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Summary

Conformal supersymmetric Yang–Mills theories play an important role in the gauge-

gravity correspondence and, despite being highly non-physical, have been a driving

force for many new approaches in more realistic theories like QCD and gravity. An

important class of objects in conformal field theories is the spectrum of scaling di-

mensions of local operators, specifically their non-trivial coupling-dependent parts,

the anomalous dimensions. The discovery of integrability in planar maximally su-

persymmetric Yang–Mills theory led to considerable advances in the computation of

its anomalous-dimension spectrum. Less is known at the non-planar level where the

theory is assumed to be non-integrable. In this thesis we consider non-planar anoma-

lous dimensions in conformal supersymmetric Yang–Mills theories with gauge group

SU(N) and approach them by a number of means.

First, we use an on-shell form-factor approach based on the intimate connection

between the dilatation operator and scattering amplitudes. The former gives rise to

operator mixing and its diagonalisation gives the operators’ anomalous dimensions.

The latter are basic observables in any quantum field theory, describing its interactions

and linking theoretical developments to experimental investigations. A lot of progress

has been made in recent years in the study of scattering amplitudes due to the advent

of on-shell methods which circumvent many difficulties of more traditional approaches,

and we use some of these here to extract the dilatation operator in certain sectors

of the theories considered. In particular, we study a set of dimension-4 operators

in N = 4 supersymmetric Yang–Mills theory that is relevant for the mixing of the

theory’s on-shell Lagrangian, and compute the spectrum of non-planar anomalous

dimensions in this sector. Furthermore, we extract the general form of the one-loop

dilatation operator in the sector of purely scalar operators in the β-deformed version

of this theory.

In the planar limit of the theories considered in this thesis, the dilatation operator

maps to a spin-chain Hamiltonian that can be diagonalised by integrability techniques,

in particular a suitable Bethe ansatz. In this mapping the spectrum of anomalous di-

mensions becomes the energy spectrum of the corresponding spin chains. When going

away from the planar limit, integrability is lost, but we can compute non-planar

corrections to the planar spectrum using Rayleigh–Schrödinger perturbation theory.



Using the basis of Bethe states, we compute matrix elements of the deformed and un-

deformed dilatation operator relevant in this approach. We find compact expressions

in terms of off-shell scalar products and hexagon-like functions. We then use non-

degenerate perturbation theory to compute the leading 1/N2 corrections to operator

dimensions and as an example compute the large R-charge limit for two-excitation

states through subleading order.

Finally, we numerically study statistical properties of large sets of anomalous di-

mensions which we obtain from a direct diagonalisation of the dilatation operators

discussed in this thesis. Specifically, we analyse the distribution of level spacings in

these spectra and find universal features: in the planar limit it follows the Poisson

distribution characteristic of integrable systems, and at finite values of N it transi-

tions to the Wigner–Dyson distribution of the Gaussian orthogonal ensemble of ran-

dom matrix theory. This provides numerical evidence that perturbative non-planar

anomalous-dimension spectra are quantum-chaotic, which is further supported by

similar findings in the spectral rigidity measuring long-range interactions in the spec-

tra. We also demonstrate that the finite-N eigenvectors possess properties of chaotic

states.
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Introduction

Quantum field theory (QFT) is the most powerful known theoretical framework to

describe the elementary particles of nature and their interactions, and its predictions

are being tested to ever higher precision in experiments. But despite having been

studied for decades, only few of its predictions are exact results and most computations

rely on perturbation theory. Toy models can pave a way towards new non-perturbative

approaches, and can help us in overcoming problems in the more physically realistic

setups. A prime example in this quest is N = 4 supersymmetric Yang–Mills (N = 4

sYM) theory which is the most symmetric renormalisable quantum field theory known

in four dimensions. It is a quantum conformal field theory (CFT) with the maximal

amount of supersymmetry, and is uniquely fixed up to the choice of the gauge group.

Most commonly, it is studied with gauge group SU(N). In the limit of infinite N ,

the so-called planar limit, the theory’s symmetry structure is even further enhanced,

and N = 4 sYM theory becomes integrable. Here exact results can be achieved. But

the planar limit is a highly unphysical limit and in this thesis we study N = 4 sYM

observables in the non-planar theory. By furthering our understanding of this theory

we might not only hope to gain new techniques for the study of more generic QFTs,

but due to its duality with a gravitational theory defined on an Anti-de-Sitter (AdS)

background in the context of the AdS/CFT correspondence [5], we simultaneously

learn more about the dual type IIB string theory, with strings propagating on AdS5×
S5.

The basic objects of interest in conformal field theories like N = 4 sYM theory

are correlation functions. The conformal symmetry puts strong constraints on their

structure and in particular the two-point correlation functions of local operators are

completely determined up to the operators’ scaling dimensions. An important class of

operators in superconformal field theories are primary operators, which are annihilated

by the lowering operators of the superconformal algebra, and they form the seeds from

which descendant operators can be obtained by the action of the complementary

raising operators. For scalar primary operators Oi(x), the correlation function can be

brought into the form

〈Oi(x1)Oj(x2)〉 =
δij

|x1 − x2|2∆i
, (1)

1
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with ∆i denoting the scaling dimension of operator Oi. The conformal symmetry

ensures that the scaling dimension of descendant states corresponds to that of the

associated primary operator. Thus the spectrum of scaling dimensions of primaries,

together with the structure constants of three-point functions, form the CFT data of

the theory; any higher-point correlation function can be computed from this data via

an operator product expansion (OPE).

Given the absence of any physical energy scales, the problem of finding the spec-

trum of scaling dimensions takes on the role of the Hamiltonian spectral problem in

conformal sYM theories. The analogue of the Hamiltonian is the dilatation operator

D and we are interested in solving its eigenvalue problem

D · Oi(0) = ∆iOi(0) . (2)

The ∆i equal the bare dimensions of operators, ∆0
i , at tree level, but are corrected in

the quantum theory,

∆i = ∆0
i + γi(gYM, N, ...) . (3)

The coupling-dependent part γi is the so-called anomalous dimension and is a non-

trivial function of the parameters of the theory, e.g. in N = 4 sYM theory it is a

function of the gauge coupling gYM and the rank N of the gauge group. The problem

of finding anomalous dimensions has been of continued interest due to its role as a

proving ground for novel calculational techniques and because of its importance in

the AdS/CFT correspondence, where the spectrum of scaling dimensions matches up

with the string energy spectrum.

In this thesis we study the spectrum of anomalous dimensions perturbatively in

the ’t Hooft coupling λ = g2
YMN , and thus expand the dilatation operator as

D =
∑
k

g2kD2k with g2 =
λ

16π2
. (4)

There are a number of results for theN = 4 sYM dilatation operator, and in particular

it was found at one-loop order for the so(6) sector in [6–9] and for the full theory in [10].

At each order in g2 we can further consider the large-N expansion of the operator

dimensions and a key development was the insight that in the planar limit N → ∞
for the so(6) sector of operators the one-loop, O(g2), dilatation operator acts like

an integrable spin-chain Hamiltonian [11]. Therefore the leading large-N anomalous

dimensions can be computed by means of an integrable spin chain, making the problem

in some sense exactly solvable. This was subsequently extended to the full one-loop

theory [12] and to higher orders in perturbation theory [13] as well as being observed

at strong coupling [14]. Thus the full planar theory is conjectured to be integrable,
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and there are even non-perturbative results from the thermodynamic Bethe ansatz

and the Quantum Spectral Curve (QSC) [15–18]. The latter interpolates between the

weak-coupling gauge-theory regime and the strong-coupling string-theory regime and

is conjectured to capture the finite-λ data of the planar theory.

The planar limit corresponds to the limit of an infinite number of gluon colour

charges. In physical quantum field theories like QCD, this number is finite and thus

it is important to understand whether and how the structures and techniques in the

planar limit carry over to the non-planar regime of the theory. With the spectrum

of N = 4 sYM anomalous dimensions being the starting point of many advances in

planar sYM theories, they are also a natural starting point for explorations towards

a deeper understanding of non-planar theories, where considerably less is known. In

particular there is no systematic direct approach to the computation of the non-

planar anomalous dimension spectrum. There are a number of impressive perturba-

tive results for specific operators, e.g. twist-two operators at four loops were studied

and the four-loop non-planar correction to the cusp anomalous dimension was com-

puted [19]. Furthermore, non-planar scaling dimensions can be obtained indirectly

from the hexagon formalism for correlation functions [20–23] from OPE limits, or by

evaluating four-point functions with two operators taken to be the identity [24]. In

this work we obtain perturbative non-planar anomalous dimensions from diagonal-

ising the dilatation operator itself by computing 1/N corrections about the planar

limit using Rayleigh–Schrödinger perturbation theory. In order to do so, we split

the dilatation operator into a leading planar part and subleading off-diagonal terms,

which mix single- and multi-trace operators, and then compute matrix elements of the

subleading terms in the basis of planar eigenstates. Such an approach was previously

used to compute the large R-charge limit of non-planar dimensions of two-impurity

BMN operators in the su(2) sector at one- and two-loop level [6–9]. In this work we

will generalise this approach for the one-loop dilatation operator in the su(2) sector by

making use of Bethe states describing arbitrary numbers of excitations or magnons.

Although the perturbative approach to non-planar data is promising at first sight,

this procedure is made complicated by degeneracies in the planar spectrum [9,13,25].

Thus degenerate perturbation theory has to be employed, which requires solving a

non-trivial mixing problem. We will instead consider deformations of N = 4 sYM

theory for which these degeneracies are lifted. In particular, we consider β-deformed

N = 4 sYM theory which is a marginal deformation of the maximally supersymmetric

theory preserving N = 1 supersymmetry. It is a special case of the Leigh–Strassler

deformations [26] where products of fields get twisted by factors of q = exp(iβ), and

the Yang–Mills coupling gYM in the superpotential gets deformed to κ. We concentrate

on the case β ∈ R for which the theory is exactly conformal to all loop orders in the

planar limit [27] with |κ|2 = g2
YM, and the planar spectral problem for the β-deformed
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theory is described by an integrable twist of the undeformed spin chain.

The planar one-loop dilatation operator in the β-deformed theory has been previ-

ously studied in [28, 29] and in this work we derive it at finite N in the scalar sector

and use it for quantum-mechanical perturbation theory also in the deformed theory.

There are a number of techniques to obtain the dilatation operator in sYM theories,

in particular the complete one-loop dilatation operator for N = 4 sYM theory was

found in [30] by a few Feynman diagram computations and symmetry arguments. Our

approach of choice is a form-factor approach developed in [31], based on an earlier

approach [32], relating the action of the dilatation operator to cuts of form factors. Im-

portantly, this approach mainly relies on on-shell techniques that overcome difficulties

related to gauge redundancies and the proliferation of diagrams in the usual pertur-

bative approach by constructing observables directly from smaller on-shell building

blocks. Here we will use it to find the one-loop deformed dilatation operator includ-

ing non-planar double-trace contributions in the scalar sector of the theory to then

study non-planar corrections to scaling dimensions also in the deformed theory. We

find compact expressions for non-planar matrix elements relevant for the leading 1/N -

corrections and as an application of the method compute the large R-charge limit for

two-excitation states.

In another attempt to further our understanding of non-planar sYM theories, in

this thesis we also explore statistical behaviours of large sets of anomalous dimensions.

Since the work of Wigner [33], as well as Porter and Rosenzweig [34] on the statistical

properties of the energy levels of highly-excited nuclei, the study of spectral statistics

has been a common technique to understand general properties of a system, while

avoiding the exact analytic solution of the system’s spectral problem. This is especially

advantageous for very complex systems for which finding or solving the system’s

equations seems impossible. Here we will study spectra of planar, as well as finite-N

anomalous dimensions of sYM theories. In particular, we will be interested in the

phenomenon of level repulsion: It is characteristic of chaotic systems where energy

levels are correlated and so avoid each other, while in integrable systems levels are

uncorrelated and move independently, crossing on occasion. The phenomenon of

(non-)repulsing energy levels can be studied by looking at the distribution of spacings

between neighbouring energy levels. If one computes the probability P (s)ds that the

normalised spacing between adjacent levels lies in the interval between s and s+ds, one

finds that for a generic, chaotic, quantum system P (s)→ 0 as s→ 0. For integrable

systems it is generally the case that P (s) goes to a constant as s→ 0 which reflects the

presence of hidden symmetries in these models. In addition to the occurrence of level

repulsion, energy spectra of chaotic systems can generally be described by ensembles

of random matrix theory (RMT) [35], and the statistics of the nearest-neighbour level

spacings are closely approximated by the corresponding Wigner–Dyson distribution.
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This has often been taken as a defining property of chaotic quantum systems and

has been seen in a wide variety of areas ranging from condensed matter physics to

quantum gravity. By contrast, the statistics of spacings in integrable systems are

generally described by the Poisson distribution [36]. In this work we numerically

study the spectrum of both the deformed and undeformed N = 4 sYM theory. This

is particularly interesting in the context of N = 4 sYM theory being the canonical

example of a holographic theory, and many of the recent developments in quantum

many-body chaos have come from the connection to black-hole physics [37–41]. We

will find that in the planar limit the spectral distribution is Poisson, consistent with

integrability, while at finite N the distribution is Wigner–Dyson and corresponds to

that of the Gaussian orthogonal ensemble (GOE) random matrix theory.

