2.4) of degree k1 and k2 respectively. In superspace
the product is clear, but what happens in the bosonised amplituhedron space when
we take the product? Generalising to arbitrary m, the bosonised invariants live in
dimensions, k1 + m and k2 + m dimensions respectively, and we want to write the
product as an object k1 + k2 +m dimensions. To keep track of the φ dependence we
will add the subscript k1 +m to the k1 +m dimensional brackets and the subscript
k2 +m to the k2 +m dimensional brackets. We label these brackets by the strings
Ia ∈

(
[n]

k1+m

)
and Jb ∈

(
[n]

k2+m

)
.

We claim that the ∗ product of bosonized brackets is given by the formula(
m∏

a=1
〈Ia〉k1+m

)
∗
(

m∏
b=1

〈Jb〉k2+m

)
= (−1)(k1k2+k2)m

m!
∑

σ∈Sm

m∏
a=1

〈Y (Ia ∩ Jσ(a))〉k1+k2+m
,

(6.1.2)

where Y is in Gr(k1+k2, k1+k2+m). Here Sm is the set of permutations of m
elements and (I ∩ J) represents an intersection in k1 + k2 +m dimensions, explicitly:

〈Y (I ∩ J)〉 =
∑

i∈M(I)
〈Y i〉 〈iJ〉 sgn(ii) , (6.1.3)

where M(I) = ( I
m ), that is the set of ordered m tuples in I, and i is the ordered

complement of i in I, that is i = I − i.
Note that if we set Y to Y0 and the Zs to Z(χ) (3.2.1) and include the normalisa-

tion factor N(k,m) then the star product formula (6.1.2) must reduce to an ordinary
product. (This is just from the defining equation (6.1.1) and the definition of the
map B (3.2.2),(3.2.3)). Thus to prove the explicit form of the star product (6.1.2)
we need to check that when Z → Z(χ):

1
N(k1,m)

(
m∏

a=1
〈Ia〉k1+m

)
1

N(k2,m)

(
m∏

b=1
〈Jb〉k2+m

)
=

= 1
N(k1 + k2,m)

(−1)(k1k2+k2)m

m!
∑

σ∈Sm

m∏
a=1

〈Y0(Ia ∩ Jσ(a))〉k1+k2+m
. (6.1.4)

We include the proof of this for m = 1 and some checks for m = 2 and m = 4 in the
appendix.
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6.1.1 NMHV squared example

As an example, let’s look at the squared amplitude (A2)6,2. This is given by two
terms

(A2)6,2 = 2A6,2 + (A6,1)2 . (6.1.5)

Now we want to express (6.1.5) as a function on the bosonised amplituhedron
superspace. The first term is the 6 points anti-MHV amplitude An,n−4 given in (3.2.9).
For the second term we start with the BCFW expression for A6,1 [73] in terms of
the 5-point NMHV-invariant (3.2.6), that is

A6,1 = [12345] + [12356] + [13456] . (6.1.6)

To compute the square of A6,1 we need the (star) product of 5-brackets. Identifying
a 5-bracket as 〈̂i〉, where î indicates the unique twistor that is not present and a
4-bracket as 〈̂iĵ〉 similarly, the star product formula (6.1.2) gives

〈̂i〉4 ∗ 〈ĵ〉4 = 〈Y îĵ〉4 〈123456〉4 . (6.1.7)

Indeed, as pointed out in [117], the result is completely fixed up to proportionality
by matching the scaling in each Z. The square of any R-invariant will be equal to
zero. We possess now all the elements to compute (A6,1)2 and obtain

(A6,1)∗2 = 2 ([12345] ∗ [12356] + [12345] ∗ [13456] + [13456] ∗ [12356]) =

= 2 〈123456〉4 〈1245〉 〈2361〉 〈3456〉 + 〈2356〉 〈3412〉 〈4561〉 + 〈3461〉 〈4523〉 〈5612〉∏3
i=1 〈i(i+1)(i+3)(i+4)〉)∏6

i=1 〈i(i+1)(i+2)(i+3)〉 ,

(6.1.8)

where the 4-brackets 〈∗〉 are short-hand for 〈Y ∗〉. Summing this result withA6,2 (3.2.9)
we obtain (A2)6,2 in amplituhedron space.

6.1.2 Product of multiple amplitudes

The product of multiple bosonised brackets can be computed just by using the
associative property of the * product. However, it’s also possible to write a direct
formula for the * product of multiple brackets. To do this notice that

〈Y (I ∩ J)〉 = 〈I(Y ∩ J)〉 . (6.1.9)



6.2. Amplituhedron-like geometries 111

which can be checked by expanding the respective intersections on each side out over
the J basis

〈Y (I ∩ J)〉 =
∑

j

〈Y j〉 〈Ij̄〉 sgn(j ∪ j̄) ,

〈I(Y ∩ J)〉 =
∑

j

〈Ij̄〉 〈Y j〉 sgn(j̄ ∪ j) . (6.1.10)

Using this alternative expression, equation (6.1.2) for the product of 2 terms naturally
generalizes to the product of t terms as(

m∏
a=1

〈I1,a〉k1+m

)
∗ · · · ∗

(
m∏

a=1
〈It,a〉kt+m

)
=

= 1
(m!)t

∑
σ∗∈(Sm)

m∏
a=1

〈I1,a(Y ∩ I2,σ2(a)) · · · (Y ∩ It,σt(a))〉k1+···+kt+m
, (6.1.11)

up to a sign which is positive for m even and depends on k1, · · · , kt for m odd.

6.2 Amplituhedron-like geometries

Having discussed the product of amplitudes in amplituhedron space we now turn to
the corresponding geometries. We define a natural generalisation of the amplituhed-
ron called “amplituhedron-like” geometries which we will prove to correspond to the
product of amplitudes in the maximal k = n− 4 case.

The sign flip definition of the amplituhedron (3.4.4) has the desirable feature
of treating the proper boundaries and the other constraints separately, so we can
modify the second while leaving the first the same. A natural generalization of these
geometries is then to relax the constraint on the number of sign flips in (3.4.4). We
thus define a tree-level amplituhedron-like geometry, H (f)

n,k , by fixing the number
of flips f . To be consistent with cyclic or twisted cyclic invariance, the proper
inequalities must be tweaked accordingly. Thus concretely we define amplituhedron-
like geometries

H (f)
n,k :=

Y ∈ Gr(k, k + 4)

∣∣∣∣∣∣∣∣∣
〈Y ii+ 1jj + 1〉 > 0 1 ≤ i < j − 1 ≤ n− 2
〈Y ii+11n〉 (−1)f > 0 1 ≤ i < n− 1
{〈Y 123i〉} has f sign flips as i = 4, .., n


for Z ∈ Gr+(k + 4, n) ,

(6.2.1)

In [109] it was proven that for a k-plane with convex Zs the maximal allowed number
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of flips is exactly k so

0 ≤ f ≤ k . (6.2.2)

We can see that the amplituhedron itself is then the case of an amplituhedron-like
geometry with f = k,

An,k = H (k)
n,k . (6.2.3)

The loop amplituhedron can also be generalised in a similar fashion. Here we
allow for an arbitrary flipping number, fj, for each loop variable. The generalization
of the loop amplituhedron is given by a Y belonging to a tree amplituhedron-like
geometry and the loop variables satisfying

H (f ;f1,.,fl)
n,k,l :=


Y, (AB)1, ., (AB)l

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Y ∈ H (f)
n,k

〈Y (AB)jii+1〉 > 0, ∀ j, ∀i = 1, ., n−1
〈Y (AB)j1n〉 (−1)fj > 0 ∀ j

{〈Y (AB)j1i〉} has fj flips as i = 2, .., n, ∀j
〈Y (AB)i(AB)j〉 > 0 ∀i 6= j


for Z ∈ Gr>(k + 4, n) .

(6.2.4)

The amplituhedron itself is then the case f = k and fj = k + 2

An,k,l = H (k;k+2,k+2,..,k+2)
n,k,l . (6.2.5)

In the maximal k case, k = n− 4, Z is a square n× n matrix and thus is always in
Gr>(k + 4, n) (or equivalently Gr<(k + 4, n) if the determinant is negative). Thus
for much of what follows we will restrict to this case k = n− 4.

Now we would like to see what are the possible values for the loop flipping numbers
fj. If we project positive Z’s through a k-plane Y with flipping number f , we obtain
a configuration of Z’s on Y ⊥ that is defined by the brackets 〈ijkl〉Y = 〈Y ijkl〉.
The 〈ijkl〉Y satisfies the same inequalities as those of the NfMHV amplituhedron,
An,f . In [109] it is conjectured1 that any Z configuration 〈ijkl〉 with positive proper
boundaries and flipping number equal to f can be generated as a projection of
positive Z̃s though an f -plane Ỹ ∈ An,f . This conjecture implies that for any
Y ∈ H (f)

n,k there exists Ỹ ∈ An,f , Z̃ ∈ Gr>(f +m,n) and ÃB ∈ Ỹ ⊥ such that

〈ijkl〉Y = 〈̃ij̃k̃l̃〉Ỹ , 〈ABij〉Y = 〈ÃBĩj̃〉Ỹ ∀ i, j, k, l . (6.2.6)

1The original formulation of conjecture is that given some (m»n) matrix of Zs that satisfy the
winding/flip criteria, we can always add k more rows so that the resulting (k+m) × n matrix is
positive.
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Therefore the sign flip string 〈Y AB1i〉 has the same constraints as the sign flip string
〈Ỹ ÃB 1̃̃i〉. We know that the maximal flipping number for k-planes with positive Zs
is k. Here (Ỹ ÃB) is an (f+2)-plane and thus has maximal flipping number f + 2.
We can then conclude that the 〈Y AB1i〉 flipping number must also be less than or
equal to f+2. Moreover, the twisted cyclicity condition for Y (second line of (6.2.1))
must be consistent with the twisted cyclicity condition for each (AB)j (third line
of (6.2.4)). We thus have the following restrictions on the loop flipping numbers fj

in order to obtain a sensible geometry yielding a cyclic non-trivial canonical form

fj ≤ f + 2 , fj = f mod 2 . (6.2.7)

But there is a stronger constraint which is easiest to see by considering the following
equivalence map of geometries.

If we change the sign of alternate Zs, and all loop variables, we obtain a map
between amplituhedron-like spaces with different flipping numbers, H

(f ;fj)
n,n−4,l 7→

H
(n−4−f ; n−2−fj)

n,n−4,l . More concretely:

H
(f ;fj)

n,n−4,l

(
Y, (AB)j;Zi

)
= (−1)b n+1

2 cH
(n−4−f ; n−2−fj)

n,n−4,l

(
(−1)b n+1

2 cY,−(AB)j;Zi(−1)i
)
,

(6.2.8)

where an overall minus in front of H indicates that we also reverse all the inequalities
(or equivalently send all 〈..〉 7→ − 〈..〉. This relation can be checked by just considering
the definitions on both sides. For example the sign of every second element of
the string 〈Y 123i〉 is swapped under Zi 7→ Zi(−1)i. Thus every sign flip in the
original space becomes a non sign flip and vice versa, and thus the flipping number
f 7→ n−4−f .

The canonical forms arising from the two geometries H
(f ;fj)

n,n−4,l and H
(n−4−f ; n−2−fj)

n,n−4,l

are identical and we thus say that the geometries are “equivalent”

H
(f ;fj)

n,n−4,l ∼ H
(n−4−f ; n−2−fj)

n,n−4,l . (6.2.9)

This equivalence then implies a much stronger bound on the allowed loop flipping
numbers. We require fj ≤ f + 2 but also for the dual geometry (6.2.9) this means
n − 2 − fj ≤ n − 4 − f + 2 ie f ≤ fj. Together with (6.2.7) we then see that each
loop flipping number can only take 2 possible values

fj = f or f + 2 . (6.2.10)

With this in mind, we only need to keep track of the relative number of fjs which
are equal to f +2 and those which are equal to f . Finally, it is also useful to define a
geometry obtained by symmetrising over these variables. Thus we also define a loop
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amplituhedron-like geometry with just two superscripts, f, l′ where l′ is the number
of loops with maximal flipping number f + 2

H (f ;l′)
n,n−4,l :=

⋃
σ∈Sl/(Sl′ ×Sl−l′ )

H (f ;σ(

l′︷ ︸︸ ︷
f+2,..,f+2,

l−l′︷︸︸︷
f,..,f))

n,n−4,l , (6.2.11)

where we take the union over all inequivalent choices of taking l′ loop variables to
have maximal flipping number f+2 and the remaining ones minimal flipping number
f .

6.2.1 Conjecture: Amplituhedron-like geometries give
products

Having defined a natural generalisation of the amplituhedron, the amplituhedron-like
geometries, we now discuss what they correspond to physically. First at tree level,
focusing on the maximal k = n− 4, there are k + 1 amplituhedron-like geometries
H (f)

n,k , f = 0, .., k with f equivalent to k − f through (6.2.9). This perfectly mimics
the possible products of two amplitudes of total Grassmann degree k = n − 4,
An,k′An,n−4−k′ . We conjecture that the canonical form H of an amplituhedron-like
geometry H gives the star product (see (6.1.1)) of superamplitudes

main conjecture (tree-level): H
(f)
n,n−4 = An,f ∗ An,n−f−4 . (6.2.12)

Note that in the case of maximal flipping number, f = n − 4, this conjecture
collapses to the standard amplituhedron conjecture (recalling that An,0 = 1). We
will define the canonical form in the next section and then in the following section
describe the various proofs and checks giving evidence for this conjecture which we
have performed.

The amplituhedron-like geometries at loop level depend also on the flipping
number of the loop variables, l′ (see (6.2.11)). We thus generalize (6.2.12) to loop
level and conjecture that for k = n−4 the canonical form of the loop amplituhedron-
like geometry with l′ loops having maximal flipping number and l− l′ loops minimal
is

H
(f ;

l′︷ ︸︸ ︷
f+2,..,f+2,

l−l′︷︸︸︷
f,..,f)

n,n−4,l = An,f,l′(AB1, · · · , ABl′) ∗ An,n−f−4,l−l′(ABl′+1, · · · , ABl) ,
(6.2.13)

where the loop variables with maximal flipping number f + 2 belong to the first
factor An,k′,l′ and the remaining loop variables to An,n−k′−4,l−l′ . By summing over
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inequivalent permutations of the loops we then obtain

H
(k′,l′)
n,n−4,l =

∑
σ∈Sl/(Sl′ ×Sl−l′ )

An,k′,l′((AB)σ(i)) ∗ An,n−k′−4,l−l′((AB)σ(i)) , (6.2.14)

suppressing the explicit distribution of loop variables this can be written in the more
compact form

main conjecture (loop)-level : H
(k′,l′)
n,n−4,l =

(
l
l′

)
An,k′,l′ ∗ An,n−k′−4,l−l′ . (6.2.15)

One can see that (6.2.15) is consistent with the duality (6.2.9) and it’s trivially
true for the case k′ = n − 4, l′ = l which collapses to the standard amplituhedron
conjecture for the anti-MHV loop level amplitude

H
(n−4,l)
n,n−4,l = An,n−4,l ∗ An,0,0 = An,n−4,l . (6.2.16)

Last but not least, the conjecture (6.2.15) is consistent with the squared amp-
lituhedron conjecture. In particular the squared amplituhedron is defined in (3.5.15)
as the union of two geometries defined by physical inequalities only, ie with no topo-
logical winding condition. The amplituhedron-like geometries are clearly subsets of
H ±

n,k,l, Furthermore the union of all even/odd flipping numbered amplituhedron-like
geometries clearly gives H ±

n,n−4,l and the union of all amplituhedron-like geometries
gives the squared amplituhedron Hn,n−4,l

Hn,n−4,l =
⋃
f,l′

H (f,l′)
n,n−4,l . (6.2.17)

Comparing with the expansion of the amplitude squared (2.3.15) into precisely the
same products we get from the amplituhedron-like geometries, it is thus natural to
conclude that the canonical form of Hn,n−4,l is the square of the amplitude. However,
one has to be a bit more careful. To prove that the canonical form of the squared
amplituhedron is equal to the square of the superamplitude starting from (6.2.15)
we would need to specify the amplituhedron-like geometries orientation, so that the
product of amplitudes sum with the right signs. We will see that such orientation
choice corresponds to having all the amplituhedron like geometries with the same
orientation as the oriented Grassmannian. We tested this statement by explicit
computation using the GCD algorithm and we prove it by using on-shell diagrams
in section 6.4.

6.2.2 General m amplituhedron-like geometries

As was already pointed out in the original amplituhedron paper [108], the definition
of the tree amplituhedron can be generalized to arbitrary twistor dimension, m.
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The same can clearly be done for the tree amplituhedron-like geometries. In the
generalisation we have Y ∈ Gr(k, k+m) rather than Gr(k, k+ 4) and the Zs live in
k+m dimensions rather than k+ 4. The defining inequalities of the amplituhedron-
like geometry, A(f)

n,k, are then similar to the m = 4 case (6.2.1)) with the following
modifications. The sign flip string for generic m reads (compare with (6.2.1))

{〈Y 123 · · · (m−1)i〉} has f sign flips as i = m,m+1, .., n , (6.2.18)

and the physical inequalities read

〈(i1i1 + 1) · · · im
2

(im
2

+ 1〉 > 0
〈i1i1 + 1 · · · im

2
(im

2
+ 1)1n〉 (−1)f > 0

 for m even,

〈1i1i1 + 1 · · · im−1
2

(im−1
2

+ 1)〉 > 0
〈i1i1 + 1 · · · im−1

2
(im−1

2
+ 1)n〉 (−1)f > 0

 for m odd . (6.2.19)

Much of the analysis that we did for m = 4 also applies to general m. In
particular the duality relation (6.2.9) becomes

H (f)
n,n−m ∼ H (n−m−f)

n,n−m , (6.2.20)

and we conjecture that the canonical form of the maximal generalised amplituhedron-
like geometries are products in a similar way to (6.2.12)

H
(f)
n,n−m = An,f ∗ An,n−m−f , (6.2.21)

where An,f := H
(f)
n,f , the canonical form of the standard (but generalised m) amp-

lituhedron.

6.2.3 Amplituhedron-like geometries: alternative definition

The original definition of the amplituhedron was given as the projection of the positive
Grassmannian Gr>(k, k + n) through positive Zs onto Gr(k, k + m) (3.4.1). We
have then defined amplituhedron-like geometries as generalisations of the alternative
flipping number definition of the amplituhedron. It is then interesting to see if there
is an alternative definition of the amplituhedron-like geometries which generalises
the original definition of the amplituhedron. Here we propose precisely such an
equivalent definition for the maximal case. We propose that the maximal k = n−m

(generalised) amplituhedron-like geometry, H (f)
n,n−m, can be written as the projection

of the positive Grassmannian Gr>(f, n) and the alternating positive Grassmannian
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alt(Gr>)(n−m− f, n) through the positive Zs onto Gr(k, k +m):

H
(f);alt

n,n−m :=



Y =

C1

C2

 · Z | C1 ∈ Gr>(f, n) ∧ C2 ∈ alt(Gr>)(n − m − f, n) for gn,f even

Y =

C1

C2

 · Z | C1 ∈ Gr<(f, n) ∧ C2 ∈ alt(Gr>)(n − m − f, n) for gn,f odd

(6.2.22)

where gn,f := bn−f
2 c+(n−f)n. Here the alternating positive Grassmannian, alt(Gr)>(k, n),

is defined as the image of Gr>(k, n) under the transformation which flips the sign
of the odd columns. We will give evidence for the equivalence of this definition
of the amplituhedron-like geometry with the flipping number definition (6.2.1) in
section 6.4.1.

Notice that for maximal f = n − m this definition coincides with the original
amplituhedron. However, for general f the geometry splits into two copies of the
amplituhedron. This product geometry manifests the conjecture that the canonical
form of this geometry gives the product of the corresponding amplitudes (6.2.21).

This definition naturally extends to loops. For the amplituhedron we have that
each loop can be parametrised using an auxiliary 2×n matrix Di as ABi = Di ·Z with

the condition
C
Di

 ∈ Gr>(k + 2, n), which corresponds to the one loop constraints

and


C

Di

Dj

 ∈ Gr>(k+4, n) which corresponds to mutual positivity [15]. In analogy to

the loop amplituhedron we can define the loop amplituhedron-like geometry (setting
here Z = 1)

H (f ;

l′︷ ︸︸ ︷
f+2,..,f+2,

l−l′︷︸︸︷
f,..,f)

n,n−4,l :=



C1

Di

 ∈ Gr>(f + 2, n) ∀ i ≤ l′

C2

Di

 ∈ alt(Gr>)(n− f − 2, n) ∀ i > l′

det


C

Di

Dj

 > 0 ∀ i 6= j

(6.2.23)

where the tree level condition (6.2.22) is understood.
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6.3 Maximal residues of the squared
amplituhedron

Because the square of the superamplitude at tree level can be written as a sum of
products of on-shell diagrams (see section 6.4.2) it only has dlog singularities just like
the superamplitude itself. Differently from the tree level superamplitude however,
the maximal residues of the square of the superamplitude are not all ±1. This implies
that the squared amplituhedron is not a positive geometry but a GPG/WPG.

To illustrate the point about maximal residues, we give here an explicit example
of two residues that have different absolute value, consider again the n = 6, k = 2
superamplitude squared, that is given by (6.1.5) lifted to amplituhedron space

(A2)6,2 = 2A6,2 + A6,1 ∗ A6,1 . (6.3.1)

Note that a factor of 2 is manifest in the first term but is also present in the expression
for the second term (6.1.8). These two terms then have uniform maximal residues
equal to ±2 or 0. We can examine this explicitly, using the coordinates

Y =
 1 α2 + α4 + α6 + α8 (α2 + α4 + α6)α7 (α2 + α4)α5 α2α3 0

0 1 α7 α5 α3 α1

 ,

(6.3.2)

and setting Z = 1. These two terms then read

2A6,2 = 2
8∏

i=1

dαi

αi

, (6.3.3)

(A6,1)2 = 2
8∏

i=1

dαi

αi

(
1 − α2α6 + α4α8

(α4+α6+α8)(α2+α4+α6)

)
. (6.3.4)

From this parametrized form we can see that for example both terms contribute
equally to the multi-residue corresponding to sending α2, α4 → 0 (in either order)
and we thus have

Resα2,α4→0(A2)6,2 = 4dα1dα3dα5dα6dα7dα8

α1α3α5α6α7α8
, (6.3.5)

and will thus yield a maximal residue of 4. On the other hand, the residue corres-
ponding to first taking α8 → 0, α4 → 0 and then taking α6 → 0 vanishes for (A6,1)2

and so

Resα8,α4,α6→0(A2)6,2 = 2dα1dα2dα3dα5dα7

α1α2α3α5α7
, (6.3.6)

yielding a maximal residue of 2. In general we will have that the maximal residues
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of (A2)6,2 are all equal to 0,±2 or ±4. Therefore, (A2)6,2 can not be interpreted as
the canonical form of a PG.

Later in section 6.4 we will prove that on-shell diagrams provide a tessellation of
amplituhedron like geometries and as a consequence of the squared amplituhedron.
This allows to concluding that the squared amplituhedron is a WPG with orientation
coinciding with the orientation of the positive Grassmannian and weight function
equal to one inside the squared amplituhedron region described by (6.2.1).

6.4 Proof and checks of the conjectures

In this section we examine the equivalence of the two definitions of amplituhedron-
like geometries, find a tiling of the amplituhedron-like geometry via pairs of on-shell
diagrams and use this to formulate a proof of the main conjecture (6.2.12), (6.2.15)
that the amplituhedron-like geometries give products of amplitudes at tree level and
also at loop level in the MHV case. Note that all the proofs assume the truth of
various conjectures regarding the amplituhedron itself.

6.4.1 Equivalence of definitions of amplituhedron-like
geometries

In section 6.2.3 we proposed an alternative definition for the amplituhedron-like geo-
metry as the image of two positive Grassmannians for k = n−m. This definition has
the nice feature that it apparently manifests the product structure of amplituhedron-
like geometries observed on taking the canonical form (6.2.12). Here we prove that
this alternative definition (6.2.22) is a subset of the sign flip definition (6.2.1)

H (f);alt
n,n−m ⊆ H (f)

n,n−m . (6.4.1)

So in other words we want to prove that any Y that can be written as

Y =
C1

C2

 · Z where C1 ∈ Gr≶(f, n) and C2 ∈ alt(Gr>)(n−m−f, n) (6.4.2)

must necessarily then satisfy the defining inequalities of the sign flip definition of
H (f)

n,n−m. To do this we first split the (n−m)-plane Y into an f -plane Y1 and a
(n−m−f)-plane Y2

Y1 = C1 · Z , Y2 = C2 · Z , (6.4.3)

and consider projecting the geometry onto Y ⊥
1 . Thus we define 〈∗〉Y1

:= 〈Y1∗〉,
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brackets projected onto Y ⊥
1 . Now notice that the projected Z’s satisfy

〈ZJ〉Y1
:= 〈Y1ZJ〉 = ∆J̄(C1) 〈ZJ̄ZJ〉

= ∆J̄(C1) 〈1 · · ·n〉 (−1)#odd(J)(−1)gn,f , (6.4.4)

where J is an ordered list of n−f elements, J̄ is the ordered complement of J in
1, .., n, #odd(J) is the number of odd elements in J and gn,f := bn−f

2 c + (n−f)n
introduced in (6.2.3). The second equality arises simply from reordering J, J̄ : first
reverse the order of J (introducing the factor (−1)b n−f

2 c of gn,f) and then permute
sequentially the elements of the reversed J starting from the leftmost, into the correct
position to obtain the remaining terms. Now defining Z̃i = (−1)iZi, since the ordered
minors of C1 are positive or negative according to the sign of (−1)gn,f (6.2.3), we
obtain that the projected ordered Z̃s are totally positive

〈Z̃J〉Y1
> 0 . (6.4.5)

Since C2 ∈ alt(Gr)>(n, n − f) then (C̃2)αi := (−1)i(C2)αi ∈ Gr>(n, n − f) and we
have that Y2 = C2.Z = C̃2.Z̃. Thus Y2 and the Z̃s, both projected onto Y ⊥

1 , give a
geometry equivalent to the amplituhedron An,n−m−f (Y2; Z̃) (3.4.1).

But then this means the projected Y2 must satisfy the conditions of the equi-
valent sign flip definition of this amplituhedron.2 So for example taking m = 4 for
concreteness (but one can check the general case similarly) the projected brackets
satisfy the sign flip definition of An,n−m−f (Z̃):

〈Y2Z̃iZ̃i+1Z̃jZ̃j+1〉Y1
> 0 , (−1)n−f 〈Y2Z̃iZ̃i+1Z̃1Z̃n〉Y1

> 0 , {〈Y2Z̃1Z̃2Z̃3Z̃i〉Y1
} has n−4−f

sign flips
(6.4.6)

Therefore back in the full geometry, switching to the Zs, this becomes

〈Y ZiZi+1ZjZj+1〉 > 0 , (−1)f 〈Y ZiZi+1Z1Zn〉 > 0 , {〈Y Z1Z2Z3Zi〉} has f sign flips
(6.4.7)

which are just the defining inequalities showing that Y ∈ H (f)
n,n−m(Z).