Overview. This thesis is structured as follows. After this general introduction we

review N = 4 sYM theory and its marginal deformations in Chapter 1. This in-

cludes a discussion of the undeformed theory in Section 1.1 with its symmetries and

field content, the dilatation operator and anomalous dimensions. Further important

concepts necessary for subsequent chapters like scattering amplitudes and form fac-

tors are introduced. In Section 1.2 we discuss marginal deformations of N = 4 sYM

theory, including the Leigh–Strassler deformations, and dilatation operators and scat-

tering amplitudes in the β-deformed theory. Finally in Section 1.3 we study infrared

divergences of scattering amplitudes in non-abelian gauge theories, review concepts

important for subsequent chapters and summarise the results of the paper [1].

In Chapter 2 we begin with a discussion of on-shell methods in the computation

of scattering amplitudes and the dilatation operator in Section 2.1. Then we exploit

this machinery to extract non-planar anomalous dimensions of dimension-4 operators

in N = 4 sYM theory in Section 2.2, and the one-loop dilatation operator of the β-

deformed theory in the scalar sector in Section 2.3. These sections are mainly based

on unpublished work [4].

In Chapter 3 we review results of the publication [2]. We first discuss in Section

3.1 how the spectrum of scaling dimensions in the planar limit of N = 4 sYM theory

can be obtained from integrability methods, focussing on the su(2) sector at one-loop

order. Then we compute non-planar anomalous dimensions perturbatively around

the planar theory in the undeformed case in Section 3.2, and the β-deformed case in

Section 3.3. Doing so, we find compact expressions for matrix elements of the leading

non-planar length-changing terms in the one-loop dilatation operators in terms of

ordered partitions, spin-chain scalar products and hexagon-like objects. These results

are applied to specific examples for which we obtain the leading non-planar correction

to one-loop anomalous dimensions, and in particular we evaluate our expressions in

the BMN limit of the deformed theory.
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In Chapter 4 we discuss further results of the publication [2], as well as of [3],

about the numerical study of spectra in deformed and undeformed N = 4 sYM

theory. We begin with a review on random matrix theory in Section 4.1, and also

discuss its relevance for quantum-chaotic models. Furthermore, we introduce level

statistics observables in order to explore features of numerical spectra which we will

then apply to spectra in sYM theories in Section 4.2.

We conclude this thesis with a summary of the results and an outlook on possible

future directions of work. In addition, there are a few appendices included. In Ap-

pendix A we list form factors relevant for the mixing of marginal operators in N = 4

sYM theory discussed in Section 2.2. In Appendix B we discuss the algebraic Bethe

ansatz for the Heisenberg spin chain, including compact expressions for spin-chain

scalar products following from this ansatz relevant for Chapter 3. Finally, in Ap-

pendix C we give more details on data preparation for the level statistics analysis

performed in Chapter 4.



Chapter 1

N = 4 super Yang–Mills theory and

its marginal deformations

In this chapter we review N = 4 sYM theory and its marginal deformations, introduce

the dilatation operator in conformal field theories, and discuss scattering amplitudes

and form factors. This will lay the foundations for the following chapters. In Section

1.1 we begin with a discussion of pure N = 4 sYM theory, in particular its field

content and symmetries, as well as scattering amplitudes and form factors in this

theory. We furthermore introduce the main characters of this thesis: the dilatation

operator and anomalous dimensions. In Section 1.2 we then move on to marginal

deformations of N = 4 sYM theory, mainly focussing on the β-deformed theory and

its dilatation operator and scattering amplitudes. In the final Section 1.3 we give a

review of infrared divergences in scattering amplitudes, and discuss soft theorems and

coherent states.

1.1 Undeformed theory

1.1.1 Symmetries, field content and action

Field content and action. N = 4 sYM theory [42,43] has a rich symmetry struc-

ture. In four-dimensional spacetime it is the unique theory enjoying the maximal

amount N = 4 of supersymmetry allowed for renormalisable quantum field theories.

Both its matter content and the form of the action are fixed by this symmetry.

The theory’s matter fields are massless and contain the three complex scalar fields

φAB = −φBA, the four fermionic fields ψAα and the four anti-fermionic fields ψ̄Aα̇ . The

indices A,B = 1, 2, 3, 4 correspond to the global R-symmetry group SO(6) ' SU(4),

and the spinor indices α, α̇ range over 1, 2 and 1̇, 2̇, respectively. Furthermore, there is

a gauge field Aµ, with Lorentz index µ = 0, 1, 2, 3 in mostly-minus signature, and we

will work with SU(N) as the gauge group with all fields transforming in the adjoint

7



8 1.1. Undeformed theory

representation. The N = 4 sYM action is given by

SN=4 =

∫
d4xTr

(
−1

4
F µνFµν −

1

2
(DµφAB)(DµφAB) + iψ̄Aα̇ σ̄

α̇α
µ DµψAα

+gYMψ
α
A[φAB, ψBα] + gYMψ̄

A
α̇ [φAB, ψ̄

Bα̇] +
g2
YM

16
[φAB, φCD][φAB, φCD]

)
(1.1)

with dimensionless Yang–Mills coupling constant gYM. It contains the field strength

Fµν and covariant derivative Dµ defined as

Fµν = ∂µAν − ∂νAµ − igYM[Aµ, Aν ] , DµX = (∂µX)− igYM[Aµ, X] , (1.2)

and the matrix (σ̄µ)α̇α = (1, σ1, σ2, σ3)α̇α with Pauli matrices

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
. (1.3)

The equations of motion for the fundamental fields following from (1.1) are

DµFµν = + 2igYM[DνφAB, φAB] + gYMσ̄
α̇α
ν {ψ̄Aα̇ , ψAα}

iσ̄α̇αµ Dµψ̄Aα̇ = + 2gYM[φAB, ψαB] ,

iσ̄α̇αµ DµψαA =− 2gYM[φAB, ψ̄
Bα̇] ,

DµDµφAB =
g2
YM

8
[[φAB, φCD], φCD]

+
gYM

4

(
εABCD{ψαC , ψDα}+ (δACδ

B
D − δBC δAD){ψ̄Cα̇ , ψ̄Dα̇}

)
. (1.4)

Symmetries. N = 4 sYM theory has an exceptional amount of symmetry. This in-

cludes the maximal amountN = 4 of supersymmetry, with supercharges QA
α and Q̇Aα̇,

and the corresponding global SO(6) ' SU(4) R-symmetry group, with R-charges

RA
B. Furthermore, it is a conformal field theory and so the Poincaré symmetry al-

gebra, consisting of the Lorentz transformations Lαβ and L̇α̇β̇ and translations Pαα̇,

is enhanced to the conformal symmetry algebra so(2, 4) ' su(2, 2), with additional

dilatation generator D and special conformal transformations Kαα̇. At the classical

level the conformal invariance of N = 4 sYM theory follows from the absence of

masses and dimensionful couplings in its action (1.1), whereas its conservation at the

quantum level is non-trivial [44–46]. The conformal symmetry algebra combines with

the supersymmetry algebra to su(2, 2|4) whose irreducible part is the superconformal

algebra psu(2, 2|4). This algebra additionally contains the superconformal charges Sα
A

and ṠAα̇. The explicit commutation relations of the symmetry generators, as well as

their action on composite operators can be found for example in [30].

Composite operators of the N = 4 sYM fundamental fields form primary states
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Aµ φ1 φ2 φ3 ψ1 ψ2 ψ3 ψ4

q1 0 −1 0 0 −1/2 +1/2 +1/2 −1/2

q2 0 0 −1 0 +1/2 −1/2 +1/2 −1/2

q3 0 0 0 −1 +1/2 +1/2 −1/2 −1/2

Q1 0 −1 +1 0 −1 +1 0 0

Q2 0 0 −1 +1 0 −1 +1 0

r 0 −2/3 −2/3 −2/3 +1/3 +1/3 +1/3 −1

Table 1.1: u(1)3 Cartan charges of the fundamental fields of N = 4 sYM theory, with
the respective anti-fields carrying opposite charges.

when they are annihilated by all lowering operators

{Kαα̇,Sα
A, Ṡ

Aα̇,Lαβ(α < β), L̇α̇β̇(α̇ < β̇),RA
B(A < B)} . (1.5)

Descendant operators can be built by acting with the corresponding raising operators

{Pαα̇,Q
A
α , Q̇Aα̇,L

α
β(α > β), L̇α̇β̇(α̇ > β̇),RA

B(A > B)} . (1.6)

The remaining symmetry generators form the Cartan subalgebra and their eigenvalues

can be used to classify primary operators. Of particular importance for the organi-

sation of operators will be the u(1)3 Cartan charges of the SU(4) R-symmetry group

defined as

q1 = R2
2 −R1

1 , p = R3
3 −R2

2 , q2 = R4
4 −R3

3 . (1.7)

The corresponding eigenvalues [q1, p, q2] for a given state are the su(4) Dynkin labels.

In the context of marginal deformations of N = 4 sYM theory it will furthermore be

convenient to introduce two alternative sets of labels (q1, q2, q3) and (Q1, Q2, r) which

are related to the Dynkin labels via [47]

q1 =
1

2
(q1 − q2) , q2 = −1

2
(q1 + q2) , q3 = −1

2
(q1 + 2p+ q2) ,

Q1 = q1 − q2 , Q2 = q2 − q3 , r =
2

3
(q1 + q2 + q3) . (1.8)

Their values for the N = 4 sYM fundamental fields are given in Table 1.1, where we

define three complex scalars as

φi := φi4 , i = 1, ..., 3 , (1.9)

with conjugates φ̄i. Another important label of a composite operator is their scaling
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dimension ∆ measured by the dilatation operator D. This quantity will take on a

central role throughout this thesis and will be further elaborated on in Section 1.1.2.

Gauge group. The generators of the gauge group SU(N) in the fundamental rep-

resentation are N ×N hermitian matrices obeying the commutation relation

[T a, T b] =
√

2ifabcT c (1.10)

with structure constants fabc. The generators are normalised to

Tr(T aT b) = δab , (1.11)

which implies

fabcfabd = Nδcd . (1.12)

The structure constants moreover satisfy the Jacobi identity

fabef cde + facefdbe + fadef bce = 0 . (1.13)

On-shell superfield and Lagrangian. In the following sections the Lagrangian

formulation of N = 4 sYM theory via (1.1) will play a secondary role. Instead, we

will mainly make use of on-shell techniques to determine the quantities of interest.

The main idea behind this is to build on-shell observables from other known on-shell

observables. Of particular importance will be the N = sYM version of the Parke–

Taylor amplitude [48] for tree-level MHV scattering of N = 4 sYM fields. A compact

version of this formula uses the fact that all on-shell states of the theory can be

combined into a single on-shell superfield Φ as a function of Grassmann variables

η̃ [49]

Φ(p, η̃) = g+(p) + η̃AψA(p) +
1

2!
η̃Aη̃BφAB(p) +

1

3!
η̃Aη̃B η̃Cψ̄ABC(p) + (η̃)4g−(p) .

(1.14)

It contains gluons g± (with helicity h = ±1), scalars φAB (h = 0), as well as fermions

ψA (h = +1/2) and anti-fermions ψ̄A (h = −1/2). They transform under conjugation

as

g†± = g∓ , (φAB)† = φ̄AB = φAB =
1

2
εABCDφCD ,

(ψαA)† = ψ̄Aα̇ = − 1

3!
εABCDψ̄α̇BCD , (ψ̄α̇ABC)† = ψABCα = εABCDψαD , (1.15)
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where the third relation is consistent with

ψ̄α̇ABC = εABCDψ̄
Dα̇ , (1.16)

and εABCD is the four-dimensional Levi-Civita symbol. The conjugation rules (1.15)

are moreover consistent with (Φ†)† = 1, where Φ ∈ {g±, ψA, ψ̄A, φAB} denotes an

arbitrary component field of Φ.

Evaluating the Lagrangian (1.1) on-shell by using the equations of motion (1.4)

yields the chiral on-shell Lagrangian of N = 4 sYM theory

L = Tr

(
FαβF

αβ − gYMψ
α
A[φAB, ψαB]− g2

YM

24
[φAB, φCD][φAB, φCD]

)
. (1.17)

Here we dropped all total derivatives and a topological term FαβFαβ − F̄ α̇β̇F̄α̇β̇ in the

pure-gauge part

−1

4
FµνF

µν =
1

2

(
FαβFαβ + F̄ α̇β̇F̄α̇β̇

)
' FαβFαβ . (1.18)

In [50] this on-shell Lagrangian was introduced in the so-called Lagrangian insertion

procedure to obtain loop corrections of correlation functions of half-BPS operators,

and was later used to define a super-Wilson loop at loop level [51] which is dual to

N = 4 sYM amplitudes with general helicity configurations.