So we have proved that the alternative definition of amplituhedron-like geometry
lies inside the sign flip definition, H (f);alt

n,n−m ⊆ H (f)
n,n−m. To show equivalence we also

therefore need to show the converse H (f)
n,n−m ⊆ H (f ;alt)

n,n−m . We have been unable to
prove this in general (indeed this is similar to the situation for the two equivalent
descriptions of the amplituhedron itself where only one direction has been proven)

2It is still conjectural that the two definitions of the amplituhedron are equivalent but it has
been proven that the original definition is a subset of the sign flip definition [109] which is all we
need here.
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so leave it conjectural.
Note that it is enough to prove that for any Y ∈ H (f)

n,n−m there exists a C1 ∈
Gr> such that Y = (C1, C2)T .Z. It then follows automatically that there exists a
C2 ∈ alt(Gr>) such that Y2 = C2.Z using essentially the same logic as above. Indeed
if C1 is positive then Y ∈ H (f)

n,n−m implies Y2 ∈ An,n−m−f(Z̃) (since clearly (6.4.6)
⇔ (6.4.7)). Therefore, there exists a C̃2 ∈ Gr> such that Y2 = C̃2.Z̃ (here we are
assuming that both definitions of the amplituhedron are equivalent) then letting
(C2)αi := (−1)i(C̃2)αi gives such a C2. However we have been unable to prove in
general that there always exists such a positive C1.

Instead then let us show this converse statement explicitly in the simplest example
of n = 6, k = 2, f = 1. Here we initially gauge fix the C-matrix as

C =
 x 1 y b 0 a

−c 0 −d z −1 w

 . (6.4.8)

Imposing the physical inequalities (first two lines of (6.2.1)) gives the inequalities

a, b, c, d > 0 ,
yz + bd > 0 ,
xw + ac > 0 ,
xz + bc > 0 ,
yw + ad > 0 .

We now split the space into three regions and perform the following SL(2)+ trans-
formations in each region to ensure that C1 (the first row of C) is strictly positive)
and thus of the form (6.2.22)

x > 0, y > 0 C →

 1 −ε
ε′ 1

C =
 x 1 y b ε a

−c ε′ −d z −1 w


x < 0, y > dx

c
C →

 1 x
c
−ε

ε′ 1

C =
 cε 1 y − dx

c
xz+bc

c
−x
c

xw+ac
c

−c ε′ −d z −1 w


y < 0, x > cy

d
C →

 1 y
d
−ε

ε′ 1

C =
 x− cy

d
1 εd yz+bd

d
−y
d

yw+ad
d

−c ε′ −d z −1 w


(6.4.9)

Here the variables ε, ε′ are positive but small enough so that their presence does
not change the sign of any non-zero entries in the C-matrix. For simplicity we have
omitted such terms in the non-zero entries of the matrix. Their job is simply to move
from the boundary of the region to the interior. We now observe that in all three
cases (using the inequalities (6.4.8)) the top row of C is indeed positive. Therefore,
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we know in advance that the second row of C must be in alt(Gr)>(1, 6) and indeed
that is what we find. So we have shown in this example that indeed for any Y in
the amplituhedron-like geometry (which gives (6.4.9)) we can find C1, C2 such that
Y has the form (6.4.2).

6.4.2 On-shell diagrams

The superamplitude can be computed by summing a certain set of on-shell dia-
grams [108]. Each onshell diagram has a geometrical interpretation and the corres-
ponding union of geometries then yields a tiling of the corresponding amplituhed-
ron [29]. In this section we will make a similar claim for the amplituhedron-like
geometries.

First we quickly review the key points we need from the standard on-shell diagram
story for amplitudes. Each on-shell diagram is completely characterized by an
affine (or decorated) permutation σ, which maps points a ∈ {1, .., n} to σ(a) where
a ≤ σ(a) ≤ a + n. Each permutation, in turn, identifies a specific parametrisation
of a matrix Cσ(α) in the oriented Grassmannian G̃r(k, n), that is the set of k × n

matrices modulo a GL+(k) transformation, where k is the number of a such that
σ(a) > n. The evaluation of any on-shell diagram in momentum supertwistor space,
labelled by an affine permutation σ, can then be written as

f (k)
σ =

∫ dα1

α1
· · · dα4k

α4k

δ(4|4)×k(Cσ(α) · Z) . (6.4.10)

Any Cσ(α) generated from an affine permutation σ has the property that for αi > 0
all its minors are ≥ 0. The space of all elements in G̃r(k, n) with non negative minors
is called the non-negative Grassmannian and is denoted Gr≥0(k, n). So, for each
affine permutation σ we can define a region Π>

σ = {Cσ(α) : αi > 0} in Gr≥0(k, n)
called a positroid cell.

How is this connected with the amplituhedron and its canonical form? We know
that the amplituhedron can be defined as the image of the positive Grassmannian
through a map Y = C · Z, where Z ∈Gr>(k, k + 4). Consider a set of on-shell
diagrams labelled by the affine permutations σi that give the NkMHV amplitude.
Then the images of the corresponding positroid cells Z(Πσi

), that is the regions
parametrised by Yσi

(α) = Cσi
(α) · Z for αi > 0, tile the amplituhedron. Moreover,

the integrand of the onshell diagram (6.4.10) is the canonical form of the image of
the positroid cell in the coordinates Y = Cσi

(α) · Z

Ω(Πσi
) = dα1

α1
· · · dα4k

α4k

. (6.4.11)

Thus we can compute the amplituhedron canonical form by summing the positroid
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canonical forms.
Now consider the product of two on shell diagrams f (k1)

σ and f (k2)
τ

f (k1)
σ f (k2)

τ =
∫ dα1

α1
· · · dα4k1

α4k1

dβ1

β1
· · · dβ4k2

β4k2

δ(4|4×k)
((

Cσ(α)
Cτ (β)

)
· Z
)
. (6.4.12)

where k = k1 + k2. This equation makes manifest that the product of two or more
on-shell diagrams has only dlog singularities and maximal residues equal to ±1,
implying that the product of amplitudes has also only dlog singularities.

Now we would like to associate a corresponding geometry in the auxiliary Grass-
mannian G̃r(k, n) to the product of on-shell diagrams. The naive choice would be to
consider the region parametrised by

(
Cσ(α)
Cτ (β)

)
for αi, βi > 0. On the other hand, for

this to lie in the amplituhedron, using the alternative definition (6.2.22), we should
rather have Cσ in the positive Grassmannian,3 Gr>(k1, n) but Cτ in the alternating
Grassmannian alt(Gr>)(k2, n). From this perspective it is thus natural to associate
to the product of two on-shell diagrams characterized by the auxiliary matrices
Cσ(α) ∈ Gr≥(k1, n) and Cτ (β) ∈ Gr≥(k2, n), a region Π>

σ,τ defined as

Π>
σ,τ := {Cσ,τ =

 Cσ(α)
alt(Cτ )(β)

 for αi, βi > 0} , (6.4.13)

where alt flips the sign of the odd columns of C2 (which will not affect (6.4.12)).
Note that the product of on-shell diagrams can vanish ( for example the product

of identical onshell diagrams must vanish). In these cases the corresponding geometry
Π>

σ,τ is not full dimensional.
The canonical form of this geometry, in the coordinates Y = Cσ,τ ·Z, is then the

integrand in (6.4.12)

Ω(Z(Π>
σ,τ )) = dα1

α1
· · · dα4k1

α4k1

dβ1

β1
· · · dβ4k2

β4k2

. (6.4.14)

However, although the corresponding expression in superspace is a standard product
still, we therefore know that the canonical form must give the star product of the
separate covariantised forms

Ω(Z(Π>
σ,τ )) = Ω(Z(Π>

σ )) ∗ Ω(Z(Π>
τ )) . (6.4.15)

3Or Gr<(k1, n) for gn,f odd. When gn,f is odd we will need to eg flip the sign of one row of
Cσ(α) so it will become an element of the negative Grassmannian. However, we will surpress this
case from now on for simplicity of presentation, but it is to be understood.



124 Chapter 6. Geometry of the Product of Amplitudes

6.4.3 Proof of the conjecture at tree-level

We now have all the ingredients needed to prove that amplituhedron-like geomet-
ries yield products of amplitudes (6.2.12). Consider two sets of on-shell diagrams
{f (k1)

σi
}, {f (k2)

τj
} which each sum to separate (parity conjugate) amplitudes

An,k1 =
∑

i

f (k1)
σi

, An,k2 =
∑

j

f (k2)
τj

, (6.4.16)

with k = k1 + k2 = n − m. We would like to prove that the set of all the as-
sociated geometries Z(Πσi,τj

) (defined in (6.4.13)) is a tiling of the corresponding
amplituhedron-like geometry H (k1);alt

n,n−m . That is we wish to show its elements are
disjoint and their union covers the amplituhedron-like geometry. Since the canon-
ical form of a tiling is given by the sum of the canonical forms of its elements
for GPGs, this then automatically proves that this geometry yields the product of
amplitudes (6.2.12).

To do this we will prove that for every Y ∈ H (k1);alt
n,n−m , Y belongs to a unique

region Z(Πσi∗ ,τj∗ ) (defined in (6.4.13)). That is there exist unique indices i∗, j∗ such
that Y can be written as Y = Y1Y2 with Y1 = (Cσi∗ (α)) ·Z and Y2 = alt(Cτj∗ (β)) ·Z
for some α, β > 0, where Cσi∗ (α), Cτj∗ (β) are the C matrices associated with the
corresponding onshell diagrams f (k1)

σi∗ , f
(k2)
τj∗ respectively in (6.4.16).

So we start with an arbitrary Y in the amplituhedron-like geometry, H (f);alt
n,n−m (6.2.22),

so

Y = Y1Y2, with
Y1

Y2

 =
C1

C2

 · Z , (6.4.17)

for some C1 ∈ Gr>(k1, n) and C2 ∈ alt(Gr>)(n−m−k1, n). We then follow the
first part of the argument in section 6.4.1. Namely we project onto a (n−k1)-plane
orthogonal to Y1, Y ⊥

1 , and note that the resulting geometry of the projected Y2

is the amplituhedron An,n−m−k1((Y2)Y1 , (Z̃)Y1), projected on Y ⊥
1 and in terms of

alternating (Z̃i := (−1)iZi) and projected external data (Z̃)Y1 (see the paragraph
containing (6.4.5)). Here the subscript simply denotes the projection on Y ⊥

1 . We
then use the fact that we know that this amplituhedron can be described geomet-
rically as the disjoint union of on-shell diagrams in Gr(n−m−k1, n−k1), the space
of (n−m−k1)-planes in the n−k1 subspace Y ⊥

1 . Therefore, there exists a unique j∗

such that the projection of Y2 on Y ⊥
1 can be written as (Y2)Y1 = Cτj∗ (β) · (Z̃)Y1 for

some β > 0. Now comes the key part of the proof: we can then project back away
from the hyperplane Y ⊥

1 by defining Ŷ2 = Cτj∗ (β) · Z̃ = alt(Cτj∗ )(β) · Z. (In the
second equality we have simply swapped the flipping of odd particles from the Z̃ to
the C matrix). We have now that Y = Y1Y2 = Y1Ŷ2.

Now we can do a similar manipulation, but now projecting the geometry (both
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Y1 and the Zs) onto the (n−k2)-plane Ŷ ⊥
2 . Following similar logic to that of (6.4.4)

we find that (Y1)
Ŷ2

must live in the amplituhedron An,k1((Y1)
Ŷ2
, (Z)

Ŷ2
) on Ŷ ⊥

2 , where
(Z)

Ŷ2
lives in non negative Grassmannian, that is all its minors are either positive

or zero 4. Therefore there exists a unique i∗ such that (Y1)
Ŷ2

= Cσi∗ (α) · (Z)
Ŷ2

. This
can then be projected back yielding Ŷ1 = Cσi∗ (α) · Z with Y = Ŷ1Ŷ2.

We conclude that any Y satisfying (6.4.17) belongs to one and only one re-
gion associated to the product of on-shell diagrams, one in each of the sums
in (6.4.16). Therefore the regions Z(Π>

σi∗ τj∗ ) are disjoint and cover the corresponding
amplituhedron-like geometry

H (k1)
n,n−m =

⋃
i,j

Z(Π>
σi,τj

) . (6.4.18)

Finally, putting this together (6.4.15) we obtain the anticipated result. The canonical
form of H (k1)

n,n−m is given by the product of amplitudes

H
(k1)
n,n−m =

∑
i,j

Ω(Z(Π>
σi,τj

)) =
∑

i

Ω(Z(Π>
σi

) ∗
∑

j

Ω(Z(Π>
τj

)) = Ak1,n,m ∗ Ak2,n,m ,

(6.4.19)

which concludes our proof.

6.4.4 Proof of the loop level conjecture for f maximal

We can also explicitly prove the loop level conjecture (6.2.13) for maximal f flipping
number. That is the loop level amplituhedron-like geometry with maximal flipping
number gives the product of MHV and anti-MHV superamplitudes at all loops,

H
(n−4;

l′︷ ︸︸ ︷
n−2,..,n−2,

l−l′︷ ︸︸ ︷
n−4,..,n−4)

n,n−4,l = An,n−4,l′ An,0,l−l′ . (6.4.20)

The first factor on the RHS, An,n−4,l′ , is the anti-MHV l′-loop integrand, which
itself factorizes as the tree-level anti-MHV amplitude, An,n−4,0, multiplied by the
conjugate of the MHV amplitude An,0,l′ . Thus we wish to prove

H
(n−4;

l′︷ ︸︸ ︷
n−2,..,n−2,

l−l′︷ ︸︸ ︷
n−4,..,n−4)

n,n−4,l = An,n−4,0 An,0,l′ An,0,l−l′ . (6.4.21)

Nicely this factorisation can be seen straightforwardly at a purely geometric

4A small but important subtlety appears here in that this amplituhedron on Ŷ ⊥
2 may be

degenerate in the sense that some of the projected Z brackets 〈Z〉
Ŷ2

≥ 0 may vanish. Nevertheless,
the statement which follows in the main text is still true, the consequence of the degeneracy is
simply that some on shell diagrams may vanish and the corresponding geometries be non maximally
dimensional.
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level. Firstly, we can see that the LHS, the loop level anti-MHV amplituhedron-like
geometry, is the product of the tree-level anti-MHV amplituhedron, An,n−4, (which Y
lies in) and a second geometry for the loop variables lying in Y ⊥, a 4-plane nowhere
intersecting any Y in An,n−4. This second geometry turns out to be isomorphic to
the l-loop MHV amplituhedron-like geometry, with l − l′ loops having maximum
flipping number 2 and l′ loops having minimum flipping number 0. Concretely then
we first have the geometric factorisation

H (n−4;

l′︷ ︸︸ ︷
n−2,..,n−2,

l−l′︷ ︸︸ ︷
n−4,..,n−4)

n,n−4,l

(
Y, (AB)i;Z

)
= An,n−4

(
Y ;Z

)
× H (0;

l′︷︸︸︷
0,..,0,

l−l′︷︸︸︷
2,..,2)

n,0,l

(
− (AB)i; Z̃

)
,

(6.4.22)

where Z̃i = (−1)iZi. This factorisation can be seen straightforwardly by simply
examining the explicit definitions of the geometries involved (6.2.4). Indeed Y must
lie in the tree anti-MHV amplituhedron, Y ∈ An,n−4, this is just the first line of the
definition of the loop amplituhedron (6.2.4). Then the 2-planes (AB)i naturally live
on the 4-plane, Y ⊥, with effective 4-brackets defined as 〈∗〉Y := 〈Y ∗〉. The resulting
effective 4-brackets involving Zs then have maximal flipping number n−4. Crucially
the resulting inequalities are enough to fix all effective Z 4-brackets to be alternating
positive:

(−1)i+j+k+l 〈ijkl〉Y > 0 , 1≤i<j<k<l≤n , (6.4.23)

or equivalently Z̃j := (−1)jZj has positive ordered effective brackets.5 Finally,
examining the inequalities 〈Y (AB)ijj+1〉 = 〈−(AB)ij̃k̃〉Y (−1)j+k+1 one can check
that minimal loop flipping number n− 4 becomes maximal loop flipping number 2
and vice-versa.