1.1.2 Dilatation operator and anomalous dimensions

Classical conformal invariance. An important observable in four-dimensional

CFTs is the spectrum of scaling dimensions of local operators. They are related to

dilatations which scale spacetime coordinates by a scaling factor eα as

xµ → eαxµ. (1.19)

In a free massless theory one can always find an appropriate transformation of the

elementary fields such that the action of the theory is left invariant under dilatations.

For example in a free massless scalar field theory, the action

S0[φ] =

∫
d4x

1

2
(∂φ(x))2 (1.20)

is invariant under simultaneous transformation (1.19) and

φ(x)→ φ′(x) = e−∆0
φαφ(e−αx) (1.21)
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for ∆0
φ = 1, which can be easily seen from

S0[φ]→
∫

d4x′
1

2
(∂′φ′(x′))2 =

∫
d4xe(4−2−2)α1

2
(∂φ(e(1−1)αx))2 = S0[φ] . (1.22)

∆0
φ is the classical scaling dimension of the scalar field φ, which characterises the

scaling properties of general operators under rescalings (1.19).

The scale-invariance of free massless theories is broken when adding mass terms

to the Lagrangian. Similarly, deforming the action by adding interaction terms may

break this symmetry, with the exception of marginal deformations. These are defor-

mations

δL ∼ gO (1.23)

where the classical dimension of the operator O is ∆0
O = 4 and the deformation

parameter g is dimensionless. For unitary renormalisable classical field theories in

four dimensions, scale invariance automatically implies conformal invariance [52,53].

Conformal invariance at the quantum level. In general, it is not guaranteed

that the conformal invariance of a classical theory is inherited by the quantum theory,

but in the case of N = 4 sYM theory it is exact also at the quantum level [44–46].

This is implied by the vanishing of the β-function

β(g2
YM) = µ∂µg

2
YM , (1.24)

which encodes the dependence of the theory on the renormalisation scale µ, to all loop

orders. Nevertheless, many composite operators are renormalised and their classical

scaling dimensions ∆0 receive quantum corrections. N = 4 sYM theory with gauge

group SU(N) has two free parameters1, the gauge coupling gYM and the rank of the

gauge group N , and a possible perturbative treatment of this theory corresponds to

a double expansion of small ’t Hooft coupling λ = g2
YMN and large gauge parameter

N [54]. In the large-N expansion it is useful to classify Feynman diagrams according

to the topological surface they can be drawn on. Then diagrams are suppressed

according to the genus of these surfaces, with graphs that can be drawn on the surface

of a sphere, i.e. planar diagrams, being dominant. In this perturbative regime, the

scaling dimension of a local operator O may be expanded as

∆O = ∆0
O +

∞∑
k=1

g2kγ
(k)
O (N) , with g2 =

λ

16π2
, (1.25)

1In principle, as in any gauge theory, one could introduce a θ-term which would give rise to a
complex coupling constant. Here we work in the θ = 0 sector.
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with the classical dimension ∆0
O receiving quantum corrections γ

(k)
O (N), the so-called

anomalous dimensions. These are in general non-trivial functions of the rank N of

the gauge group and can thus be further computed in an expansion of large N .

The operator generating dilatations in a CFT, and thus measuring scaling dimen-

sions of local operators, is the dilatation operator D. A general operator O transforms

under dilatations as, cf. (1.21),

O(x)→ e−∆OαO(e−αx) (1.26)

generated by D as

O(x)→ eαDO(x)e−αD (1.27)

with

[D,O(x)] = (∆O + xµ∂µ)O(x) . (1.28)

In the perturbative regime we may expand the dilatation operator D similar to (1.25)

as2

D =
∑
k

g2kD2k . (1.29)

One-loop dilatation operator of N = 4 sYM theory. Early computations of

anomalous dimensions were based on the relation (1) between two-point functions

and scaling dimensions and were performed by direct Feynman diagram calculations

for each operator of interest. In order to efficiently compute anomalous dimensions

for a number of operators, it is more useful to obtain them from diagonalisation of

the dilatation operator. In [10], see also [30], the complete one-loop N = 4 sYM

dilatation operator was derived. This derivation relies on the computation of certain

two-point functions in closed sectors via Feynman diagram calculations from which

the dilatation operator in these sectors can be deduced. These results are then lifted

to the full dilatation operator by symmetry arguments. After this first derivation of

the dilatation operator in N = 4 sYM theory, other methods were developed and we

review an on-shell approach to the dilatation operator in Section 2.1.2.

In Chapters 3 and 4 we will consider anomalous dimensions of a particular class of

local gauge-invariant operators which are given as products of traces of the covariant

2The full N = 4 sYM dilatation operator has an expansion not only in even, but also odd powers
of the coupling starting at O(g3YM). These so-called “half-loop” contributions change the lengths of
operators and this effect will be studied in more detail in Section 2.2. In the remaining parts of this
thesis we restrict to closed sectors of N = 4 sYM theory in which those length-changing effects do
not occur and the dilatation operator can be expanded in even powers of the coupling only.
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fields

Tr(Φ1 . . .ΦL)(x) , (1.30)

where Φi is either a scalar, fermion or field strength with possible insertions of covari-

ant derivatives Dµ and L is the operator length. The symmetry algebra of the theory,

psu(2, 2|4), is non-compact and thus the operators organise themselves in infinite-

dimensional representations. Of particular interest in this thesis are two rank-one

sectors of the theory, the scalar su(2) sector spanned by two complex scalars, e.g.

{Z = φ12, X = φ14}, as well as the sl(2) sector spanned by one complex scalar and

one covariant light-cone derivative {Z,D}.

su(2) sector. First we discuss the su(2) sector comprising operators made of prod-

ucts of traces of the two complex scalar fields Z and X, and so we consider operators

such as

Tr(Z`1) , Tr(XZ`1XZ`2) , Tr(XZ`1XZ`2Z`3) Tr(XZ`4) Tr(XX) . (1.31)

These operators can be organised into SO(6) representations with Dynkin labels

[M,L − 2M,M ], where L counts the total number of scalar fields in the operator,

while M corresponds to the number of X-fields. This sector is known to be closed

under the action of the dilatation operator and does not mix with operators contain-

ing other scalars, field strengths or fermions. To describe the action of the dilatation

operator, we make use of the notation for functional derivatives of fields, for example

(Ž)ab :=
δ

δ(Z)ba
(1.32)

such that

(Ž)ab(Z)cd = δcbδ
a
d −N−1δab δ

c
d , and (Ž)ab(X)cd = 0 . (1.33)

This can be used to derive the fusion and splitting formulas

Tr(AŽ) Tr(BZ) = Tr(AB)−N−1 Tr(A) Tr(B) ,

Tr(AŽBZ) = Tr(A) Tr(B)−N−1 Tr(AB) , (1.34)

where it is assumed that A and B do not contain any Z’s. The N−1 terms are due

to the fact that we are considering the SU(N) gauge theory. This is not particularly

important for N = 4 sYM theory and we could equally well consider a U(N) gauge

group, however it will become relevant when we subsequently consider the β-deformed

theory.

Using this notation, the tree-level dilatation operator in the su(2) sector can be
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written as

D0 = : Tr(ZŽ +XX̌) : (1.35)

and simply counts the number of fields in a given operator. The normal-ordering

markers : : indicate that the functional derivatives do not act on the fields enclosed

by these colons. The one- and two-loop correction to the dilatation operator is then

given by [6,13]

D2 = − 2

N
: Tr([X,Z][X̌, Ž]) : , (1.36)

D4 = − 2

N2
: Tr

([
[X,Z], Ž

] [
[X̌, Ž], Z

]
+
[
[X,Z], X̌

] [
[X̌, Ž], X

]
+ [[X,Z], T a]

[
[X̌, Ž], T a

])
: . (1.37)

Due to the residual SU(2) R-symmetry we can arrange operators in terms of primary

operators defined by J−O = 0, where the lowering operator acts as J−X = Z, and

descendant operators which can be obtained by acting with J+ on a primary. The

above dilatation operator gives rise to a mixing problem which, for short operators,

can be solved by hand to obtain the corresponding anomalous dimensions. For longer

operators the dimension of the mixing problem gets very large very quickly and this

calls for a more general approach to anomalous dimensions. In the planar limit the

action of the one-loop dilatation operator reduces to the integrable XXX spin-chain

Hamiltonian [11] and thus dimensions can be obtained using integrability techniques.

In Chapter 3 we review the planar integrable theory and compute non-planar anoma-

lous dimensions perturbatively around the solvable planar limit, and then we move

on to an investigation of the statistical properties of anomalous dimensions at finite

N in Chapter 4.

sl(2) sector. A second sector we examine in this work is the sl(2) sector. In this

sector we are interested in operators consisting of traces of the scalar field Z with

insertions of covariant light-cone derivatives. These operators are of particular interest

as they are in some sense universal in non-abelian gauge theory [55], and can even be

related to perturbative QCD [56] where there is an integrable sl(2) sector at one-loop

level in the planar limit [57, 58], despite the conformal symmetry being broken.

We denote a scalar excited with n derivatives by Z(n) ≡ DnZ/n!. The one-loop

dilatation operator is [10]

D2 = − 1

N

∑
m,n

k+l=m+n

Ckl
mn : Tr

(
[Z(k), Ž(m)][Z(l), Ž(n)]

)
: (1.38)
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with coefficients

Ckl
mn = δk=m

(
h(m) + h(n)

)
− δk 6=m
|k −m|

, (1.39)

and h(n) being the harmonic sum. We organise the operators with respect to their

number of fields L and derivatives S. Furthermore, since there is an SL(2) symmetry,

operators are arranged into primaries O, obeying S−O = 0, and descendants obtained

by the action of S+ on O. The action of the lowering operator is given by S−Z
(n) =

nZ(n−1). Note that in this case the representations are non-compact since we can act

with the raising operator S+ indefinitely, creating an infinite tower of descendants.

1.1.3 Scattering amplitudes and form factors

The scaling dimensions of N = 4 sYM theory, together with the structure constants

from three-point correlation functions, build the CFT data of the theory. In more

general, non-conformal, quantum field theories we are often interested in an alter-

native set of observables to characterise the theory: the scattering amplitudes. As

basic ingredients for cross sections, they form important data for experiment, but also

provide insight more formally into structural properties of the theory. Their defini-

tion for theories with massless particles, and in particular conformal field theories,

is subtle due to the invalidity of the assumption that interactions are negligible at

large distances. This requires the introduction of an infrared regulator and we will

discuss the associated infrared divergences in amplitudes in further detail in Section

1.3. Scattering amplitudes are an active field of physics and we will not attempt to

give a complete overview, but only confine ourselves to aspects immediately relevant

for the discussions in this work and refer to reviews and lectures such as [59–62] for a

more complete treatment and list of references.

Scattering amplitudes are overlaps between on-shell states of elementary particles

and thus probe their interactions. Choosing all particles to be outgoing by crossing

symmetry, their general form is given by the overlap of an n-particle outgoing state

and the vacuum, i.e.

Mn(1a1 , 2a2 , ..., nan) := 〈1a1 , 2a2 , ..., nan|0〉 . (1.40)

In this thesis we will also be interested in the more general overlaps between n-particle

outgoing states and the off-shell state created by the action of a local operator O(x)

on the vacuum, i.e.