Now a second geometrical factorisation occurs for the second amplituhedron-like
geometry itself, namely

H (0;

l′︷︸︸︷
0,..,0,

l−l′︷︸︸︷
2,..,2)

n,0,l = H (0,0)
n,0,l′ An,0,l−l′ . (6.4.24)

Examining the defining inequalities (6.2.4), only the mutual positivity 〈ABiABj〉 > 0
between loops with different flipping number prevents a completely factorised geo-
metry. But a loop (AB)j with maximal flipping number 2, satisfies the same inequal-
ities as the one loop MHV amplituhedron, and so we can use the original definition of
the amplituhedron as the image of the positive Grassmannian to parametrise (AB)j

5Note that one might wonder why a simple factorisation of geometries like (6.4.22) does not
occur for more general amplituhedron-like geometries (ie for lower values of the flipping number f).
This is because in general there is no simple map Z → Z̃s such that all the effective Z̃-brackets are
positive as there is here.
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as

(AB)j =
∑
l<m

clmZlZm , (6.4.25)

where clm > 0 for l < m. Then using this expression we can expand the mutual
positivity condition as

〈(AB)i(AB)j〉 =
∑
l<m

clm 〈(AB)ilm〉 . (6.4.26)

Now if (AB)i has flipping number equal to zero, all 〈(AB)ilm〉 are positive, implying
the positivity of 〈(AB)i(AB)j〉. As a consequence the geometry factorizes into the
product of l′ loops with fAB = 2 and l − l′ loops with fAB = 0 implying (6.4.24).

Putting (6.4.22) and (6.4.24) together we arrive at the geometrical double fac-
torisation

H (n−4;

l′︷ ︸︸ ︷
n−2,..,n−2,

l−l′︷ ︸︸ ︷
n−4,..,n−4)

n,n−4,l = An,n−4 An,0,l−l′ H
(0,0)

n,0,l′ , (6.4.27)

which implies (using standard the amplituhedron conjecture together with the fact
that the canonical form of geometrical products gives the product of the respective
canonical forms [30])

H
(n−4;

l′︷ ︸︸ ︷
n−2,..,n−2,

l−l′︷ ︸︸ ︷
n−4,..,n−4)

n,n−4,l = An,n−4 An,0,l−l′ H
(0,0)
n,0,l′ . (6.4.28)

Finally to prove (6.4.21) we just need to show that H(0,0)
n,0,l′ = An,0,l′ , in other words

that the MHV loop amplituhedron-like geometry with all loop flipping numbers
minimal gives the conjugate of the MHV amplitude. This fact follows nicely from
considering the case l′ = 0. In this case the RHS of (6.4.28) becomes the anti-
MHV loop level amplituhedron whose canonical form, the anti-MHV loop level
amplitude, factorises as discussed above (6.4.21). Thus (6.4.28) with l′ = l reads
H

(n−4,l)
n,n−4,l = An,n−4,l = An,n−4An,0,l = An,n−4H

(0,0)
n,0,l and so indeed we have shown that

(as conjectured in [109] for l = 1)

H
(0,0)
n,0,l = An,0,l . (6.4.29)

This then proves that amplituhedron-like geometries give products of amplitudes at
loop level for maximal k and f (6.4.20).

Note that as a consequence of this derivation we have then proven an interpreta-
tion for a particular sector of non-maximal amplituhedron-like geometries conjectured
in [109]. Namely the MHV (k = 0) amplituhedron-like geometries with arbitrary n,
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from (6.4.24) and (6.4.29) are given by

H
(0;

l′︷︸︸︷
0,..,0,

l−l′︷︸︸︷
2,..,2)

n,0,l = An,0,l′ An,0,l−l′ . (6.4.30)

Taking the union over all loop winding numbers to obtain the squared amp-
lituhedron, Hn,0,l, we would expect it to give the sum of these

Hn,0,l =
∑

l′
An,0,l′ An,0,l−l′ . (6.4.31)

Crucially all the almost disjoint amplituhedron-like geometries appearing in the
union inherit consistent orientations on the oriented Grassmannian such that they
indeed appear with the same sign when taking the globally canonical form and this
gives the above result which is consistent with the square of the amplitude (2.3.16).
In [109] it was observed for n = 5 and conjectured to hold for all n that at one loop
this union of winding geometries has a (standard) canonical form corresponding to
the difference An,0,1−An,0,1 rather than the sum in (6.4.31). This therefore illustrates
the importance of the carefully considering the relative orientation of the tiles in the
tiling.

6.4.5 Checks of the tree-level general m conjecture

Explicit checks of the amplituhedron-like conjecture can and have been made for
various low values of n, k, l on a computer using cylindrical decomposition (see for
example [51]) but they quickly become too complicated. However, the existence of
the generalised amplituhedron-like geometries nicely gives another direction in which
to to perform checks.

Explicit checks for specific values of m, k, n

We have checked the generalised m conjecture (6.2.21) for k = 2, n = m + 2 and
f = 1 for m = 2, 4, 6, 8, explicitly, that is

H
(1)
m+2,2 = Am+2,1 ∗ Am+2,1 . (6.4.32)

To do this we first noted that, An,1, is a natural generalisation of the NMHV amp-
litude for m even, namely

An,1 =
∑

i1,··· ,im/2

R[1i1i1+1 · · · im/2im/2 + 1] , (6.4.33)
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where

R[i1 · · · im+1] = 〈i1 · · · im+1〉m 〈Y dmY 〉
〈Y i1 · · · im〉 · · · 〈Y im · · · im−1〉

, (6.4.34)

is a generalised R-invariant. We then used this with the formula for the *-product,
(6.1.2), to compute Am+2,1 ∗Am+2,1 covariantly. On the other hand we used the GCD
algorithm to compute the canonical form of H (1)

m+2,2 and verified that they match.

Checks for m = 2

For the case m = 2 the computational complexity is much lower and we have verified
(6.2.21) up to n− 2 = k = 7. The canonical form for k = n− 2 reads

An,n−2 = 〈1, 2, · · · , n〉2∏n
i=1 〈Y ii+ 1〉

. (6.4.35)

In [109] it was proven that for m = 2, the NkMHV superamplitude is proportional
to the product of k NMHV superamplitudes

An,k = (An,1)k

k! , (6.4.36)

and the analogous statement holds in amplituhedron space, so for example for
k = 2,m = 2 one can verify that

A4,2 = 1
2!A4,1 ∗ A4,1 = 〈1234〉2

〈Y 12〉 〈Y 23〉 〈Y 34〉 〈Y 14〉
. (6.4.37)

Thus the product of two m = 2 superamplitudes is

An,k−k′ ∗ An,k′ = (An,1)∗k

(k − k′)!k′! = k!
(k − k′)!k′!An,k . (6.4.38)

We have observed from explicit computations that in fact the geometry in the
maximal case, k = n − 2,m = 2, with any valid sign flip pattern (ie any specific
valid choice of signs for 〈Y 123i〉), has a canonical form equal to (6.4.35). Since for
m = 2, each flipping number f corresponds to

(
n−2

f

)
possible flipping patterns (in

n−2 places you either flip (f times) or don’t flip (n−2−f times)) we obtain trivially
that

H
(k′)
n,n−2 =

n−2
k′

An,k = An,n−2−k′ ∗ An,k′ , (6.4.39)

in agreement with the (generalised) amplituhedron-like conjecture (6.2.21).
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6.5 Factorisation of sign flip patterns

In this section we note a refinement of the factorisation of amplituhedron-like geo-
metries, noting that individual flipping pattern geometries also factorise.

The amplituhedron-like geometries can be divided into regions labelled by a
specific sign-flip pattern, that is regions where all brackets 〈1, . . . ,m− 1, i〉 have a
well-defined sign. We will indicate the canonical form of a region in G̃r(k, k + m)
labelled by a sign flip pattern p = {p1, .., pf} as hp

n,k. Here pi denotes the position of
each consecutive sign flip, so sgn(〈1, ..,m−1, pi − 1〉 = −sgn(〈1, ..,m−1, pi〉. In this
notation the canonical form of an amplituhedron-like geometry H (f)

n,k can be written
as

H (f)
n,k =

⋃
p with
f flips

hp
n,k . (6.5.1)

We have observed by explicit computation for m = 2, 4 and maximal k = 2 = n−m,
that the canonical form of a particular sign flip pattern geometry h factorises into
the following star product, mimicking the same geometrical factorisation mentioned
in (6.4.6), we have

hp
n,n−m = hp

n,f ∗ An,n−m−f , (6.5.2)

where f is the number of sign flips in the pattern p. Note that by taking the union
over all patterns with a given flipping number, this then implies, and is therefore a
refinement of, the main conjecture about amplituhedron-like geometries (6.2.12)

H
(f)
n,n−m = H

(f)
n,f ∗ An,n−m−f = An,f ∗ An,n−m−f . (6.5.3)

Now geometries with complementary sign flip patterns are equivalent, yielding the
same canonical form. Indeed, clearly the duality relation (6.2.8),(6.2.9) applies to
the individual complementary flip pattern geometries, that is

hp
n,n−m = hp̄

n,n−m , (6.5.4)

where p̄ indicates the sign flip pattern complementary to p. We thus also have an
alternative product formula for a flip pattern geometry

hp
n,n−m = hp̄

n,n−m−f ∗ An,f , (6.5.5)

which also implies the main conjecture (6.2.12) but this time keeping the other term
in the product An,f whole and reconstructing An,n−m−f . So one can “break apart”
either of the two amplitudes appearing in the product but not both simultaneously.



6.5. Factorisation of sign flip patterns 131

It is interesting to compare this with the analogous onshell diagram story where you
can indeed break apart both amplitudes.

We have also observed in all the cases that we have considered that given two
flipping patterns p1 and p2 with flipping number k′, the following identity holds

hp1
n,k′ ∗ hp̄2

n,k−k′ = hp̄1
n,k−k′ ∗ hp2

n,k′ . (6.5.6)

This relation then implies the equivalence between (6.5.2) and(6.5.5).
For m = 2 we can actually prove all these relations from the observation that in

the maximal case all flipping patterns yield the same canonical form, hp
n,n−2 = An,n−2,

as we discussed in section 6.4.5. In fact in the non-maximal case we have observed
that each individual flipping pattern contributing to the amplituhedron factorises
into k = 1 patterns as follows

h
{p1,··· ,pk}
n,k = h

{p1}
n,1 ∗ · · · ∗ h{pk}

n,1 =

= 〈(1p1p1+1)(Y ∩ 1p2p2+1) · · · ∩ (Y ∩ 1pkpk+1)〉2∏k
α=1 〈Y 1pα〉 〈Y pα(pα+1)〉 〈Y (pα+1)1〉

, (6.5.7)

where we used (6.1.11) to compute the * product and

h
{pi}
n,1 = 〈1pipi + 1〉

〈1pi〉 〈pipi + 1〉 〈(pi + 1)1〉
. (6.5.8)

For example for the k = 2 amplituhedron, which has only one sign flip pattern
{+,−,+},we have

A4,2 = h
{2,3}
4,2 = h

{2}
4,1 ∗ h{3}

4,1 = 〈123〉2

〈12〉 〈23〉 〈31〉
∗ 〈134〉2

〈13〉 〈34〉 〈41〉
. (6.5.9)

Formulas analogous to (6.5.7) appear in [35] and in [20] and can be obtained for
(6.5.7) by expanding Y ∩ (ijk) as

Y ∩ (ijk) =
k∑

α=1
(−1)αYα 〈Y1 · · ·Yα−1Yα+1 · · ·Ykijk〉 . (6.5.10)

If we instead express Y ∩ (ijk) as a point on the 3−plane ijk instead, that is

Y ∩ (ijk) = 〈Y ij〉Zk − 〈Y ik〉Zj + 〈Y jk〉Zi , (6.5.11)

we obtain an expression for Ω(h{p1,··· ,pk}
n,k ) where only manifestly SL(2) invariant

brackets, that is brackets of the form 〈Y ij〉, appear. Note that expression (6.5.7)
makes (6.5.6) trivial for m = 2.

Now consider the RHS of of (6.5.2) and expand the second term into flipping
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patterns

hp
n,f ∗ An,n−f−2 = hp

n,f ∗
∑

q with
f flips

hq̄
n,n−f−2 . (6.5.12)

Now inserting the factorisation (6.5.7), since (h{i}
n,1)∗2 = 0, only the term q = p in

the sum will survive so that there are no repeated factors. Indeed, this surviving
term will involve a product over all n− 2 available flip positions and we obtain

hp
n,f ∗ An,n−f−2 = h

{2}
n,1 ∗ · · · ∗ h{n−1}

n,1 = An,n−2 , (6.5.13)

proving the refinement (6.5.2) of the main conjecture (6.2.12) for m = 2.

6.6 Canonicalizing Cyclicity and Crossing

We have seen that the product of two parity conjugate superamplitudes is the
canonical form of an amplituhedron-like geometry. One could wonder if there are
more general geometries which could yield some physical object such as products of
two, or more, amplitudes. In particular one could imagine tweaking the signs of the
inequalities defining known geometries. At first sight this seems to give a huge choice
of possibilities to investigate. An obvious property we might insist on to restrict this
though is cyclic invariance. In this section we therefore consider the implications of
requiring a cyclic invariant canonical form for the corresponding geometry. We saw
that the amplituhedron-like geometries with even flipping number, f , are not cyclic
but rather twisted cyclic, Zn → −Z1. Nevertheless the corresponding canonical form
is cyclic, simply due to the fact that the canonical form is invariant under Z1 → −Z1.
It is therefore natural to consider geometries which are cyclic up to any possible
flip of the Zs. However, in this section we conclude that all such generalised cyclic
geometries are equivalent to cyclic or twisted cyclic geometries. Thus one can define
new generalised geometries by defining arbitrary signs for 〈Y 12ii+1〉 for each i with
cyclicity giving all other physical inequalities from these. On the other hand for the
correlator there is the more powerful permutation symmetry and in this case we find
a unique correlahedron-like geometry.

6.6.1 Cyclic geometries

Recall that, as discussed below (3.4.1), it’s extremely useful to consider the geo-
metry Y as an oriented k-plane and the Z’s as elements in oriented projective space
R4k/GL+(1) ∼ S4k−1. Then we wish to consider geometries R(Y ;Zi), defined as
the set of Y ∈ G̃r(k, k +m) satisfying a set of inequalities involving Y and Zi. The
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inequalities will be invariant under positive rescaling of Y and Z and will be of
the form 〈Y Zi1 ..Zim〉 ≶ 0. Because the canonical form is a rational function, the
invariance under positive rescaling of the geometry implies invariance under general
rescaling of the canonical form, regardless of the sign of the scaling parameter, i.e.
it will be projectively well defined.

This means two very different regions can trivially have the same canonical form:
flipping the sign of Y or any Zs, the inequalities defining the geometry will change,
while its canonical form will remain the same. We thus say that two geometries
R1,R2 which are related via such sign flips are equivalent, R1 ∼ R2, (and thus
have the same canonical form). To this end we would first like to see if all signed
cyclic symmetric geometries are equivalent to cyclic geometries and if not how many
inequivalent types of flipped cyclic geometries there are.

Define Fi to be the transformation which flips Zi, Zi → −Zi and FI := Fi1Fi2 ...,
where I := {i1, i2, · · · } the transformation that flips the sign of all Z’s with index
i ∈ I. Then in this notation the statement of equivalent geometries is that

R′ ∼ R ⇔ R′ = FIR for some I . (6.6.1)

These transformations clearly satisfy

FIFI = 1 , CFI = FC(I)C , (6.6.2)

where C represents a cyclic transformation, Zi → Zi+1. Now suppose we have a
geometry R which is invariant under some flipped cyclicity CFI , so CFIR = R. A
familiar example of this is the twisted cyclicity of the amplituhedron, Zi → Zi+1

for i = 1, .., n−1, Zn → −Z1 for which I = {n}, but we here imagine any possible
flipped cyclic geometry.

If we now apply a further Z-flip transformation FJ on our geometry R, then
using the above identities we obtain

CFIR = R , ⇒ FJCFIR = FJR ,

⇒ CFC−1(J)FIFJFJR = FJR ,

⇒ CFC−1(J)FIFJR′ = R′ , (6.6.3)

so the equivalent geometry R′ := FJR is invariant under the flipped cyclicity
CFC−1(J)FIFJ .

A natural question then is whether for any list I, we can find a list J such that
FC−1(J)FIFJ is the identity, and thus obtain an equivalent geometry R′ which is
cyclic invariant (with no flips). Equivalently (by commutativity of F and using
F 2 = 1) we ask whether for all I there exists a J such that FC−1(J)FJ = FI . Now if
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J = {j1, j2, ...} we have

FC−1(J)FJ = (Fj1−1Fj2−1 · · · )(Fj1Fj2 · · · ) = (Fj1−1Fj1)(Fj2−1Fj2) · · · (6.6.4)

since the flip operations all commute with each other. We conclude that FC−1(J)FJ

can be any sign flip transformation with an even number of flips (since any such can
always be constructed from sequences of adjacent flips). Thus if I contains an even
number of indices, we can always find a list of indices J such that FC−1(J)FIFJ = 1

and so R′ = FJR is cyclic invariant.
Instead, if the length of I is odd, but n, the total number of indices, is also odd,

then the complementary set Ī will contain an even number of elements. Therefore, we
can always choose J such that FC−1(J)FJ = FĪ and so FC−1(J)FIFJ = FIFĪ = F{1,··· ,n},
so that CF{1,··· ,n}R′ = R′. The transformation F{1,··· ,n} is simply the flipping of all Zs
and thus for m even will leave all the defining inequalities 〈Y i1 · · · im〉 ≶ 0 untouched
and so we have defined an equivalent cyclic geometry R′

CF{1,··· ,n}R′ = CR′ = R′ . (6.6.5)

For m odd we will also have to flip the sign of Y .
If the length of I is odd and n is even on the other hand, the best we can do

is to chose a J such that only one element is flipped. This is what is known in the
literature as twisted cyclicity and one conventionally chooses the element that must
be flipped to be n so Zi → Zi+1, but Zn goes to −Z1.

Summarizing the result of our analysis, we can say that, when n is odd (and m

even), we can always map any geometry to the cyclic invariant one. When n is even
instead we have two classes of geometries: cyclic and twisted cyclic.

Finally we then ask if there is a flip transformations FJ mapping two geometries
R1,R2 with the same type of cyclicity CFI . Thus we have CFIR1 = R1, CFIR2 = R2

and R2 = FJR1. This implies

[FJ , C] = FJC − FC(J)C = 0 ⇒ FC(J) = FJ . (6.6.6)

For a faithful representation of FJ we have just one non-trivial solution, FJ = F{1,··· ,n}.
However, if the representation of F{1,··· ,n} = 1, as is the case of m odd, then we have
two further elements in the algebra that commute with C, FJ = Fodd = F{1,3,5··· } and
FJ = Feven = F{2,4,6··· }. In this representation they correspond to the same operator

FoddFeven = F1,··· ,n ≡ 1 ⇒ Fodd = F−1
odd = Feven . (6.6.7)

(More generally we have that FI = FĪ , where s̄ is the complement of s.) This
equivalence of geometries related by Fodd or Feven yields the duality of amplituhedron-
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like geometries (6.2.8).

6.6.2 Crossing symmetric correlahedron geometries

In planar N = 4 SYM there is a class of fundamental observables that share many
properties with amplitudes and have therefore the chance to be defined geometrically.
These are the stress energy correlators. These observables can be defined on the
twistor on-shell superspace [89]. A point in space time is identified by a line in twis-
tor space, that is a pair of twistors XIJ

i = Z1
iLZ

2
iMε

LMIJ . In the same way, a point
in the chiral super-Minkowski space is identified by a pair of super-twistors. The
supercorrelator can be then organized as a sum over terms with homogeneous Grass-
mannian degree, usually indicated as Gn,k, where n is the number of super twistors
and 4(k+n) is the Grassmannian degree. In [51] the chiral super-Minkowski space is
bosonised and the functions Gn,k uplifted to differential forms on the Grassmannian
Gr(k+n, k+n+4). Moreover, a geometry, called the correlahedron, is defined and its
canonical form is conjectured to give the bosonised supercorrelator.

The correlators exhibit a full permutation symmetry. This suggests that the
correlahedron geometry be invariant under any permutation of the twistors Xi up
to the action of a sign flip operator FI . In other terms, for each permutation σ ∈ Sn

there must be a flip transformation Fσ such that Fσσ leaves the correlahedron
invariant. The set of all σ̃ = Fσσ defines a group we call the signed symmetric group
or signed permutation group.

Just as for the amplitude, the correlator Gn,k is composed of two types of
bracket. The n+k+4 brackets involving only Xs and the uplifted conformal in-
variants 〈Y XiXj〉. We are interested now in classifying all permutation invariant
geometries that are defined using these two types of brackets. The main result of
this analysis will be that, for k = n − 4, there exists just one class of geometries
defined using 〈Y XiXj〉 which can be represented by the correlahedron.

The maximally nilpotent case k = n− 4 presents the advantage that there is a
unique bracket involving Xs only, 〈X1 · · ·Xn〉 and we can always fix it to be positive.
Because of the permutation symmetry, we can then choose an arbitrary bracket, such
as 〈Y X1X2〉, and use the action of the signed symmetric group to generate all the
other brackets. By flipping Y → −Y if necessary, we can fix 〈Y X1X2〉 > 0. From
this moment on we will indicate 〈Y XiXj〉 with 〈XiXj〉 to make the notation more
compact unless there is possible ambiguity.

Since we have already studied cyclic invariance in detail to classify the inequi-
valent amplituhedron-like geometries, we already know we can always choose repres-
entatives invariant under cyclic or twisted cyclic symmetry. Applying powers of the
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cyclic permutation on 〈X1X2〉 > 0 we obtain

〈XiXi+1〉 > 0 , for cyclic ,
〈XiXi+1〉 > 0 , 〈XnX1〉 < 0 for twisted cyclic . (6.6.8)

Let us now consider the action under a second permutation, the transposition (1, 2).
This operator can come in general with a flipping sign operator FI , but not all sign
strings s are allowed. The transposition (1, 2) leaves invariant all brackets that do
not contain X1 or X2 and the bracket 〈X1X2〉 itself. Therefore, Fs must act trivially
on these brackets. The solutions for Fs are

I = {} , I = {1, 2} , I = {1, · · · , n} , I = {3, · · · , n} . (6.6.9)

The last two solutions are in fact equivalent to the first two and therefore there can
only be two types of transposition, (i, j,+) = (i, j) and (i, j,−) = F{i,j}(i, j).

We can prove that a signed cyclic geometry invariant under (1, 2,±) is also
invariant under the whole signed symmetric group. In fact, because of cyclicity,
it will also be invariant under (i, i + 1,±) and the set of adjacent transpositions
generates the symmetric group. This can be proven using the relation

(i, j)(j, k)(i, j) = (i, k) , (6.6.10)

or more specifically

(i, i+ 1)(i+ 1, i+ l)(i, i+ 1) = (i, i+ l + 1) . (6.6.11)

Therefore if we start with (i, i+ 1,+) and l = 0 we can then use (6.6.11) to generate
all permutations. The resulting inequalities defining the geometry will read

〈XiXj〉 > 0 , 〈X1 · · ·Xn〉 > 0 . (6.6.12)

In particular we obtain that 〈X1Xn〉 > 0, therefore the geometry generated by
(1, 2,+) can only be cyclic and not twisted cyclic.

If on the other hand the geometry is invariant under (i, i+ 1,−) instead, we can
see that

(i, i+ 1,−)(i+ 1, i+ 2,−)(i, i+ 1,−) = (i, i+ 2,+) , (6.6.13)

from which we derive that

(i, i+ 1,−)(i+ 1, i+ l, (−1)l−1)(i, i+ 1,−) = (i, i+ l, (−1)l) . (6.6.14)

Therefore if a geometry is invariant under (i, i + 1,−), for all i except i = n,
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then (6.6.14) tells us it must also be invariant under (2, n, (−1)n). If we act with
(2, n, (−1)n) on 〈X1X2〉 > 0 we obtain

(2, n, (−1)n) 〈X1X2〉 > 0 ⇒ (−1)n 〈X1Xn〉 > 0 . (6.6.15)

This implies that geometries generated by negative transpositions must be cyclic for
n odd and twisted cyclic for n even. Therefore, for fixed n we just have two types
of geometry: one invariant under positive adjacent transpositions and one invariant
under negative adjacent transpositions. The geometry invariant under (1, 2,+) is
described by (6.6.12), while the one invariant under 〈1, 2,−〉 is described by the
following inequalities

〈X1 · · ·Xn〉 > 0 ,
(−1)l+1 〈XiXi+l〉 > 0 , for i+ l ≤ n ,

(−1)n+l+1 〈XiXi+l〉 > 0 , for n < i+ l < 2n . (6.6.16)

At this point we can still use Feven or equivalently Fodd to see if these two set of
inequalities are actually equivalent. Representing the action of Feven on the brackets
we obtain

Feven 〈XiXi+l〉 = 〈XiXi+l〉 (−1)l+1 , for i+ l ≤ n ,

Feven 〈XiXi+l〉 = 〈XiXi+l〉 (−1)l+n+1 , for n < i+ l < 2n . (6.6.17)

The Feven or Fodd operator maps a set of inequalities invariant under (1, 2,+) to
one invariant under (1, 2,−). Moreover, it maps cyclic to twisted cyclic for n odd.
Therefore, for any n the geometry compatible with the bosonized maximally-nilpotent
correlator is unique and can be described by (6.6.12).

6.7 Summary

In this chapter, we have used the topological characterization of the amplituhedron
in terms of flipping numbers to study the geometry of the squared amplituhedron.
In this new language, the amplituhedron is defined as the geometry having maximal
flipping numbers and positive proper boundaries, up to the one fixed by twisted
cyclicity. The squared amplituhedron corresponds instead to the union of all geomet-
ries without restriction on the flipping numbers and positive proper boundaries. We
named the geometries with non-maximal flipping number amplituhedron-like geo-
metries and proposed that these correspond to products of amplitudes (in the case of
minimal number of points n) giving proofs of this at tree-level and MHV loop level.
We have given an alternative non-intrinsic characterisation of the geometries (at tree
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and loop level) and their natural tiling as sums of pairs of on-shell diagrams (at tree
level). Importantly for the verification of our results, we also proposed a formula
(6.1.2) to compute the product of super amplitudes directly in the amplituhedron
space.