FO(1a1 , 2a2 , ..., nan ;x) := 〈1a1 , 2a2 , ..., nan|O(x)|0〉 . (1.41)

These objects are the so-called form factors and they build a bridge between the

purely on-shell scattering amplitudes and off-shell correlation functions.
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Colour ordering. In general, amplitudes of a given theory depend on the labels of

the external particles and in non-abelian gauge theories we can separate the colour-

dependence of amplitudes from the remaining degrees of freedom by a colour decompo-

sition. In N = 4 sYM theory this decomposition of the full amplitudeMn, depending

on the colour indices a1, a2, ..., an, is achieved in terms of partial amplitudes Mn at

tree-level via [63, 64]

M(0)
n ({pi, ai}) = gn−2

YM

∑
σ∈Sn/Zn

M(0)
n (pσ(1), pσ(2), ..., pσ(n)) Tr(aσ(1)aσ(2)...aσ(n)) , (1.42)

where we leave the dependence on any other particle quantum numbers besides the

momenta and colour indices implicit. The elements ai in the colour trace represent

the traceless generators T ai of SU(N) in the fundamental representation, obeying the

relation (1.10) with normalisation (1.11). The sum in (1.42) is over all permutations

Sn of the colour labels up to cyclically invariant combinations, i.e. we sum over Sn−1 =

Sn/Zn. This reflects the (graded) cyclicity of partial amplitudes:

Mn(1, 2, 3, ..., n) = Mn(2, 3, ..., n, 1) . (1.43)

Using the reflection and U(1) decoupling identity,

Mn(1, 2, ..., n) = (−1)nMn(n, ..., 2, 1) ,

Mn(1, 2, 3, ..., n) + Mn(2, 1, 3..., n) + ...+ Mn(2, 3..., n, 1) = 0 , (1.44)

as well as the more general Kleiss–Kuijf relations [65] of N = 4 sYM partial ampli-

tudes, the relation (1.42) can be reformulated in terms of (n− 2)! partial amplitudes

as [66]

M(0)
n ({pi, ai}) = (

√
2igYM)n−2

∑
σ∈Sn−2

M(0)
n (p1, pσ(2), ..., pσ(n−1), pn)

· fa1aσ(2)e1f e1aσ(3)e2 ...f en−3aσ(n−1)an , (1.45)

which for the four-point amplitude yields the simple relation

M(0)
4 = −2g2

YM

(
M

(0)
4 (1, 2, 3, 4)fa1a2efa3a4e + M

(0)
4 (1, 3, 2, 4)fa1a3efa2a4e

)
. (1.46)

A further reduction of the basis of tree-level partial amplitudes to (n−3)! independent

amplitudes can be achieved via the BCJ relations [67], but as they have not been

established for the β-deformed theory we discuss further below, we will not make use

of them in this work.
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Spinor-helicity variables. With N = 4 sYM theory being a quantum confor-

mal theory of only massless fields, it is particularly useful to describe amplitudes in

momentum space in terms of spinor-helicity variables. They are introduced by decom-

posing on-shell massless momenta pµ, p2 = 0, into two two-component Weyl spinors

λ and λ̃ as

pα̇α = pµσ̄α̇αµ = λ̃α̇λα =

(
p0 + p3 p1 − ip2

p1 + ip2 p0 − p3

)
. (1.47)

For physical momenta with real and positive energy the two spinors are related via

(λα(p))∗ = λ̃α̇(p) . (1.48)

We adopt the convention where under crossing a momentum, p→ k = −p, the spinors

satisfy

λ(−p) = −λ(p), λ̃(−p) = λ̃(p) (1.49)

and thus for crossed momenta k with real and negative energy, the relation (1.48)

becomes

(λα(k))∗ = −λ̃α̇(k) . (1.50)

For a given momentum pα̇α the spinors are only fixed up to a phase ϕ,

(λα, λ̃α̇)→ (e−iϕλα, eiϕλ̃α̇) ⇒ pα̇α → pα̇α . (1.51)

This invariance is related to the SO(2) ' U(1) little-group symmetry which leaves

the momentum invariant in the Lorentz frame in which it is given by pµ = (p0, 0, 0, p0)

with particle energy p0. The associated little-group transformation rotates particles

as a function of their helicity h as

〈p, h| → e2iϕh 〈p, h| . (1.52)

Thus the fundamental fields of N = 4 sYM theory transform as

〈g+| → e2iϕ 〈g+| , 〈g−| → e−2iϕ 〈g−| ,

〈ψ| → eiϕ 〈ψ| , 〈ψ̄| → e−iϕ 〈ψ̄| ,

〈φ| → 〈φ| , (1.53)

in particular the negative-helicity fermions ψ̄ scale like λ, while positive-helicity

fermions ψ scale like λ̃. Lorentz-invariant combinations of spinor-helicity variables
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can be built as

〈ij〉 := λαi λjα, [ij] := λ̃iα̇λ̃
α̇
j , (1.54)

where spinor indices are raised and lowered with the help of the two-dimensional

Levi-Civita symbol

λα = εαβλ
β, λ̃α̇ = εα̇β̇λ̃

β̇ . (1.55)

They are related to Mandelstam invariants as

sij = (pi + pj)
2 = 〈ij〉 [ji] . (1.56)

Parke–Taylor superamplitude. N = 4 sYM amplitudes of the elementary gluon,

fermion and scalar fields can be cast into a particularly compact form by combining

them into amplitudes of on-shell superfields Φ given in (1.14). The MHV component

amplitudes at tree-level combine to the N = 4 superfield version of the Parke–Taylor

amplitude, the so-called Parke–Taylor superamplitude,

M(0,MHV)
n (Φ1,Φ2, ...,Φn) =

δ(8)(
∑n

i=1 λ
α
i η̃

A
i )

〈12〉 〈23〉 ... 〈n1〉
=

∏4
A=1

∑
1≤i<j≤n 〈ij〉 η̃Ai η̃Aj

〈12〉 〈23〉 ... 〈n1〉
. (1.57)

From this expression a component amplitude can be extracted by identifying the

combination of η̃i’s corresponding to the helicities hi as in (1.14).

Originally the expression in (1.57) was conjectured for purely gluonic MHV tree-

level amplitudes by Parke and Taylor [48] from expressions up to n = 5 obtained

essentially by direct Feynman diagram calculations. Only a year later it was proven

for arbitrary numbers of external legs by Berends and Giele [68] in terms of an off-

shell recursion. In N = 4 sYM theory, supersymmetry relates this purely gluonic

amplitude to amplitudes with general external field content via Ward identities which

result in the Parke–Taylor superamplitude (1.57). The particularly simple form of

the Parke–Taylor amplitude is remarkable, especially in light of the huge number of

Feynman diagrams contributing to its computation via traditional methods. In a quest

to make this simplicity manifest directly in the derivation of scattering amplitudes,

new approaches to such calculations were developed, with the main idea being to work

with exclusively on-shell degrees of freedom at every stage of the computation. We

elaborate on some of these so-called on-shell methods further in Section 2.1.

Form factors. A form factor measures the overlap of an on-shell external state and

an off-shell state created by the action of a local operator O(x) on the vacuum |0〉 as

in (1.41). Form factors in position space can be transformed into momentum space
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via a Fourier transformation as

FO(1, ..., n; q) =

∫
d4xe−iq·x 〈1, ..., n|O(x)|0〉

=

∫
d4xe−iq·x 〈1, ..., n|eix·PO(0)e−ix·P|0〉

= (2π)4δ4
(
q −

∑
ipi
)
〈1, ..., n|O(0)|0〉 , (1.58)

where we use the momentum operator Pµ to translate the operator O(x) to the origin.

Similar to the colour decomposition (1.42) of scattering amplitudes, we can strip off

the colour-dependence of form factors by defining colour-ordered partial form factors.

For form factors of length-L single-trace operators O in N = 4 sYM theory this

decomposition is achieved via

F (0)
O ({pi, ai}; q) = gn−LYM

∑
σ∈Sn/Zn

F
(0)
O (pσ(1), pσ(2), ..., pσ(n); q) Tr(aσ(1)aσ(2)...aσ(n)) (1.59)

at tree-level. For multi-trace operators there exists a similar decomposition where the

sum over permutations splits into a sum over all possible partitions of colour indices

over the different traces and sums over non-cyclic permutations for each individual

trace.

An important class of form factors is formed by those for which the field content

in the external state corresponds to the field content in the local operator. These so-

called minimal form factors have a non-vanishing contribution even in the free-theory

limit and will take on a particularly important role in this thesis. The minimal form

factors of the fundamental fields are

〈g−(p)|Fαβ|0〉 = λαλβ , 〈g+(p)|F̄ α̇β̇|0〉 = λ̃α̇λ̃β̇ ,

〈ψ̄A(p)|ψαB|0〉 = δABλ
α , 〈ψA(p)|ψ̄α̇B|0〉 = δBA λ̃

α̇ ,

〈φAB(p)|φCD|0〉 = εABCD . (1.60)

1.2 Deformations

N = 4 sYM theory has many exceptional features, including exact conformal invari-

ance, a maximal amount of supersymmetry, planar integrability, and duality with a

gravitational theory. This makes this theory stand out from all other four-dimensional

quantum field theories and an ideal testing ground for new approaches to computations

and conceptional explorations in more generic theories. Nevertheless, this amount of

symmetry also makes N = 4 sYM theory highly unphysical, and this motivates the

study of its deformations and, in particular, of how concepts developed in N = 4

sYM theory carry over to less-symmetric theories. One natural starting point in this
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quest are exactly marginal deformations which we will discuss in Section 1.2.1. We

will mainly focus our attention on the β-deformation, and discuss this theory, its

dilatation operator and scattering amplitudes in Section 1.2.2.

1.2.1 Leigh–Strassler deformations

N = 4 sYM theory is a representative of a larger family of supersymmetric CFTs

in four dimensions that were classified by Leigh and Strassler in [26]. They can

be obtained from N = 4 sYM theory by deforming its superpotential in N = 1

superspace formulation. In this formulation the N = 4 elementary fields discussed in

Section 1.1.1 are arranged into one vector superfield V , and three chiral superfields

φ1,φ2,φ3. The corresponding superspace Lagrangian contains the superpotential

WN=4 = gYM Tr([φ1,φ2]φ3) . (1.61)

Leigh and Strassler [26] showed that the two-parameter deformation

WLS = κTr
(
φ1φ2φ3 − qφ2φ1φ3 +

h

3
(φ3

1 + φ3
2 + φ3

3)
)

(1.62)

gives rise to a family of N = 1 supersymmetric conformal field theories which remain

conformal at the quantum level given a single constraint equation on the new param-

eters κ, q and h. This constraint can be obtained perturbatively and through two

loops is given by the relation

2g2
YM = |κ|2

(
2

N2

∣∣q + q−1
∣∣2 +

(
1− 4

N2

)(
|q|2 + |q−1|2 + |h|2

))
, (1.63)

see e.g. [69]. The Leigh–Strassler superpotential (1.62) breaks the SU(4) R-symmetry

of N = 4 sYM theory to the U(1) R-symmetry of the N = 1 supergroup. One well-

studied subclass of these Leigh–Strassler theories is the q-deformation for which h = 0,

and in this case the Cartan u(1)3 of SU(4) remains unbroken.

The Leigh–Strassler theories have been of continued interest in the context of

possible deformations of N = 4 sYM theory which inherit its planar integrability. For

generic values of q and h in (1.62) the theory in the planar limit is non-integrable, and

in fact integrability poses a strong constraint which is only satisfied at very special

values [70–72]. One class of integrable models has parameters |q| = 1 and h = 0.

If also qn = 1, then these correspond to orbifolds of the undeformed theory. We

can introduce a parameter β ∈ R with q = exp(iβ) and the corresponding Leigh–

Strassler theory is also known as (real-)β-deformed N = 4 sYM theory. In this case
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the conformality condition (1.63) becomes

g2
YM = |κ|2

(
1− 4

N2
sin2 β

)
, (1.64)

and is further simplified to g2
YM = |κ|2 in the planar limit, where this constraint receives

no higher-loop corrections [27].

1.2.2 β-deformed N = 4 sYM theory

In this work our main focus will be on the real β-deformed N = 4 sYM theory. This

rather simple-looking deformation has rich physics and in this thesis we explore a few

of its properties.

Lagrangian. In N = 1 superspace formalism the β-deformation of the N = 4 sYM

Lagrangian corresponds to a single-trace deformation of the superpotential (1.62).

However, when written in terms of the component fields, this results in both single-

trace and double-trace deformations of the Lagrangian [47, 73]. Furthermore, all in-

teraction terms originating from the superpotential appear with deformed coupling κ.

The Lagrangian is given by

Lβ = Tr

(
−1

4
F µνFµν − (Dµφi)(Dµφi) + iψ̄iα̇σ̄

α̇α
µ Dµψiα + iψ̄4

α̇σ̄
α̇α
µ Dµψ4α

− 2gYMψ
α
4 [φ̄i, ψiα]− 2gYMψ̄

4
α̇[φi, ψ̄

iα̇]− κεijkψαi [φj, ψkα]β − κ∗εijkψ̄iα̇[φ̄j, ψ̄kα̇]β

−g
2
YM

2
[φi, φ̄

i][φj, φ̄
j] + |κ|2[φi, φj]β[φ̄i, φ̄j]β

)
− |κ|

2

N
Tr ([φi, φj]β) Tr

(
[φ̄i, φ̄j]β

)
, (1.65)

where i = 1, ..., 3 and the scalars are defined in (1.9). This expression contains de-

formed commutators

[Φi,Φj]β = eiβ(Q1
iQ

2
j−Q1

jQ
2
i )ΦiΦj − eiβ(Q1

jQ
2
i−Q1

iQ
2
j )ΦjΦi , (1.66)

where the charges Q1
i and Q2

i associated to the field Φi are two of the U(1)3 Car-

tan charges and their values for all elementary fields are given in Table 1.1. Note

that the Lagrangian (1.65) does not only conserve the U(1) R-symmetry of general

Leigh–Strassler theories corresponding to the quantum number r, but the full Cartan

U(1)3. The double-trace scalar term in (1.65) is important for the theory to be exactly

conformal [47]. This is true even in the planar limit as, although this term occurs at

subleading order in N , the corresponding interaction contributes to the leading planar

anomalous dimensions of short operators.
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In the undeformed action (1.1) the interactions are all of commutator-type. Due

to the form of colour contractions in traces, this in particular results in anomalous-

dimension spectra that are independent of whether we use SU(N) or U(N) as the

gauge group. In the β-deformed theory the U(N) gauge group is no longer conformal

at the quantum level due to the couplings of U(1) scalars. These degrees of freedom

decouple at the infrared fixed point corresponding to the SU(N) theory and we will

thus consider only the SU(N) gauge group.