While the superamplitude has maximal residues equal to ±1 the square of super-
amplitude has maximal residues in 2Z. We identified in the structure of the maximal
squared amplituhedron a geometrical interpretation of this feature. In fact, we have
found that the amplituhedron-like geometries that compose the squared amplituhed-
ron are almost disconnected, which means that their interiors are disconnected but
their boundaries intersect on regions of codimension smaller than 1. Each almost
disconnected component is a positive geometry and therefore has a canonical form
with maximal residues equal to ±1. Maximal residues with values higher than 1, cor-
respond to points in the Grassmannian where these almost disconnected geometries
touch. For this reason the union of these almost-disconnected components is not a
positive geometry but a generalized positive geometry. The canonical form can act
on such unions of almost disconnected positive geometries, and when acting on the
squared amplituhedron gives the square of the amplitude. This square will involve
a sum over pairs of equivalent geometries that is responsible for the factor of 2 in
all maximal residues of the superamplitude squared.



Chapter 7

Outlooks

The WPGs framework, the maximal loop-loop cuts and the geometric description
of the product of amplitudes raise new interesting questions on the amplituhedorn
geometry and open new exciting possibilities for the geometrical description of
physical observables, even simply by enhancing the space of differential forms that can
possibly be written as a canonical form. Here we discuss some natural continuation
of the work done in [1, 2] and some more speculative ideas.

Weighted Positive Geometries

We began by observing that non-vanishing maximal residues of loop amplitudes are
not always ±1 as has generally been assumed, but can take arbitrary values in Z,
apparently contradicting the fact that the loop amplituhedron is a positive geometry.
We found the source of this apparent contradiction geometrically to be the existence
of internal boundaries in the geometry where two regions of opposite orientation
touch. This minimally requires including an extra term in the recursive definition of
the canonical form to take into account these internal boundaries (4.2.5). In all the
examples we have found, the internal boundaries arise from loop-loop propagators
factorizing into the product of two factors. Algebraically these are examples of
composite residues discussed in this context in [11] and it would be interesting to
explore the relation between composite residues and internal boundaries in more
detail.

As well as internal boundaries we have also stressed another under emphas-
ised feature of the boundary structure of the amplituhedron and multiple residues,
namely the simple fact that multiple-residues and corresponding multiple bound-
aries are non-unique. On the algebraic side a multiple residue is defined as an
(ordered) sequence of simple residues. In the same way, on the geometrical side
the relevant quantity one must use is ‘boundaries of boundaries of...’ rather than
‘codimension k boundaries’. It would be interesting to revisit previous computations
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of the boundary structure of the loop amplituhedron, and in particular its Euler
characteristic, for example [111], taking into account both internal boundaries and
the above non uniqueness of codimension k boundaries. It would be natural then
to try to formulate a generalization of the Euler Characteristic on WPGs. There
are some challenges in coming up with a meaningful generalization but we want to
point out the ordinary Euler characteristic has a well defined action over the union
of two geometries. Namely, if we have two geometries χ(X(1)), χ(X(2)) we can write
the Euler characteristic of the union as

χ(X(1) ∪X(2)) = χ(X(1)) + χ(X(2)) − χ(X(1) ∩X(2)) . (7.0.1)

This formula can be used for example to compute the χ of figure 5.1 as the sum of
the χ of a parallelepiped plus the χ of the roof minus the intersection of the two,
that is a square. This formula could be a good starting point to address this problem
together with the introduction of the concept of orientation.

We believe that the above insights will also have utility in the increasing number
of wider applications of positive geometry concepts in physics beyond the amp-
lituhedron. One closely related case is the momentum amplituhedron. For the
tree-level momentum amplituhedron [45] a lot is known about its boundary stratific-
ation [119,120] and its Euler characteristic has been proven to be equal to one [121],
a strong indication that the geometry is free from internal boundaries. However,
despite the very solid understanding achieved at tree level, finding the geometry
of the loop momentum amplituhedron remains an open problem. In this case we
expect internal boundaries to appear and the language of WPGs could give the right
framework to define a loop momentum amplituhedron. Also in the search for a non-
planar amplituhedron interesting ideas involving the sum of geometries over different
orderings have been explored in [122, 123] and might benefit from being viewed as
weighted positive geometries. Other wider applications of positive geometry which
one could revisit include [36, 44, 46, 47, 49, 124–126]. Similarly weighted positive
geometry may provide the right mathematical framework to deal with cosmological
correlators, which contrarily to the wavefunction of the universe described by the
cosmological polytopes [50, 127]s, do not currently have a geometrical description.
Their maximal residues are not +/- 1 and they naively appears as a weigheted sum
of canonical forms of cosmological polytopes1.

1We thank P. Benincasa for pointing this out.
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Loop-loop cuts

The four-point planar amplitude integrand in N = 4 SYM (and its closely related
half BPS correlator) is known to ten loops using various graphical rules together
with correlator insights [98]. There have also been investigations on it directly using
amplituhedron insights [128–130]. A key question in this context then is whether
the above all-loop cuts can be used practically to actually compute the 4-point
amplitude/correlator at higher loops. Taking maximal residues (eg first the all-in-
one-point cut, then further external cuts) yields a vast amount of information about
the amplitude. It also has the tantalising chance of being a constructive approach:
rather than using a huge basis of graphs and determining their coefficients, most of
which are zero, it might be possible to use the cuts to construct only the relevant
graphs and non-zero coefficients with which they appear.

Although we have focused on 4 points, the all-in-one-point cut and more general
loop-loop cuts are largely independent of the number of points, and also the MHV
degree, since they involve only the mutual geometry between loop lines rather than
the details of the external geometry. There has been some nice recent progress
in computing the amplitude for arbitrary multiplicity directly from the loop amp-
lituhedron [23, 26, 28, 131]. Points worthy of note in the current context are that
taking the maximal multiple residues involving loops at higher points yields leading
singularities of amplitudes – rational coefficients – which have been extensively ana-
lysed and are given by Yangian invariant Grassmann integrals [11, 12]. Furthermore
in the works [132, 133] a method for extracting a list of the physical amplitude’s
branch points from the amplituhedron is suggested. Here the boundaries are derived
by intersecting the closure of the amplituhedron with the boundary components
corresponding to vanishing brackets of the form 〈ABij〉, 〈AiBiAjBj〉. It would be
extremely interesting to revisit both the above points using the insights and techno-
logy developed here.

In [16, 134] the geometry of the log of the MHV amplitude is considered and
defined as a union of geometries with negative mutual positivity condition 〈AiBiAjBj〉 <
0. One of these has negative mutual positivity condition for all i, j and its canonical
form is equal to the amplituhedron canonical form. The latter is the only term
in the log of the amplitude surviving the all-in-one-point cut and therefore the
all-in-one-point cut of the amplitude and the log of the amplitude are the same.

Squared amplituhedron and amplituhedron-like geometries

In this work we have used the topological characterization of the amplituhedron in
terms of flipping numbers to study the geometry of the squared amplituhedron. In
this new language the amplituhedron is defined as the geometry having maximal
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flipping numbers and positive proper boundaries, up to the one fixed by twisted
cyclicity. The squared amplituhedron corresponds instead to the union of all geo-
metries without restriction on the flipping numbers and positive proper boundaries.
We named the geometries with non-maximal flipping number amplituhedron-like
geometries and propose that these correspond to products of amplitudes (in the case
of minimal number of points n) giving proofs of this at tree-level and MHV loop
level. We have given an alternative non-intrinsic characterisation of the geometries
(at tree and loop level) and their natural triangulation as sums of pairs of on-shell
diagrams (at tree level).

Amplituhedron-like geometry generalize the topological characterization of the
amplituhedron in terms of flipping numbers. One would like to investigate fur-
ther generalizations of the amplituhedron geometry and what they correspond to.
The most obvious thing is to consider geometries defined in a similar way to the
amplituhedron-like geometries but with different signs for the inequalities. This
seems to immediately lead to a vast number of cases. However restricting to non-
equivalent geometries and imposing cyclicity reduces the number of possibilities. As
shown in section 6.6 this reduces to examining cyclic (or twisted cyclic) geometries.
So to be concrete we could imagine considering more general choices for the phys-
ical inequalities which at the moment we take to be 〈Y ii+1jj+1〉 > 0. We could
generalise by imposing different signs for the inequalities 〈Y 12jj+1〉 ≶ 0 (with the
sign of 〈Y ii+1jj+1〉 > 0 for other i following by (twisted) cyclicity). One needs to
first examine if it makes sense to have some the analogue of flipping patterns etc
in these cases. In any case it would be interesting to examine such geometries and
understand what they correspond to.

Objects we might imagine appearing from more general geometries of this type
are products of more than two amplitudes, the simplest example would be NMHV3

at 7 points. These functions are well defined cyclic dlog forms, which can be seen by
their expression as products of on-shell diagrams. As observed in [109], for m = 2
the NkMHV amplituhedron is a product of NMHV amplituhedra, An,k = (An,1)k

k!

and as noted below (6.4.38) we find by explicit computation that in fact all flipping
patterns of maximal amplituhedron-like geometries H (f)

n,n−2,2 have canonical form
equal to An,k. For m = 4 the generalization is still unclear.

Going beyond the case of maximal k = n − m , the natural correspondence
between amplituhedron-like geometries and the product of amplitudes does not seem
to hold in the same way. For example we have checked by direct calculation that for
k = 1, n = 6 the direct generalization of (6.2.12) is not true,

H
(f)
n,k 6= An,f ∗ An,1−f for n = 6, k = 1 . (7.0.2)
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Therefore two immediate questions arise:

1. What does amplituhedron-like geometries correspond to for n > k +m?

2. Is there a geometry corresponding to the product of two general (i.e. non
parity conjugate) amplitudes?

We have an answer to the first question in the MHV case at loop level as the product
of MHV and MHV amplitudes (6.4.31)

Hn,0,l =
∑

l′
An,0,l′ An,0,l−l′ . (7.0.3)

However, in the above equation A is the anti-MHV amplitude divided by tree-level.
Such a quantity has no analogue beyond the MHV case and so it is not clear how
this formula will generalise beyond this case.

In looking at the second question note that we have checked numerically that, for
k < n−m, the alternative characterisation of amplituhedron-like geometries (6.2.22)
don’t have a well defined flipping number, that is it is no longer equivalent to the
amplituhedron-like geometries. Nevertheless, the association of a geometry to the
product of on-shell diagrams described in (6.4.13) could be a starting point for a
systematic derivation of the geometry corresponding to the products An,f ∗ An,k−f

in a similar way as has been done in [28] for chiral pentagon integrands. In that
case, the requirement that the geometry of chiral pentagons giving the 1 loop MHV
amplitude must share spurious co-dimension 1 boundaries isolates a unique solution
of the geometry of the chiral pentagon. It would be interesting to see if similar
constraints identify a unique geometry for the product of amplitudes.

Another direction one could pursue to derive the geometry of the squared amp-
lituhedron is to reconsider geometric light-like limit of the correlahedron. Recall
the geometry of the squared amplituhedron can be derived from the correlahedron
by imposing the constraints 〈Y XiXi+1〉 = 0 and then projecting respect to the in-
tersection points Ỹi = Y ∩ (XiXi+1). The external data, Z, emerges as the points
Zi = Xi ∩ Xi+1 on Ỹ ⊥, while Y can be rewritten as Y = Ỹ Ŷ , where the allowed
values of Ŷ gives the squared amplituhedron. However, the sign of the brackets
〈Y ii + 1jj + 1〉 depends on Ỹ ⊥ and whereas in the maximal case the Z space is
unique, in the non-maximal case this is no longer true and non convex Zs could arise
from the light-like limit. In particular, we suspect non-convex Z configurations on
Y ⊥ could appear.

In conclusion, more work is needed to derive the geometry corresponding to
products of amplitudes in general as well as the related non-maximal squared amp-
lituhedron geometry.
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Finally, it would also be interesting to explore if any relation between non-
maximal flipping numbers and products of parity conjugate amplitudes holds in the
context of the momentum amplituhedron [45], where its definition in terms of the
sign flip number can be naturally generalized.



Appendix A

Spinor Helicity variables

At the heart of many modern progresses in amplitudes is the use of set of variables
for the external kinematics that makes the on-shell condition p2 = m2 manifest. In
particular, for massless particles the condition p2 = 0 can be trivialized using the
spinor-helicity formalism. Here we will define the spinor helicity variables and state
some of their key properties.

Given a four vector pµ, we can associate a 2 × 2 matrix

paḃ = pµσ
µ

aḃ
, (A.0.1)

where σµ = (1, σi) and σi are the usual Pauli matrices. The matrix paḃ, as the σs,
transforms under the SU(2) × SU(2) representation of the Lorentz group. If pµ is
massless, then p2 = det(paḃ) = 0. Therefore we can write the degenerate matrix paḃ

as

paḃ = |p]a〈p|ḃ , (A.0.2)

where |p]a, 〈p|ḃ are two vectors and are called the angle and the square spinors. The
two vectors transform respectively under SU(2) and SU(2). Note that the two spinors
are defined up to an overall scaling

〈p| → t〈p| , |p] → t−1|p] , (A.0.3)

where t is non zero. Since we want to use these variables to compute amplitudes we
can chose representatives, up to a phase, expressing normalized fermionic polarization
vectors in terms of spinor helicity variables. The solution of the free fermionic field
equation reads

Ψ(x) = u(p)eip·x + v(p)e−ip·x , (A.0.4)
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and we will express its polarization vectors u and v as

u+ =
|p]a

0

 , u− =
 0

|p〉ȧ

 , (A.0.5)

for outgoing fermions, and

v+ =
|p]a

0

 , v− =
 0

|p〉ȧ

 , (A.0.6)

for outgoing anti-fermions. Since we must have u∗
± = v∗

∓ we obtain that

[p|a = (|p〉ȧ)∗ , 〈p|ȧ = (|p]a)∗ . (A.0.7)

The over all phase of the polarization vectors is not physical but phase differences
are. In fact, the polarization vector transform under little group transformations
with a phase that depends on the helicity of the particle.

Raising and lowering indices is done with the Levi-Civita symbols

|p〉ȧ = εȧḃ〈p|ȧ , [p|a = εab|p]b . (A.0.8)

The key ingredients for writing amplitudes in spinor helicity formalism are the angle
and the square spinor brackets which are defined as follows

〈pq〉 = 〈p|ȧ|q〉ȧ , [pq] = [p|a|q]a . (A.0.9)

In particular we can use spinor brackets to write the scalar product of massless
momenta as

2p · q = 〈pq〉[pq] . (A.0.10)

To unlock all the technology of complex analysis, it is extremely convenient to
consider external momenta as complex. Well behaved Lorenz invariant functions
will then be invariant under the complexified Lorentz group. The action of the little
group then correspond to (A.0.3). Consider now a generic n-point amplitude An

with momenta (|i〉, |i] and helicities hi. Since the amplitude transforms under the
little group scaling in the same way as polarization vectors do we will have that in
general

An({|1〉, |1], h1}, · · · , {t|i〉, t|i], hi}, · · · ) = t−2hiAn({|1〉, |1], h1}, · · · , {|i〉, |i], hi}, · · · ) .
(A.0.11)

This scaling property constrains the amplitude and it’s key in many modern amp-
litude computations.
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Rational residue forms on rational
varieties

Consider a multivariate irreducible polynomial f(x1, · · · , xn). We want to take the
residue on f = 0 on the form

ω = dx1 · · · dxn

f(x1, · · · , xn)g(x1, · · · , xn) , (B.0.1)

where g is a rational function which doesn’t have a have a pole on f = 0. To compute
the residue in f = 0 we have to write the differential df explicitly as

df = ∂x1fdx1 + · · · ∂xnfdxn . (B.0.2)

Then if we solve for one particular variable, let’s say x1 we can rewrite the full
differential as

dx1dx2 · · · dxn = df

∂x1f
dx2 · · · dxn . (B.0.3)

Then the residue will simply read

Resf=0(ω) = dx2 · · · dxn

∂x1f
g(x1 · · · , xn) . (B.0.4)

This expression is defined implicitly, since x1 is constrained by the equation f = 0.
In general the equation f = 0 will have multiple roots in x1, that is functions qi(x)
for which

f(qi(x1), x2, . . . , xn) = 0 , (B.0.5)

each one converging part of the boundary component f = 0. For degree of f in x1

higher then 1, qi is not a rational function and therefore also the residue will not be
in general a rational function. If a rational parametrization of f is available, that
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is a rational functions x̃i of the variables t = (t1, · · · , tn−1) covering almost all the
boundary component (up to points) such that

f(x̃1(t), · · · , x̃n(t)) = 0 , (B.0.6)

then we can write the residue form as a rational top form in t.
As an example consider the canonical form of a unit circle cut by the line y = a,

that is

ω = 2
√

1 − a2dxdy

(1 − x2 − y2)(y − a) . (B.0.7)

The residue on f = 1 − x2 − y2, can be written as

Resf=0(ω) = −
√

1 − a2dx

y(y − a) , (B.0.8)

or equivalently as

Resf=0(ω) =
√

1 − a2dy

x(y − a) . (B.0.9)

If we write (B.0.8) explicitly in x using the map y =
√

1 − x2, which covers the
upper half of the circle we obtain

Resf=0(ω) = −
√

1 − a2dx√
1 − x2(

√
1 − x2 − a)

, (B.0.10)

which is not rational and has branch points in x = ±1 due to the singularity of
the change of variables. If instead we use the rational parametrization of the circle
x = t2−1

t2+1 , y = 2t
t2+1 the form in the t variable will read

Resf=0 = 2
√

1 − a2dt

a− 2t− at2
, (B.0.11)

which correspond to the canonical form of the segment 1−
√

1−a2

a
< t < 1+

√
1−a2

a
, as

expected.



Appendix C

Loop-loop cut computations

C.1 Three loop internal Boundary and its
maximal residues

Here we consider taking further residues of the all-in-one-point cut (5.1.7) to even-
tually arrive at the leading singularities. Then we will consider the same sequence
geometrically. Indeed in [116] such maximal residues were considered leading to
a final configuration in which all loop lines intersect external twistors as well as
intersecting each other at a single point A.

Specifically we consider the case where loop line L1 intersects Z1 and L2, L3

intersect Z2. We here show that the resulting residue depends on the path taken.
Furthermore if the path taken involves taking a residue in 〈AB1B2B3〉 = 0 first,
then the resulting maximal residue has magnitude 2 suggesting that 〈AB1B2B3〉 = 0
corresponds to an internal boundary.

The two routes we consider to reach the above configuration are as follows. For
route 2 we first take further residues of the all-in-one-point cut (5.1.7) in the following
order

〈AB112〉 = 0 , 〈AB114〉 = 0 , 〈AB212〉 = 0 , 〈AB223〉 = 0 . (C.1.1)

This corresponds to intersecting line L1 with the edge Z1Z4 and then with Z1

followed by intersecting L2 with the edge Z1Z2 and then to Z2. In the process the
pole 〈AB1B2B3〉 → 〈A12B3〉 and so the final step is to take residues in this pole
〈A12B3〉 = 0 followed by 〈A23B3〉 = 0 corresponding to L3 intersecting Z1Z2 and
then sliding to Z2. We take the residues explicitly by parametrizing the Bi as follows
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(with Z∗ an arbitrary twistor)

B1 = c1Z4 + Z1 + d1Z∗ ,

B2 = c2Z1 + Z2 + d2Z∗ ,

B3 = c3Z1 + Z2 + d3Z∗ .

(C.1.2)

and considering the residues at zero in d1, c1, d2, c2, d3, c3 in that order. The residues
are straightforward to compute and can be done covariantly, for example:

Res
d1=0, c1=0

(
〈AB1d2B1〉

〈AB114〉〈AB112〉

)
= −1

〈A214〉
. (C.1.3)

Only the displayed term in (5.1.6) out of the 24 total terms survives this sequence
of residues and it produces the final result

− 〈1234〉3〈Ad3A〉
〈A123〉〈A124〉〈A134〉〈A234〉

= −dadbdc
abc

, (C.1.4)

where on the right hand side we parametrise the point A as

A = Z1 + aZ2 + bZ3 + cZ4 . (C.1.5)

This is the canonical form of a tetrahedron with vertices Zi and is inline with the
prediction of [116]. Indeed the mutual intersection point A is now the only remaining
freedom and restricting the amplituhedron geometry to this configuration results
in the tetrahedron. However as we saw in the simple example in the introduction,
simply restricting the geometry to a high codimension boundary will not always
give the right answer and the precise order in which one takes the residues can be
important.

For route 2 therefore we change the order in which we take the residues on the
all-in-one-point cut (5.1.7). We first take a residue in the pole 〈AB1B2B3〉 making
L3 coplanar with L1 and L2. Then proceed taking residues as previously in (C.1.1)
moving B1 → Z1 and B2 → Z2. Then finally we take a residue as B3 → Z2.
Explicitly then, this time we parametrize the Bi as follows

B3 = c3B1 +B2 + d3Z∗ ,

B1 = c1Z4 + Z1 + d1Z∗ ,

B2 = c2Z1 + Z2 + d2Z∗ .

(C.1.6)

and take the residues at zero in the order d3, d1, c1, d2, c2, c3. The first residue is

Res
〈AB1B2B3〉=0

(
〈AB3d2B3〉
〈AB1B2B3〉

)
= −dc3 , (C.1.7)
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and then use similar results to (C.1.3) before finally taking the residue in the para-
meter c3. This time two terms in (5.1.6) survive, the displayed term together with
the term

〈Ad3A〉∏3
i=1〈ABid2Bi〉〈1234〉3 〈23AB1〉

〈12AB1〉 〈12AB3〉 〈14AB1〉 〈23AB2〉 〈23AB3〉 〈34AB1〉 〈34AB2〉 〈AB1B2B3〉
.

(C.1.8)
Note that this term only survives because a required pole 〈12AB2〉 appears from the
pole in 〈12AB3〉 after the residues in d3 = 0, d1 = 0, c1 = 0 have been taken. Since
there are two terms now surviving, the final result turns out to be twice (C.1.4)

− 2〈1234〉3〈Ad3A〉
〈A123〉〈A124〉〈A134〉〈A234〉

= −2dadbdc
abc

. (C.1.9)

Now the final configuration of these two routes is exactly the same in both cases:
B1 → Z1, B2, B3 → Z2 and yet the results differ by a factor of 2. We thus clearly see
the importance of path dependence when taking residues. We will shortly see that
path dependence can give different results for the all-in-one-point cut itself (rather
than just when taking further residues). Furthermore, taking three further residues
as a, b, c → 0 clearly gives us a maximal residue of magnitude 2 indicating that there
is an internal boundary present. Let us then consider this geometrically.

We can now redo the above computation geometrically by taking boundaries of
the all-in-one-point cut geometry (5.1.16) and using our formula of the canonical
form of a GPG (4.2.5). To do this, we parametrise A and Bi just as in (C.1.5)
and (C.1.6)

B3 = c3B1 +B2 + d3Z∗

B1 = c1Z4 + Z1 + d1Z∗ ,

B2 = c2Z1 + Z2 + d2Z∗ ,

A = Z1 + aZ2 + bZ3 + cZ4

(C.1.10)

Then take boundaries in the same order with which we took residues following (C.1.9)

d3 = 0, d1 = 0, c1 = 0, d2 = 0, c2 = 0, c3 = 0 . (C.1.11)

The first boundary corresponds to the above internal boundary 〈AB1B2B3〉 = 0.
Therefore, from the recursive definition of the canonical form in the presence of
internal boundaries (4.2.5), the canonical form of the all-in-one-point cut geometry
satisfies

lim
d3→0

d3
(
Ω(Rdc

1 ) + Ω(Rdc
2 )
)

= 2dd3 ∧ Ω(Rdc|〈AB1B2B3〉=0). (C.1.12)

This simply means that the residue, d3 = 0, on the canonical form determined by the
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inequalities describing the geometry of the all-in-one-point cut (5.1.13), is equal to
twice the canonical form of the interior boundary, i.e. the canonical form determined
by the inequalities (5.1.9) with B3 = B1 + a3B2.

Continuing with the remaining boundaries, the final geometry is described by
the following set of inequalities,

Rfinal : a < 0, b > 0, c > 0 . (C.1.13)

The remaining residues were all on external boundaries, therefore the canonical form
of the final region is 2Ω(Rfinal), where the factor of two comes from the internal
boundary residue (C.1.12). The final inequalities describe a tetrahedron with vertices
{Z1,−Z2, Z3, Z4} and therefore the final canonical form is in precise agreement
with (C.1.4).

We see that the internal boundary at 〈AB1B2B3〉 = 0 is key to obtaining the
correct leading singularity from the geometry. Just as we saw algebraically above, it
is also possible to reach the same final loop configuration by only going to consecutive
external boundaries. An example of this would be to follow the residues described
in (C.1.2) geometrically. Then the final canonical form would be, up to an overall sign,
the canonical form of the tetrahedron without the factor of two, as predicted in [116].
We see that the precise sequence of codimension 1 boundaries taken to approach
higher codimension boundaries starting from the all-in-one-point cut configuration
can give different results. At higher loops this is also true for the all-in-one-point
cut itself (rather than just its maximal residues as here).

C.2 Four loop point-plane boundary geometry

We here examine the geometry of the loop-loop boundaries of the four loop all-in-
one-point cut (5.1.21). We start by the boundary when B3 lies on the line P = B1B2

followed by the boundary of that geometry when B4 also approaches P . We observe
that the regions R1 and R2 of (5.1.21) touch on 〈AB2B1B3〉 = 0 as do R3 and
R4. Since the orientations of R1 and R2 are opposite as are R3 and R4, this is an
internal boundary. Thus the geometry of the (internal) amplituhedron boundary
〈AB2B1B3〉 = 0, with B3 living on B2B1, is given by R12 ∪ R34 where

R12 = A(4)
dc ∧ 〈AB2B1B4〉 > 0 ∧ 〈AB3B1B4〉 > 0|B3∈B2B1 , + ,

R34 = A(4)
dc ∧ 〈AB2B1B4〉 < 0 ∧ 〈AB3B1B4〉 < 0|B3∈B2B1 , − .

(C.2.1)

Here R12 is positively oriented (indicated by the +), while R34 is negatively oriented.
Notice that both of these regions require B1 to be on the same side of B2 and B3.
In other words B1 can not lie between B2 and B3. Further the orientation depends



C.2. Four loop point-plane boundary geometry 153

which side of B2, B3, B1 is on. Then after we send B4 to the line P , we approach
another internal boundary, with no further constraints on where B4 can lie. We
thus conclude that the geometry is of the four points Bi on the line P inside the
triangle, with B1 not allowed between B2 and B3 and the orientation depending on
the relative position of B1 and B2, B3.

We can check the geometry more carefully by exploring the boundaries of (C.2.1)
explicitly. To do this we make the constraint 〈AB1B2B3〉 = 0 explicit by expanding
B1 as c1B2 + c2B3. Then (C.2.1) becomes

R12 = A(4)
dc ∧

(
〈AB2B3B4〉 > 0 ∧ c1 < 0 ∧ c2 > 0

)
∨
(
〈AB2B3B4〉 < 0 ∧ c1 > 0 ∧ c2 < 0

)
, + ,

R34 = A(4)
dc ∧

(
〈AB2B3B4〉 > 0 ∧ c1 > 0 ∧ c2 < 0

)
∨
(
〈AB2B3B4〉 < 0 ∧ c1 < 0 ∧ c2 > 0

)
, − .