Dilatation operator. The form of the single-trace part of the β-deformed dilata-

tion operator is simply inherited from the undeformed theory and is found by re-

placing the commutators in the undeformed dilatation operator by the β-deformed

commutator (1.66) defined via the R-charges of the fields. In the planar limit and for

sufficiently large operators (L > 2) the anomalous dimensions are completely fixed by

this single-trace part of the dilatation operator which maps to an integrable Hamil-

tonian discussed in Section 3.1.3. The planar dilatation operator for the deformed

theory has been previously studied using both integrability methods [28] and direct

field-theory computations [29].

The non-planar dilatation operator can in principle be directly computed from the

deformed Lagrangian using standard Feynman diagrammatics. In this thesis we will

derive it in the scalar subsector using on-shell methods based on [31, 32], cf. Section

2.3. The result in the su(2) sector spanned by X = φ14 and Z = φ12 is given by

Dβ
2 = −2κ̃2

N

(
: Tr([X,Z]β[X̌, Ž]β) : − (eiβ − e−iβ)2

N
: Tr(XZ)Tr(X̌Ž) :

)
, (1.67)

where the deformed commutator is

[X,Z]β = eiβXZ − e−iβZX , (1.68)

and κ̃ = κ/gYM. Note that the U(1)3 symmetry of the β-deformed Lagrangian guar-

antees that the number of X- and Z-fields is preserved by interactions and thus this

sector continues to be closed also in the deformed theory. The double-trace contribu-

tion in (1.67) is necessary to make the theory exactly conformal [47] and ensures that

the operator Tr(XZ) is a protected operator

Dβ
2 Tr(XZ) = 0 . (1.69)

This has been shown perturbatively at one- and two-loop level by direct calculation

in [74, 75]. While the double-trace contribution is relevant at leading order in a 1/N

expansion when acting on short operators such as Tr(XZ), for long operators it is

subleading due to its suppression by a factor of 1/N .



24 1.2. Deformations

Colour-ordered amplitudes. The deformation of the N = 4 sYM Lagrangian

results in a deformation of the corresponding amplitudes starting already at tree-level.

The most striking difference is the occurrence of multi-trace terms in the amplitudes.

In particular for the four-point amplitude the colour decomposition is achieved by

M(0)
4 (1a1 , 2a2 , 3a3 , 4a4)

= g2
YM

∑
σ∈S4/Z4

M
(0)
4;1(pσ(1), pσ(2), pσ(3), pσ(4)) Tr(aσ(1)aσ(2)aσ(3)aσ(4))

+ g2
YM

∑
σ∈S4/Z2×Z2

M
(0)
4;2(pσ(1), pσ(2)|pσ(3), pσ(4)) Tr(aσ(1)aσ(2)) Tr(aσ(3)aσ(4)) , (1.70)

where the double-trace contribution is generated by the double-trace interaction term

in the Lagrangian (1.65) and is thus suppressed by a factor of 1/N compared to the

single-trace contribution. The decomposition of amplitudes with a larger number of

external legs involves higher multi-trace terms, but we will mainly focus on the four-

point amplitude in the following. Note that we pull out a factor of g2
YM in the four-

point partial amplitudes in analogy to the undeformed case, however some interaction

vertices in the deformed theory appear with a complexified coupling κ which is related

to the undeformed gauge coupling gYM via (1.64).

Planar amplitudes. In the planar limit, the deformed amplitudes only contain

single-trace colour structures like their undeformed analogues and due to (1.64) the

coupling κ is essentially given by the undeformed gauge coupling: |κ|2 = g2
YM. More-

over, the corresponding deformed and undeformed partial amplitudes are very closely

related and, remarkably, they only differ by an overall phase factor that is entirely

determined by the flavour structure of external legs and does not probe the explicit

internal interaction structure [76]. This property holds for all planar amplitudes at

arbitrary loop order and can be particularly simply phrased in an alternative approach

to planar β-deformed N = 4 sYM theory achieved by replacing all products in the

undeformed action (1.1) by a Moyal-like ?-product [77]. It is defined as

Φi ? Φj = eiβ(Q1
iQ

2
j−Q1

jQ
2
i )ΦiΦj , (1.71)

with ΦiΦj being the usual product of two elementary fields Φi and Φj. Using this

product, the overall factor of deformed planar amplitudes can simply be determined

by

Mβ
n(Φ1,Φ2, ...,Φn) = MN=4

n (Φ1 ? Φ2 ? ... ? Φn)

:= eiϕ(Φ1,...,Φn)MN=4
n (Φ1,Φ2, ...,Φn) , (1.72)
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where we repeatedly use (1.71), and the phase

ϕ(Φ1, ...,Φn) := β
∑

1≤i<j≤n

(Q1
iQ

2
j −Q1

jQ
2
i ) (1.73)

measures the sum over the Cartan charge differences of all ordered pairs of fields

in the amplitude. This similarity of the planar deformed and undeformed scatter-

ing amplitudes is a direct consequence of Filk’s theorem [78] which states that in a

non-commutative field theory the deformed version of a planar scattering amplitude

corresponds to its undeformed version times a phase factor. Note that this theo-

rem was originally formulated for spacetime non-commutative field theories with the

Moyal ?-product, but due to its similarity with (1.71) it holds here too. As the phase

factor only depends on the ordering of the fields in the partial amplitude, it can also

be moved into the colour part of the full amplitude.

In general, the phase factor in (1.72) is non-cyclic, e.g.

ϕ(Φn,Φ1, ...,Φn−1)− ϕ(Φ1, ...,Φn) = 2
n−1∑
i=1

(Q1
nQ

2
i −Q1

iQ
2
n) . (1.74)

Nevertheless, since an amplitude forms a U(1)3 singlet, the product of fields Φ1, ...,Φn

must itself be uncharged under the corresponding Cartan Q1, Q2 and r and this

implies

n∑
i=1

Q1
i =

n∑
i=1

Q2
i = 0 (1.75)

and thus the right-hand side in (1.74) vanishes, making the planar partial amplitudes

inherit the cyclicity property of undeformed amplitudes. In contrast, for a general

particle configuration the partial amplitude is not invariant under reflection. Instead,

due to ϕ(Φ1,Φ2, ...,Φn) = −ϕ(Φn, ...,Φ2,Φ1), planar partial amplitudes are related to

their parity-conjugated analogues via

Mβ
n(Φn, ...,Φ2,Φ1) = e−2iϕ(Φ1,Φ2,...,Φn)Mβ

n(Φ1,Φ2, ...,Φn) . (1.76)

Furthermore, the U(1)-decoupling identity is modified to

Mβ
n(Φ1,Φ2,Φ3, ...,Φn) + e2iϕ(Φ1,Φ2)Mβ

n(Φ2,Φ1,Φ3, ...,Φn) + ...

+ e2i(ϕ(Φ1,Φ2)+...+ϕ(Φ1,Φn))M
(0)
β,1(Φ2,Φ3, ...,Φn,Φ1) = 0 , (1.77)

where the amplitudes pick up a factor of e2iϕ(Φ1,Φi) for every Φi the field Φ1 permutes

through. Using these relations the full four-point planar tree amplitudes in the β-
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deformed theory can be simplified to

Mβ
4 (1a1 , 2a2 , 3a3 , 4a4) = MN=4

4 (1, 2, 3, 4) Tr([a1, a2][a3, a4])β

+ MN=4
4 (1, 3, 2, 4) Tr([a1, a3][a2, a4])β . (1.78)

The index β on both trace factors implies that each term in the trace is accompanied by

the respective phase, e.g. Tr(a1a2a3a4) gets accompanied by eiϕ(Φ1,Φ2,Φ3,Φ4). Thus all β-

dependence is moved from the kinematic part to the colour part of the amplitude and

the four-point amplitude can be written in a very similar fashion to the undeformed

case in (1.46).

Non-planar amplitudes. At the non-planar level amplitudes not only receive

double-trace terms, but also the single-trace partial amplitudes differ from their planar

version (1.72) due to the appearance of the deformed coupling κ and, in particular,

they are generally not proportional to the undeformed N = 4 sYM amplitudes. Non-

planar amplitudes in the deformed theory were studied in [73] at tree-, one- and

partially at two-loop order. Here we concentrate on scalar four-point amplitudes at

tree-level as they will be important in the derivation of the scalar dilatation operator in

Section 2.3. Their colour decomposition is achieved via (1.70). As the phase ϕ(Φi,Φj)

vanishes for Φi = Φj as well as Φi = Φ̄j, and the interaction vertices that couple Φi

and Φj remain unmodified in these cases, scalar amplitudes like M(0)
4 (φ1, φ1, φ̄

1, φ̄1)

simply correspond to the N = 4 sYM amplitudes and can be obtained from the

Parke–Taylor superamplitude (1.57), i.e.

M(0)
4 (φa11 , φ

a2
1 , φ̄

1a3 , φ̄1a4) = −2g2
YM

(
〈12〉 〈34〉
〈23〉 〈41〉

fa1a2efa3a4e

+
〈13〉2 〈24〉2

〈12〉 〈23〉 〈34〉 〈41〉
fa1a3efa2a4e

)
. (1.79)

If the amplitudes contain different types of scalars the partial amplitudes can get

deformed, e.g.

M
(0)
4;1(φ1, φ2, φ̄

1, φ̄2) = +|κ̃|2e−2iβ ,

M
(0)
4;1(φ1, φ2, φ̄

2, φ̄1) =
〈13〉 〈24〉
〈23〉 〈41〉

+ 1− |κ̃|2 ,

M
(0)
4;1(φ1, φ̄

2, φ2, φ̄
1) =

〈13〉 〈24〉
〈23〉 〈41〉

, (1.80)

where again κ̃ = κ/gYM, and there occur double-trace partial amplitudes

M
(0)
4;2 = −|κ̃|

2

N
(eiβ − e−iβ)2 . (1.81)
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They combine into a colour-dressed amplitude

M4(φa11 , φ
a2
2 , φ̄

1a3 , φ̄2a4) = −2g2
YM

(
fa1a2eϕ(a1,a2)f

a3a4e
ϕ(a3,a4) +

〈12〉 〈34〉
〈13〉 〈24〉

fa1a3efa2a4e
)

(1.82)

with deformed structure constants3

fabcϕ(a,b) = |κ̃|Tr([T a, T b]ϕ(a,b)T
c) . (1.83)

This formulation of scalar tree-amplitudes in terms of deformed structure constants

will be useful for the derivation of the scalar dilatation operator in Section 2.3.

1.3 Infrared divergences

In the traditional approach to scattering amplitudes, a scattering experiment is de-

composed into three regions: an initial and a final asymptotic region, where the

particles are well-separated and their interactions negligible, and an interaction re-

gion, where the particles are microscopically close and interact over a finite amount of

time. Based on this notion, we can compute scattering amplitudes perturbatively for

example by Feynman diagram calculations where the external particle lines denote

asymptotically free states. However, interactions mediated by massless particles are

known to be long-ranged so that parts of the interaction survive even at macroscopic

distances. Moreover, in conformal field theories like N = 4 sYM theory the notion

of localised particles, as well as asymptotic regions breaks down completely due to

the absence of a length-scale. It is then necessary to introduce an infrared (IR) reg-

ulator to define amplitudes and they are generally dependent on the regularisation

scheme and diverge order by order when removing the regulator. Similarly, infrared

divergences appear in form factors due to the asymptotic on-shell state, and will also

occur in the on-shell approach to the dilatation operator used in the next chapter.

In order to obtain the dilatation operator, which is finite, they have to be subtracted

and we will do so by exploiting their universal structure. In this section we discuss

infrared divergences more broadly, wandering off the topic of non-planar sYM theories

briefly because of the inherent interest in infrared physics. In particular we discuss

an IR-finite definition of the QCD S-matrix via dressed asymptotic states in Section

1.3.1, and the relation to asymptotic symmetries is schematically discussed in Section

1.3.2.

3For complex κ and general n-point amplitudes, one has to define two sets of deformed structure
constants, one including the coupling κ and another including its conjugate κ∗.
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1.3.1 Infrared finite S-matrix and coherent states

The study of the infrared behaviour of gauge-theory scattering amplitudes has a long

history and in the case of QED has essentially been understood since the work of Bloch

and Nordsieck [79], though it has been refined over the years [80–83]. The standard

approach involves the computation of amplitudes which are formally singular, and

they in fact vanish after exponentiation of the perturbative divergences. One then

focuses on inclusive quantities involving arbitrary numbers of real soft photons which

cancel the IR divergences from virtual photons in loops. An alternative approach

to the infrared divergence problem is to directly formulate infrared-finite S-matrix

elements by choosing appropriate asymptotic states. For QED this approach, where

the asymptotic states are not eigenstates of the photon number operator but rather

have the form of coherent states, was, starting from the work of Chung [84], developed

by a number of authors, e.g. [85–88]. Faddeev and Kulish, building on the work of

Dollard for the Coulomb problem in non-relativistic quantum mechanics [89], related

the structure of these coherent states to the form of the large-time Hamiltonian [90].