(C.2.2)

and we see this has two external boundaries, c1 = 0 and c2 = 0, and one internal
boundary at 〈AB2B3B4〉 = 0. The two external boundaries correspond to sending
B1 → B3 and B1 → B2 respectively. The limit internal boundary 〈AB2B3B4〉 → 0±

instead corresponds to sending B4 to the line P . In this case the geometry is described
by the union of a positively oriented region R+

1234 and a negatively oriented region
R−

1234 as

R+
1234 = A(4)

dc ∧ c1 < 0 ∧ c2 > 0, + ,

R−
1234 = A(4)

dc ∧ c1 > 0 ∧ c2 < 0, − .
(C.2.3)

We clearly see then recalling B1 = c1B2 + c2B3 that B1 cannot line in between the
point B2 and B3 and the orientation depends on which side of B2, B3 B1 is on, with
the position of B4 unconstrained.

This also reveals that there are still further loop-loop type boundaries we could
take even after doing the point-plane-cut. We could take a residue at c2 = 0 or c3 = 0
corresponding to B1 = B2 or B3. The geometry we then obtain corresponds to the
3-loops maximal loop-loop cut A(3)

mll but with weight 4 instead of 2 since this time
we approached two internal boundaries that is 〈AB2B1B3〉 = 0 and 〈AB2B3B4〉 = 0.
This implies that the residue corresponding to this 4-loop boundary is equal to 2
times the (C.1.12) all-in-one-point and plane 3-loop residue.

Let’s now go back to the all-in-one-point cut (5.1.21) and explore the only other
boundary (modulo permutation of the loop variables), at 〈AB2B1B4〉 = 0. Notice
that this time it is an external boundary since the 4 regions remain distinct. To be
very explicit, we can approach the boundary by parametrizing B1 as c1B2 + c2B4 +
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c3Z
∗ and then taking the limit c3 → 0± on (5.1.21), which becomes

R1 = A(4)
dc ∧ c2〈AB2B3B4〉 > 0 ∧ −c1〈AB2B3B4〉 > 0, + ,

R2 = A(4)
dc ∧ c2〈AB2B3B4〉 < 0 ∧ −c1〈AB2B3B4〉 > 0, − ,

R3 = A(4)
dc ∧ c2〈AB2B3B4〉 > 0 ∧ −c1〈AB2B3B4〉 < 0, + ,

R4 = A(4)
dc ∧ c2〈AB2B3B4〉 < 0 ∧ −c1〈AB2B3B4〉 < 0, − ,

(C.2.4)

where the region 1 and 3 are positively oriented and 2 and 4 are negatively oriented.
Here the geometry looks very similar to (C.2.2), but this time c1 = 0 is unconstrained
while c2 is an external boundary. We can see that c1 is free by taking the union of
R1 and R3 and expanding the products into the different sign cases. The same goes
for the pair R2,R4 . Because of this we can actually rewrite the (C.2.4) as

R13 = A(4)
dc ∧ c2〈AB2B3B4〉 > 0, + ,

R24 = A(4)
dc ∧ c2〈AB2B3B4〉 < 0, −

(C.2.5)

This in turn then has two boundaries, 〈AB2B1B3〉 = 0 and c2 = 0. Setting
〈AB2B1B3〉 = 0 obtained by sending B3 to P is described by the union of a positively
oriented region and a negatively oriented region as

R+
1234 = A(4)

dc c2 > 0, + ,

R−
1234 = A(4)

dc c2 < 0, − .
(C.2.6)

This is the geometry of unconstrained points Bi with orientation depending on the
relative order of B1, B2.

This point-plane configuration has a further (internal) loop-loop boundary at
c2 = 0 corresponding to the limit B1 → B2 . This boundary then consists of three
unconstrained points on the line B2, B3, B4. This final configuration thus corresponds
to the 3-loop maximal cut A(3)

mll with weight 2.

C.3 An all loop point-plane geometry

We here describe in detail the geometry corresponding to the specific all loop point-
plane cut described in section 5.2.4.

We first take the simplest all-in-one-point cut boundary. In this all loops first
intersect the line A1B1 and then they all slide to the same intersection point in the
same order as their labeling. At L loops this is given by the inequalities (see (C.3.4))

Rsimplest dc =
⋃
~s

Rsimplest dc
~s
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Rsimplest dc
~s = A dc ∧

(
L∧

a=3

∧
2<i<a

{sa〈ABiB1Ba〉 > 0}
)

orientation =
∏
a

sa

(C.3.1)

After taking the above all-in-one-point cut we then constrain all loops to lie in the
same plane by taking the ordered series of boundaries {〈AB2B1BL〉 = 0, 〈AB2B1BL−1〉 =
0, · · · , 〈AB2B1B3〉 = 0}. To do this, we will parametrize all loops, but B1 and B2, as
Ba = B1 + baB2 + caZ

∗ and we will take the limit ca → 0±. We start by approaching
the boundary 〈AB2B1BL〉. What we obtain after this first limit is that for all i

sL〈ABiB1BL〉 > 0 → sLbL〈ABiB1B2〉 = −sLsibL < 0 . (C.3.2)

Since this inequality must hold for all i we have that all si, apart from sL must be
equal and we can therefore define a single sign s as

s := sL−1 = · · · = s3 . (C.3.3)

Moreover, we can see that bL is actually unconstrained. In fact, since for sL > 0
and sL < 0 we have the same orientation, (C.3.2) reduces to bL > 0 ∨ bL < 0. The
boundary geometry is then given by

Rsimplest dc|〈A,B2B1BL〉=0 = Rsimplest dc
s=1 |〈A,B2B1BL〉=0 ∪ Rsimplest dc

s=−1 |〈A,B2B1BL〉=0

Rsimplest dc
s |〈A,B2B1BL〉=0 = Adc ∧

L−1∧
a=3

∧
2<i<j

{s〈ABiB1Ba〉 > 0}

 orientation = sL−4 .

(C.3.4)

Now let’s take the residue 〈A21BL−1〉 = 0 by taking the limit cL → 0±. What we
obtain is that

s〈ABiB1BL−1〉 > 0 = s〈ABiB1B2〉bL−1 > 0 = bL < 0 . (C.3.5)

This implies that bL−1 → 0− corresponds to an external boundary of the geometry.
Notice also that now the orientation of the two components of the geometry labeled by
s = 1 and s− 1 will be given by sL−5. The series of boundaries 〈AB2B1Ba〉 = 0 have
a clear recursive structure such that at each step a we get an inequality of the form
ba < 0 and the orientation of the two components is equal to sL−a−3. The recursion
ends when we get to the last residue on 〈AB1B2B3〉 = 0, for which no brackets of
the form 〈ABiB1B3〉 are present. At that point the two components 〈AB1B2B3〉 > 0
and 〈AB1B2B3〉 < 0 have the same boundary and opposite orientation and therefore
this represents an internal boundary. We can conclude that the geometry of the
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simplest all-in-one-plane-and-point cut corresponds to

Rsimplest dc
s,L |∧

a
〈A,B2B1Ba〉=0 = A dc ∧

(
L−1∧
a=4

ba < 0
)
, (C.3.6)

where the weight of geometry is equal to 2 due to the internal boundary 〈AB1B2B3〉 =
0 contribution.

At this point it’s straight forward to compute the canonical form of this region
for the 4-point MHV amplitude. The inequalities ba < 0 for a = 4, · · · , L− 1 simply
tell us that on the line P all Ba must be on the same side of B1 as B2. So the full
canonical form is as given in (5.2.23).



Appendix D

Checks on the bosonized product
formula

D.1 Star product proof for m = 1

From (6.1.4) we need to prove that when we put Y = Y0 and Z = Z(χ)(3.2.1) then

1
N(k1, 1) 〈I〉k1

1
N(k2, 1) 〈J〉k2

= (−1)k1k2+k2
1

N(k1 + k2, 1) 〈I(Y ∩ J))〉 . (D.1.1)

Explicitly we have N(k, 1) = (−1)bk/2ck!, Y =


0 0

1k1×k1 0
0 1k2×k2

 and each bosonised

momentum twistor in k+m space is given as Zi = (zi, χiφ1, · · · , χiφk). Defining
Y1 = (0,1k1×k1 , 0) and Y2 = (0, 0,1k2×k2), this becomes

1
N(k1, 1) 〈I〉k1

1
N(k2, 1) 〈J〉k2

= (−1)
bk1c

2 + bk2c
2

k1!k2!
〈IY2〉 ((−1)k1 〈Y1J〉) . (D.1.2)

To obtain this expression we can expanded (Y ∩ J) on Y as

Y ∩ J = 1
k1!k2!

Ya1 · · ·Yak2
〈Yak2+1 ...Yak1+k2

J〉 εa1,...,ak1+k2 , (D.1.3)

to obtain

〈I(Y ∩ J)〉 = 1
k1!k2!

〈IYak2+1 ...Yak1+k2
〉 〈Ya1 · · ·Yak2

J〉 εa1,...,ak1+k2 , (D.1.4)

which shows how for m = 1 the star product corresponds to nothing more than
writing the simplest SL(k) invariant formula that combines Y , I and J and has
the correct scaling. The role of the Y s as columns of the identity matrix is just to
select the rows, and therefore the φs, entering the determinant. But since the φs are
dummy variables that can be relabeled if we antisymmetrise respect to Y = Y1Y2 in
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(D.1.2) we leave the expression unchanged. We can therefore rewrite the latter as

(−1)
bk1c

2 + bk2c
2 −k1

k! (−1)k1k2 〈I(Y ∩ J)〉 , (D.1.5)

where (−1)k1k2 come from the convention we chose for the sign of the intersection
in equation (6.1.3). Now we can use that bk1c

2 + bk2c
2 + bk1+k2c

2 = k1 + k2 mod 2 and
conclude that

1
N(k1, 1) 〈I〉k1

1
N(k2, 1) 〈J〉k2

= (−1)k1k2+k2

N(k, 1) 〈I(Y ∩ J)〉 (D.1.6)

which proves the star product formula for m = 1.

D.2 Bosonised product checks for m = 2 and
m = 4

Here we would like to give evidence for the star product rule (6.1.2) by explicitly
computing both sides of the equation for some special cases and verify that they
match. We have chosen two examples that highlight how the sum over permutations
in (6.1.2) is necessary to give the right result.

Consider the the following product of bosonised brackets for m = 2

(〈123〉 〈234〉) ∗ (〈123〉 〈234〉) = −1
2 〈Y 23〉2 〈1234〉2 . (D.2.1)

We can verify this result by using (6.1.4) and projecting both sides on a pair of
on-shell Grassmannian variables (χi)2(χj)2. If we project on (χ1)2(χ4)2 for example,
we obtain for the left hand side

1
N(1, 2)2

∫
d2φ1d

2φ2
(
〈23〉2 φ1χ1φ1χ4

) (
〈23〉2 φ2χ1φ2χ4

)
=

= 〈23〉4
(

〈χ1χ4〉
2!

)2

= −1
8 〈23〉4 〈χ1χ1〉 〈χ4χ4〉 . (D.2.2)

While for the right hand side we obtain

−1
2 〈23〉4 1

N(2, 2)

∫
d2φ1d

2φ2(φ1χ1φ2χ2 − φ1χ2φ2χ1)2 = −1
8 〈23〉4 〈χ1χ1〉 〈χ4χ4〉 .

(D.2.3)

The two projections match as expected.
Let’s now see an example of product of bosonized brackets for m = 4. Consider



D.2. Bosonised product checks for m = 2 and m = 4 159

the following product of bosonized brackets(
〈12367〉3 〈12357〉

)
∗
(
〈134567〉 〈124567〉3

)
=

= 1
4
(
〈Y 1267〉2 (〈Y 1267〉 〈Y 1357〉 + 3 〈Y 1257〉 〈Y 1367〉

)
〈1234567〉4 . (D.2.4)

To check this relation we can again use (6.1.4) and project (D.2.4) on (χ3)4(χ4)4(χ5)4.
Projecting on (χi)4 is equivalent to acting with the operator ∂(4)

i := ∂(4)
χi

. Projecting
on the right and side and integrating out the φs its easy and gives

1
4 〈1267〉6 (〈Y 1267〉 〈Y 1357〉 + 3 〈Y 1257〉 〈Y 1367〉) (D.2.5)

If we perform the same operation on the left hand side instead we obtain

∂
(4)
3 ∂

(4)
4 ∂

(4)
5 ([45]3[46][2][3]3) =

= ∂
(3)
3 [45]3∂(3)

4 ∂
(3)
5 [3]3

(
∂

(1)
3 [46]∂(1)

4 ∂
(1)
5 [2] + ∂

(1)
5 [46]∂(1)

3 ∂
(1)
4 [2]

)
=

〈3333〉φ [345]6
(
[346][245] 〈1111〉φ 〈2222〉φ + [456][234] 〈1222〉φ 〈1112〉φ

)
+ (φ2 ↔ φ3),

(D.2.6)

where 〈ijlk〉φ = εABCDφ
A
i φ

B
j φ

C
l φ

D
k and [ij] indicate a 5-bracket not containing indices

i, j and analogously [ijk] indicates a 4-brackets not containing the indices i, j, k .
Manipulating the expression using the identities

〈a ∗ ∗∗〉φ 〈aaa∗〉φ = −
(

4
3

)−1

〈aaaa〉φ 〈∗ ∗ ∗∗〉φ (D.2.7)

〈aa ∗ ∗〉φ 〈aa ∗ ∗〉φ =
(

4
2

)−1

〈aaaa〉φ 〈∗ ∗ ∗∗〉φ (D.2.8)

and integrating out the φ’s we obtain

[345]6
(

[346][245] − 1
4[456][234]

)
= 〈1267〉6

(
〈1257〉 〈1367〉 − 1

4 〈1237〉 〈1567〉
)
,

(D.2.9)

which can be tested numerically to be equal to (D.2.5) as expected.
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