The corresponding understanding of non-abelian infrared dynamics is significantly

less complete. Compared to QED, the natural complication that arises is that gauge

bosons self-interact in a non-trivial way and in particular collinear divergences appear.

The persistence of these non-trivial self-interactions at early and late times is central

to the infrared behaviour of QCD.

Asymptotic Hamiltonian and soft-evolution operator. The coherent-state

approach was partially extended to the much more complicated non-abelian case

in [91–101]4. The starting point is the choice of an appropriate asymptotic Hamilto-

nian describing the parton dynamics in the far future and far past. One can carry out

the Faddeev-Kulish approach in the non-abelian case [99] by splitting the standard

QCD interaction Hamiltonian HI(t) in the interaction representation into soft and

hard parts

HI(t) = HE
h (t) +HE

s (t) , (1.84)

which is done by introducing at each interaction vertex an energy transfer and defining

the soft part of the Hamiltonian as containing only energies below the scale E. One

can show that at leading order the four-gluon vertex as well as ghost contributions

can be neglected, and the soft Hamiltonian is given solely by the cubic interaction

4See also [102] for a more recent application to perturbative gravity.
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vertices between one soft gluon and two hard quarks or gluons, specifically

HE
s (t) = −gYM

∫
ωq

d̃p

∫ E

d̃q ρa(p)p̂ · [aa(q)eip̂·qt + h.c.]

with ρa(p) = ρaf (p) +
∑
h

a†bh (p)tabca
c
h(p) and d̃q =

1

2

d3q

(2π)3(2ωq)
. (1.85)

This expression contains the soft gluon creation/annihilation operators aa†h (q)/aah(q),

where a and h correspond to the colour and helicity of the inserted gluons with three-

momentum q and energy ωq < E. ta collectively denotes the SU(N) gauge generators

in the representation corresponding to the respective particle, and in this case for the

gluon transforming in the adjoint representation, it is given by tabc = −
√

2ifabc. We

furthermore use the notation p̂µ = pµ/ωp, and the density ρ contains contributions

from fermionic matter ρf and from hard gluons with energies ωp > ωq, .

Finite S-matrix and coherent states. The soft Møller operator, or soft-evolution

operator, is defined as the time-ordered exponential

ΩE
± = T exp

[
−i
∫ 0

∓∞
HE
s (τ)dτ

]
, (1.86)

where ΩE
+ is an operator acting on an incoming Fock state, while ΩE

− acts on outgoing

states. It is useful to transform to frequency space and, using (1.85), the Møller

operator becomes the energy-ordered exponential

ΩE = Pωexp
[ ∫ E

d̃q Jq · Πq

]
, (1.87)

where Πa
µ(q) = aaµ(q)− aa†µ (q) is the displacement operator and

J a
q µ = gYM

∫
ωq

d̃p ρa(p)
pµ
p · q

. (1.88)

The exponential is interpreted as being ordered in the soft gluon energies with smaller

energies to the right.

The action of ΩE
+/Ω

E
− on incoming/outgoing Fock states of hard particles dresses

these states with clouds of soft gluons and thus takes into account their long-range

interactions at leading order in the IR expansion. The soft evolution operators can

then be used to define an IR-finite S-matrix SE by removing the IR singularities due

to these initial- and final-state interactions

SE = ΩE
− S ΩE†

+ (1.89)
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S = SE

Figure 1.1: Dressing of external legs in an amplitude, represented here by the clouds,
which removes the IR singularities and produces an IR-finite S-matrix.

as shown schematically in Figure 1.1. Alternatively, one can move the soft-evolution

operator into the definition of asymptotic states by defining

‖{pi, αi}〉〉 = ΩE†|{pi, αi}〉 , (1.90)

where {pi} denotes the momenta and {αi} collectively denotes the remaining quantum

numbers of the hard particles. The state on the right-hand side is the usual Fock state

|{pi, αi}〉 =
∏

i b
†
αi

(pi)|0〉 with hard-particle generator b†α generating a hard quark or

gluon depending on the quantum numbers α. Then one computes IR-finite matrix

elements of the traditional S-matrix between these dressed states (1.90). To leading

order in the soft divergence, the dressing of external states factorises in colour space

[96,97,99]

ΩE†|{pi, αi}〉 =
∏
i

UpiEαiβi
(Π)b†βi(pi)|0〉 , (1.91)

where the coherent-state operator UpiEαiβi
(Π) is a functional of the soft gluons only. The

coherent-state operator for a parton in the gauge-group representation with generators

taαβ is defined by the energy-ordered integral

UpEαβ = Pωexp
[
− gYM

∫ E

λ

d̃q
p · Πa

ω(q)

p · q
ta
]
αβ
, (1.92)

where the dressed gluon field is similarly defined by

Πa
ω(q) = U qEab Πb(q) (1.93)

and UpEab is the adjoint coherent-state operator. These non-linear equations can be
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solved iteratively so that to O(g2
YM) we have

UpEαβ = δαβ − gYM

∫
λ

d̃q
p · Πe(q)

p · q
teαβ

+ g2
YM

∫
λ

d̃q1

∫
ω1

d̃q2

(
p · Πe2(q2)

p · q2

te2αγ

)(
p · Πe1(q1)

p · q1

te1γβ

)
− g2

YM

∫
λ

d̃q1

∫
ω1

d̃q2

(
p · Πe2(q2)

p · q2

)(
q2 · Πe1(q1)

q2 · q1

)
· [te2 , te1 ]αβ . (1.94)

This dressing factor captures the leading-order effects of soft-gluon radiation of each

of the hard partons. It includes all-order effects arising from arbitrary numbers of

gluons being radiated, as well as loop effects which arise from normal ordering each

of the terms.

Finite one-loop S-matrix. Let us proceed with a one-loop calculation illustrat-

ing how the dressing in coherent-state operators removes IR divergences. For now

considering only incoming particles, we compute the one-loop matrix elements

〈〈0‖S ‖{pi, αi}〉〉 = 〈0|S
∏
i

UpiEαiβi
|{pi, βi}〉

= 〈0|S|{pi, αi}〉

− gYM

∑
j

te1j

∫
λ

d̃q〈0|S pj ·Πe1 (q)

pj ·q |{pi, αi}〉

+
g2
YM

2

∑
j 6=k

te1j t
e2
k

∫
λ

d̃q1

∫
λ

d̃q2〈0|S
pj ·Πe1 (q1)

pj ·q1
pk·Πe2 (q2)
pk·q2

|{pi, αi}〉

+ one-parton terms . (1.95)

ti denotes the SU(N) gauge generator associated to the hard particle i and for fields

transforming in the fundamental representation it corresponds to ta = T a, whereas for

fields in the adjoint it is again given by (ta)bc = −
√

2ifabc. It acts on the ith particle

in a state |{pj, αj}〉 as tai |{pj, αj}〉 := taαiβi |p1, α1; ...; pi, βi; ...; pn, αn〉.
The first term in (1.95) is the usual IR-divergent S-matrix element which arises

from diagrams such as Figure 1.2 (i). To one-loop order and leading IR accuracy in

dimensional regularisation with parameter ε̂ = (d − 4)/2, it is known to be of the

form [103]

Mn =
[
1 +

g2
YM

16π2ε̂2

∑
j 6=k

tejt
e
k

]
M(0)

n . (1.96)

The remaining terms are the compensating IR-divergent terms from the coherent

state which are graphically represented in Figure 1.2 (ii) and (iii). The last term in
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+ . . . − − = 0

(i) (ii) (iii)

Figure 1.2: The IR-divergent contributions at one-loop involving two external partons.

(1.95) involves contracting two gluons from the dressing factors of two partons and

the second term gives an O(g2
YM) contribution by using the tree-level soft limit of the

S-matrix. Here we focus on those diagrams which involve two external partons and

neglect one-parton contributions, where the soft gluon attaches on the leg/cloud of

a single external parton. These one-parton contributions are subleading in the IR

divergences and so are not needed. The tree-level soft-gluon theorem is given by5

lim
ωq→0

M(0)
n+1(q, a, h; {pi, αi}) = gYMJ

(0)a
h (q)M(0)

n ({pi, αi}) (1.97)

with the soft current, see e.g. [104],

J
(0)a
h =

∑
i

pi · εh(q)
pi · q

tai , (1.98)

where the soft gluon of momentum q, colour a and helicity h is taken to be outgoing.

If the gluon was incoming, there would be an overall minus sign and the correspond-

ing polarisation vector would be ε̄h. Incoming hard momenta in the amplitude give

additional terms in the soft current similar to those of outgoing momenta but with

an overall minus sign. The soft factor (1.98) is “universal” in the sense that it is

independent of the type of the hard particle that the soft gluon couples to and, for

example, is blind to the helicity or mass of the hard particle. This universality persists

to all orders in gYM, i.e. at any order k the leading soft current J
(k)a
h will only depend

on the momenta pi of external particles and the quantum numbers of the soft gluon.

At subleading order in the IR expansion the universality does not survive and the soft

factor probes more of the external data. Evaluating all coherent-state contributions

to (1.95) explicitly in dimensional regularisation, one finds that the singular parts

of (1.96) indeed get cancelled and the S-matrix evaluated in dressed states (1.90) is

IR-finite, see [1] for more details.

5In this expression, and similar expressions below, as the limit does not strictly exist the notation
limωq→0 should be understood as referring to the leading term in an expansion in small ωq.
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1.3.2 Asymptotic symmetries and soft theorems

The observation that asymptotic conservation laws pave the way to understanding

the infrared dynamics of gauge theories [105,106]6 has led to a renewed interest in the

study of coherent-state operators and soft dressing more generally [108–116]. These

conservation laws follow from Noether’s second theorem [117] for large gauge trans-

formations and correspond to the soft theorems of amplitudes which were already

explored by Weinberg [83]. It has been demonstrated that for QED [110] and per-

turbative gravity [112] the coherent states relevant to the construction of an infrared

finite S-matrix follow from the symmetry of asymptotic charges. The existence of an

infinite-dimensional symmetry group has led to the interpretation of the QED vac-

uum as being degenerate and that scattering processes are accompanied by a shift in

the vacua. Infrared divergences due to massless particles which result in the vanish-

ing of S-matrix elements are thus connected with the “wrong” choice of the in- and

out-vacua, and a cure can be sought in a systematic way by considering the asymp-

totic charges. An analogous statement can be made for perturbative gravity, using

BMS supertranslation charges to find suitable asymptotic states for an infrared-finite

gravity S-matrix.

Asymptotic charge and soft gluon theorem. The behaviour of Yang–Mills am-

plitudes as individual gluons become soft is related to soft theorems which, as was

shown in [105], are associated to the Ward identities of asymptotic symmetries. The

corresponding asymptotic charge Qε can be defined, see [1] for a detailed discussion,

and involves a soft contribution Qs
ε containing soft gluon creation/annihilation op-

erators aa†h (ωq)/a
a
h(ωq) with vanishing energy ωq ' 0. The subscript ε indicates the

dependence on a transformation parameter. This charge has matrix elements with

the scattering amplitude S of the form

〈1, 2, ..., n|Qs
εS|0〉 ∼ 〈1, 2, ..., n| lim

ωq→0
ωqa

a
h(ωq)S|0〉 (1.99)

and at tree level the limit in the definition of the charge is understood as

〈1, 2, ..., n| lim
ωq→0

ωqa
a
h(ωq)S|0〉 = lim

ωq→0
ωq〈1, 2, ..., n|aah(ωq)S|0〉 (1.100)

and can be computed using the tree-level soft gluon theorem (1.97). At loop level

the issue of the soft limit is more subtle: after computing the perturbative terms

defining the matrix elements, one may attempt to take the soft limit at the level

of the integrands before performing loop integrations, or alternatively one may keep

ωq finite and take the limit only after performing the loop integrations. It is known

6See [107] for a review and more complete references.
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from the case of subleading IR behaviour of graviton amplitudes [118, 119], that the

order has important consequences for the interpretation of quantum corrections to

the Ward identities for asymptotic symmetries. When taking the soft limit after the

computation of matrix elements, i.e.

〈1, 2, ..., n|Qs
ε(0)S|0〉 := lim

ωq→0
〈1, 2, ..., n|Qs

ε(ωq)S|0〉 , (1.101)

the insertion of the soft gluon operator can be computed by the usual soft gluon

theorem, which to one-loop order is given by [103,120]

lim
ωq→0

M(1)
n+1(q, a, h; {pi, αi}) = gYMJ

(0)a
h (q)M(1)

n ({pi, αi})

+ g3
YMJ

(1)a
h (q)M(0)

n ({pi, αi}) . (1.102)

The first term on the right-hand side is the iterated tree result involving the tree-level

soft current (1.98), while the second term is due to the one-loop soft current which is,

to leading divergence in dimensional regularisation,

J
(1)a
h (q) = − CA

16π2ε̂2
J

(0)a
h (q) +O

(
ε̂−1
)

(1.103)

with adjoint quadratic Casimir CA. This leading double pole is due to both collinear

and soft divergences at leading logarithmic accuracy and the coherent-state approach

of [97, 100] deals with both of them at this order.

Ward identities for the dressed S-matrix. The soft-evolution operator (1.86)

not only allows for an IR-finite definition of S-matrix elements, but also relates the

free theory, where multi-particle asymptotic states can be described by the usual Fock

states, to the interacting theory, where long-range interactions lead to IR divergences

and can be tamed by coherent-state dressings (1.90). It similarly relates the soft

asymptotic charge Qs
ε , containing contributions linear in soft gluons, to the hard, or

non-linear, part Qh
ε of the asymptotic charge which imply a Ward identity for the

S-matrix [1]

〈〈{pf , αf}‖ [Qs
ε , S] ‖{pi, αi}〉〉 = −〈{pf , αf}|[Qh

ε , S
E]|{pi, αi}〉 . (1.104)

Evaluating the expression on the left-hand side of (1.104) at tree-level and leading

IR-divergence yields the tree-level hard charges for incoming and outgoing legs which

are essentially given by the integrated tree-level soft current (1.98). The result of the

analogous computation at one-loop order depends on the precise prescription for the

order of soft limits in the definition of the charge and dressing factor which is analogous

to the order of limits discussed in [118,119]. In the first choice, corresponding to the
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standard choice (motivated by its use in problems such as the computation of physical

cross sections) in dimensionally-regularised soft limits, we find that the Ward identity

receives no corrections at one-loop and leading IR-divergence. In the second choice

we find a correction which is related to the one-loop soft current (1.102). See [1] for

a more detailed discussion.





Chapter 2

Dilatation operator from on-shell

methods

Recent years have seen much progress in the computation of scattering amplitudes due

to the advent of on-shell methods. The basic idea behind these is to only work with

physical degrees of freedom to obtain observables, and specifically amplitudes, in a

given theory. Doing so, one avoids gauge redundancies and an in general large number

of Feynman diagrams. The latter often times obfuscate the simplicity of the final

expression and can be much less efficient and fast when compared to the new on-shell

approaches. While most of these approaches were developed with the quest to compute

amplitudes, they are useful for a wider range of physical observables, including form

factors and the dilatation operator. We review some of these methods in Section

2.1, including an on-shell approach to the dilatation operator on which the remaining

parts of this chapter will be based. This allows us to study the mixing of marginal

operators in N = 4 sYM theory on the basis of the Parke–Taylor superamplitude in

Section 2.2, and obtain the non-planar anomalous dimensions in this sector. Then we

move on to derive the one-loop β-deformed dilatation operator in the scalar sector in

Section 2.3, which is the key result of this chapter, and this dilatation operator will

be further analysed in subsequent parts of this thesis.

2.1 Review of on-shell techniques

2.1.1 On-shell recursion for amplitudes and form factors

An important step forward in the quest for more efficient methods than the tradi-

tional Feynman diagram techniques is the CSW approach [121]. Here amplitudes are

constructed by taking lower-point MHV amplitudes as vertices and linking them by

scalar propagators in a so-called MHV vertex expansion. This approach contains a

considerably smaller number of more compact expressions than the analogous Feyn-

37
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man diagram calculations, however with increasing number of external states the

computation of amplitudes can still be rather involved. The most well-known on-shell

approach to tree-level scattering amplitudes are the on-shell recursion relations due

to Britto, Cachazo, Feng and Witten [122,123].

The underlying idea behind on-shell recursion relations is to construct general

n-point amplitudes Mn from a number of lower-point amplitudes which thus serve

as the basic building blocks in this approach. A relation between amplitudes with

different numbers of legs can be obtained by Cauchy’s theorem in the following way:

One considers a general amplitudeMn as a function of shifted external momenta, the

shift being a complex deformation of the momenta which preserves their on-shellness

and the overall momentum conservation. This deformation is parametrised by one

complex parameter z ∈ C and is chosen in such a way that the original amplitude

corresponds to the complexified amplitude M̂n(z) at z = 0, i.e.

Mn ≡ M̂n(z = 0)

≡
∮

dz

2πi

M̂n(z)

z
, (2.1)

where in the second line we have rewritten the original amplitude as a contour integral

of the complexified amplitude with the contour encircling z = 0 in the complex plane.

By applying Cauchy’s theorem one can deform this contour to infinity while picking

up simple poles of the amplitude at complex z = zR:

Mn = −
∑
zR

Resz=zR

(M̂n(z)

z

)
+ Bn . (2.2)

The boundary term Bn is usually not easy to determine, but in a number of theories

one can show that it vanishes for certain amplitudes and deformations, see e.g. [124–

126]. Once the vanishing of this boundary contribution is established, the original

amplitude Mn can be computed entirely on the basis of its poles. These poles occur

whenever one of the deformed propagators P̂ µ in M(z) goes on-shell, i.e. P̂ 2
R = 0.

The residue of the deformed amplitude then factorises into two lower-point on-shell

amplitudes as

Resz=zR

(M̂n(z)

z

)
= −M̂nl(zR)

1

P 2
R

M̂nr(zR) , nl + nr = n , (2.3)

where P 2
R = P̂ 2

R(z = 0). Thus, from a given set of usually three- and four-point am-

plitudes, higher-point tree-level amplitudes can be recursively computed at complex

factorisation channels.
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1

n

2

Mn =
n−1∑
i=2

∑
h

1̂

i

n̂

i+ 1

P̂ h
1i

Mi Mn−i

Figure 2.1: On-shell recursion relations for colour-ordered amplitudes.

BCFW recursion. The BCFW recursion is a specific version of the on-shell re-

cursions where only two external momenta pi and pj get deformed. It is achieved by

shifting the corresponding spinor-helicity variables as

λi → λ̂i(z) = λi − zλj , λ̃i → ˆ̃λi(z) = λ̃i ,

λj → λ̂j(z) = λj , λ̃j → ˆ̃λj(z) = λ̃j + zλ̃i . (2.4)

This shift is known as the BCFW-shift or, to be explicit about the shifted legs, is

also called [j, i〉-shift. Importantly, the corresponding shifted momenta p̂α̇αi = ˆ̃λα̇i λ̂
α
i

and p̂α̇αj = ˆ̃λα̇j λ̂
α
j remain on-shell, i.e. p̂2

i = p̂2
j = 0, and do not modify the overall

momentum conservation due to pµi + pµj = p̂µi + p̂µj . Assuming a vanishing boundary

contribution under a [1, n〉-shift, the colour-ordered component of an amplitude Mn

with outgoing external states 〈1, 2, ..., n| can be obtained by BCFW recursion via the

relation [122,123]

〈1, 2, ..., n|M|0〉 =
n−1∑
i=2

∑
h

〈1̂, 2, ..., i|M|P̂ h
1i〉 〈P̂ h

1i, i+ 1, ..., n− 1, n̂|M|0〉
P 2

1i

∣∣∣∣∣
z=z1i

.

(2.5)

Here the first sum is over all planar partitions of external momenta to the two lower-

point amplitudes, and the second sum is over all possible helicities h of the interme-

diate state with momentum P̂1i := p̂1 + p2 + ... + pi. An illustration of this relation

can be found in Figure 2.1.

Whether or not a specific amplitude Mn in a given theory can be constructed

from a shift (2.4) depends on the scaling of M̂n(z) at the boundary, i.e. for z → ∞.

In [124] the BCFW shift for z →∞ was interpreted as a limit in which the two shifted

lines become hard and scatter against a soft background of the remaining unshifted

external states. This led to a proof that general tree-amplitudes in pure gauge, as

well as in pure gravity theories are constructible by a BCFW shift, i.e. the boundary

terms vanish. Furthermore, it was proven that for general tree-level amplitudes in

N = 4 sYM theory, one can always find a valid BCFW shift and thus they are
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on-shell constructible [127].

Recursion relations beyond BCFW. The BCFW shift is the simplest shift to

recursively construct amplitudes. Other shifts involve the deformation of more legs,

and examples are the Risager shift [128] with three shifted legs, and the all-line shift

[129]. Although generally shifting a higher number of legs makes the construction of

amplitudes more complicated, these shifts are interesting because they can lead to an

improved scaling of the deformed amplitude M̂n(z) at large z and thus to the on-shell

constructibility of the corresponding amplitude. In particular, all tree amplitudes with

n > 4 external particles in four-dimensional renormalisable theories have been shown

to be on-shell constructible via all-line holomorphic or anti-holomorphic shifts [125].

In [126] the on-shell constructibility was further explored by a study of the simplest

recursion relations (i.e. those with the smallest number of shifted legs) for constructing

the amplitudes in a given theory. A constraint on the minimum number of shifted

legs for a given amplitude was obtained and in general renormalisable field theories all

amplitudes can be constructed from shifts involving at most five lines. For the Leigh–

Strassler deformations that we are interested in in this thesis, the criteria of [126] even

allow for the three-line shift constructibility of all amplitudes with n > 4 due to the

presence of the U(1) R-symmetry.

BCFW recursion for form factors. Form factors in N = 4 sYM theory inherit

many of the structures and techniques of their purely on-shell analogues, the scattering

amplitudes, and specifically the BCFW recursion was shown to be applicable to the

construction of tree-level form factors [130]. Assuming a vanishing boundary term for

a [1, n〉-shift, i.e. the deformed form factor goes as F̂O(z)→ 0 for z →∞, the colour-

ordered component of a form factor FO is given by the sum of its various factorisation

channels as

〈1, 2, ..., n|O|0〉 =
n−1∑
i=2

∑
h

[
〈1̂, 2, ..., i|M|P̂ h

1i〉 〈P̂ h
1i, i+ 1, ..., n− 1, n̂|O|0〉
P 2

1i

∣∣∣∣∣
z=z1i

+
〈1̂, 2, ..., i|O| − P̂ h

i+1,n〉 〈−P̂ h
i+1,n, i+ 1, ..., n− 1, n̂|M|0〉

P 2
i+1,n

∣∣∣∣∣
z=zi+1,n

]
. (2.6)

Note that in this case the momenta running in the poles, P̂1i and −P̂i+1,n, do not

satisfy P̂ 2
1i = P̂ 2

i+1,n due to the modified momentum conservation that relates the off-

shell momentum q of the local operator O(q) to the sum of external on-shell momenta

as
∑

i pi = q. The relation (2.6) is represented in Figure 2.2.

In [131] the (super-)BCFW recursion for form factors was used to obtain the MHV
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+
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Figure 2.2: On-shell recursion relations for colour-ordered form factors.

form factor of the on-shell Lagrangian (1.17) and found to be

〈1, ..., n|L(0)|0〉 =
δ(8)(

∑n
i=1 λ

α
i η̃

A
i )

〈12〉 〈23〉 ... 〈n1〉
, (2.7)

which corresponds to the Parke–Taylor amplitude (1.57) up to the modified momentum-

conserving δ-function.

2.1.2 Dilatation operator meets scattering amplitudes

We now move on to the discussion of an on-shell method that allows one to extract

the dilatation operator D of a conformal field theory. This method was developed

in [32] by Zwiebel, and then reformulated in terms of form factors and proven in [31]

by Caron-Huot and Wilhelm.

Review of proof. Since the relation between the dilatation operator D and scatter-

ing amplitudes takes on a crucial role in this part of the thesis, we begin this section

with a review of the corresponding proof of [31]. We start with the renormalisation

group equation for a form factor FO(1, ..., n; q)[
µ∂µ + β(g2

YM)
∂

∂g2
YM

+ γO − γIR

]
FO(1, ..., n; q) = 0 . (2.8)

The first term measures the explicit dependence of FO on the renormalisation scale

µ. It appears in dimensionless ratios p2
i /µ

2 in FO such that we may replace it with

the derivative with respect to the external momenta as

µ∂µ ' −
∑

i pi∂pi . (2.9)
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The second term in the bracket measures the dependence of FO on the renormali-

sation scale from a running coupling constant gYM. In conformal field theories with

β(g2
YM) ≡ 0 we may drop this term, while in general QFTs this term is subleading

in the perturbative expansion in g2
YM. The anomalous dimension γO measures the

µ-dependence of the renormalisation factor of O. Note that there does not occur a

similar term for the external states since their wave-function renormalisation factor

is stripped off from the form factor by LSZ-reduction. However, potential IR diver-

gences may not be captured in this and thus there occurs a term γIR which measures

the dependence on the scale that regularises these divergences.

Let us further investigate the first term in (2.8). Via (2.9) it generates shifts in

momenta, i.e. it acts as the dilatation operator D in momentum-space on momentum-

dependent functions and, in particular, acts on the external momenta of a form factors

as

eiαDpFO(p1, ..., pn; q) = FO(eiαp1, ..., e
iαpn; eiαq) , α ∈ R . (2.10)

Here we put the label p on D to emphasize that this operator only generates dilatations

of the momenta occurring explicitly in FO, but does not generate dilatations of the

renormalisation of the operator O or the running coupling gYM. Furthermore, we

make the momentum-labels of the external particles explicit, but any other labels

are left implicit. In (2.10) we also assume that we may analytically continue the

function FO to the complex pi plane. We can assume that the rotation of momenta

goes smoothly until the angle α = π is reached where the momenta reverse their signs

and the kinematic invariants (pi + pj + ...+ pk)
2 return to their original values. Note

that FO has a small imaginary contribution that regularises singularities for real pi

via Feynman’s prescription. Thus by a rotation of α = π, FO does not return to its

original value but we end up on the other side of the cut, i.e. the complex conjugate

of FO:

FO = e−iπDpF∗O . (2.11)

Another way of relating a form factor to its complex conjugate is by using its inter-

pretation as the correction to the S-matrix S in a deformed theory with Lagrangian

L → L + gO. Then the S-matrix becomes S → S + gδS with δS = i
∫

d4xFO.

Using unitarity of the original S-matrix S · S† = 1, where in the product we sum

over all possible intermediate states, and moreover demanding unitarity for the de-

formed S-matrix, yields FO = SF∗OS where we again sum over all intermediate states.

Multiplying this relation into an initial vacuum state gives

FO = SF∗O . (2.12)
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Together with (2.11) this implies

e−iπDpF∗O = SF∗O . (2.13)

In the perturbative regime we may expand the relations (2.8) and (2.13). Af-

ter stripping off a momentum conserving δ-function setting the form-factor off-shell

momentum to q = p1 + ...+ pn via (1.58), for the former one obtains at O(g2
YM)[

−D(1)
p + γ

(1)
O − γ

(1)
IR

]
〈1, ..., n|O(0)|0〉(0) = 0 , (2.14)

and for the latter

D(1)
p 〈1, ..., n|O(0)|0〉∗(0) = − 1

π
〈1, ..., n|M⊗O(0)|0〉∗(0) , (2.15)

where we used S = 1 + iM and ⊗ denotes a convolution corresponding to a one-

loop unitarity cut which we will discuss in more detail further below. Note that the

expansion may also include an expansion of O in gYM and at leading order only the

leading terms of O contribute. In the following we will often use these relations for

minimal tree-level form factors which are real and thus we may drop the complex

conjugation to obtain [31], see also [32],

γ
(1)
O 〈1, ..., n|O(0)|0〉(0) =− 1

π
〈1, ..., n|M⊗O(0)|0〉(0) + γ

(1)
IR 〈1, ..., n|O(0)|0〉(0) .

(2.16)

Note that the anomalous dimension γO is only defined for operators O that are eigen-

states of the dilatation operator D. For general operators the relation (2.16) gener-

alises to

(γ(1))BA 〈1, ..., n|OB(0)|0〉(0) =− 1

π
〈1, ..., n|M⊗OA(0)|0〉(0)

+ γ
(1)
IR 〈1, ..., n|OA(0)|0〉(0) . (2.17)

Here (γ(1))BA is the component of the mixing matrix that determines the mixing from

the operator OA to operator OB and the anomalous dimensions can be obtained by

diagonalising this matrix. In the following we leave the dependence of operators O in

form factors on the position implicit.

Length-preserving convolution. We begin with the study of the mixing between

operators OA and OB that are of the same length L. In order to extract (γ(1))BA from

(2.17), one can choose external states 〈1, 2, ..., n| with n = L such that all form factors

in this relation are minimal. In this case the convolution term 〈1, ..., n|M⊗OA(0)|0〉
only contains length-preserving cuts at leading order in the coupling, i.e. the number
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t

Figure 2.3: Length-preserving contribution to the one-loop unitarity cut of the form
factor 〈1, 2, ..., n|O|0〉(1).

of particles in the intermediate state corresponds to the number of particles in the

external state, cf. Figure 2.3.1 It is defined as

〈1, ..., n|M⊗O|0〉(0) =
1

16π

∑
1≤i<j≤n

∑
i′,j′

∫
dΩ

4π
〈i, j|M|i′, j′〉(0) ·

· 〈1, ..., i′, ..., j′, ..., n|O|0〉(0)
. (2.18)

Here we sum over all possible intermediate states i′, j′, e.g. in N = 4 sYM theory the

sum runs over the set {g±, φAB, ψA, ψ̄A}. Furthermore, we integrate over all on-shell

internal momenta p′i, p
′
j with p′i + p′j = pi + pj which can be parametrised by [32](
λ′i

λ′j

)
=

(
cosϑ − sinϑeiϕ

sinϑe−iϕ cosϑ

)(
λi

λj

)
(2.19)

in terms of two angles ϑ and ϕ. This parametrisation implies the spinor brackets

〈i′j′〉 = 〈ij〉 , 〈ij′〉 = 〈i′j〉 = 〈ij〉 cosϑ ,

〈i′i〉 = 〈ij〉 sinϑeiϕ , 〈j′j〉 = 〈ij〉 sinϑe−iϕ , (2.20)

which will be useful throughout this chapter. The summation over all on-shell mo-

menta p′i, p
′
j in this parametrisation corresponds to integrating over Ω with

∫
dΩ

4π
=

∫ 2π

0

dϕ

2π

∫ π/2

0

dϑ 2 sinϑ cosϑ . (2.21)

Figure 2.3 contains an illustration of one of the terms in the sum on the right-hand

side of (2.18).

1If the operators OA and OB have different lengths LA and LB , then choosing an external state
〈1, 2, ..., n| with n = LB results in a minimal form factor on the left-hand side of (2.17), but the
convolution term on the right-hand side is a unitarity cut of a non-minimal form factor. In this case
also length-changing cuts appear, where the number of intermediate particles does not correspond
to the number of external particles. We discuss the case LB > LA in Section 2.2.
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Crossing convention. In Chapter 1 we have given explicit expressions for ampli-

tudes in pure and β-deformed N = 4 sYM theory and worked in the convention of all

particles outgoing. To evaluate the amplitude in the convolution (2.18) using these

expressions, we need to cross the incoming intermediate particles running in the cut

over to the outgoing state and here we summarise our crossing conventions. By cross-

ing symmetry of scattering amplitudes, we can relate amplitudes with crossed legs

and in particular for 2→ 2 scattering the amplitudes

M(Φ1(p1),Φ2(p2)|Φ′1(p′1),Φ′2(p′2)) := 〈Φ1(p1),Φ2(p2)|M|Φ′1(p′1),Φ′2(p′2)〉

Φ1(p1)

Φ2(p2)

Φ′1(p′1)

Φ′2(p′2)

M

t

and

M(Φ1(p1),Φ2(p2, Φ̄
′
2(−p′2), Φ̄′1(−p′1)) := 〈Φ1(p1),Φ2(p1), Φ̄′2(−p′2), Φ̄′1(−p′1)|M|0〉

Φ1(p1)

Φ2(p2)

Φ̄′1(−p′1)

Φ̄′2(−p′2)
M

t

are related. Here Φi denotes an arbitrary elementary field, e.g. in N = 4 sYM theory

Φ ∈ {γ±, φAB, ψA, ψ̄A}. In crossing the two legs we keep their relative ordering and

crossing a particle conjugates its helicity and inverses its momentum. In the case

of fermions one has to be careful about the sign convention for the external spinors

which introduces signs in the relation between crossed amplitudes. Take for example

the process X + ψ̄(p) → Y , where X and Y denote the remaining incoming and

outgoing external particles, with amplitude

M(Y |X, ψ̄(p)) =M(Y |X, p) · u−(p) =M(Y |X, p) ·

(
0

λ̃(p)

)
(2.22)
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and the process X → Y + ψ(k) with amplitude

M(Y, ψ(k)|X) =M(Y, k|X) · v+(k) =M(Y, k|X) ·

(
0

λ̃(k)

)
. (2.23)

For k = −p the stripped amplitudes M(Y |X, p) and M(Y, k|X) are the same and

due to λ̃(k) = λ̃(−p) = λ̃(p), cf. (1.49), amplitudes with a crossed outgoing fermion

ψ are related as

M(Y |X, ψ̄(p)) =M(Y, ψ(−p)|X) . (2.24)

In the case of an incoming fermion crossing to an outgoing anti-fermion one replaces

v̄+(p) by ū−(−p), or λ(p) by λ(−p) which via (1.49) introduces a sign in the relation

of the amplitudes. In total crossing symmetry for component amplitudes is thus

M(Y |X,Φ(p)) = (−1)nψM(Y, Φ̄(−p)|X) (2.25)

with nψ = 1 for Φ = ψ and nψ = 0 otherwise. For superfields Φ, crossing is simply

achieved by

(λ(p), λ̃(p), η̃(p))→ (−λ(p), λ̃(p), η̃(p)) (2.26)

and all the subtle minus-signs from fermion-crossings are simply dealt with by the

Grassmann-odd parameters η̃.

Infrared contribution. The form of the infrared contribution in (2.17) can be

obtained by studying this relation for a protected operator. The resulting expression

is universal in the sense that it does not depend on the explicit operators OA and

OB. We begin by studying (2.17) for the energy-momentum tensor Tαβ,α̇β̇ which

has vanishing anomalous dimension in any theory, repeating the discussion in [31].

Choosing two gluons of opposite helicity as external particles yields

γ
(1)
IR =

1

π

〈ga1− (p1), ga2+ (p2)|M⊗ Tαβ,α̇β̇|0〉
(0)

〈ga1− (p1), ga2+ (p2)|Tαβ,α̇β̇|0〉(0)
. (2.27)

The minimal form factor of Tαβ,α̇β̇ can be fixed from its mass dimension, little group

scaling and colour structure as

〈ga1− (p1), ga2+ (p2)|Tαβ,α̇β̇|0〉
(0)

= 2δa1a2λα1λ
β
1 λ̃

α̇
2 λ̃

β̇
2 , (2.28)
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where we also use [132]

〈p|Tαβ,α̇β̇|p〉 = 2pαα̇pββ̇ (2.29)

to determine the overall factor.

In pure Yang–Mills theory the convolution term in (2.27) can be computed via the

Parke–Taylor amplitude, which in the parametrisation (2.19) for the two contributions

to the convolution is given by

〈ga1− (p1), ga2+ (p2)|M|ga
′
1

+ (p′1), g
a′2
− (p′2)〉

(0)
δa
′
1a
′
2 = 2g2

YMNδ
a1a2

sin2 ϑ

cos2 ϑ
e4iϕ ,

〈ga1− (p1), ga2+ (p2)|M|ga
′
1
− (p′1), g

a′2
+ (p′2)〉

(0)
δa
′
1a
′
2 = 2g2

YMNδ
a1a2

cos2 ϑ

sin2 ϑ
. (2.30)

After using (2.28) and performing the ϕ-integration in the cut, one finds

γ
(1)
IR =

g2
YMN

4π2

∫ π/2

0

dϑ

cosϑ sinϑ
(cos8 ϑ+ sin8 ϑ) (2.31)

which is divergent at the boundaries of the integral. Instead of introducing a regulari-

sation scheme, in the following we will first combine both the infrared and convolution

contribution of relation (2.17) at the integrand level before performing the remaining

ϑ-integration. This yields infrared-finite results for the mixing matrix (γ(1))BA.

In a gauge theory with scalar and fermionic matter, the sum over intermediate

states in the convolution term receives additional contributions from their coupling

to the energy-momentum tensor. The relevant minimal form factors again follow

from the mass dimension, little group scaling and colour structure, as well as the

conservation of T µν via (p1 + p2)αα̇T
αβ,α̇β̇ = 0 and its tracelessness. One finds

〈φa1AB(p1), φa2CD(p2)|Tαβ,α̇β̇|0〉
(0)

= 1
3
δa1a2εABCD

(
pαα̇1 pββ̇1 + pαα̇2 pββ̇2 − pαα̇1 pββ̇2 − pαα̇2 pββ̇1 +

−pαβ̇1 pβα̇2 − p
αβ̇
2 pβα̇1

)
,

〈ψ̄a1A (p1), ψA,a2(p2)|Tαβ,α̇β̇|0〉
(0)

= 1
2
δa1a2

(
λα1λ

β
1 λ̃

α̇
1 λ̃

β̇
2 + λα1λ

β
1 λ̃

β̇
1 λ̃

α̇
2 +

−λα1λ
β
2 λ̃

α̇
2 λ̃

β̇
2 − λ

β
1λ

α
2 λ̃

α̇
2 λ̃

β̇
2

)
. (2.32)

In N = 4 sYM theory the amplitudes occurring in the convolution can be extracted

from the superamplitude (1.57) and are given by

〈ga1− (p1), ga2+ (p2)|M|φa
′
1
AB(p′1), φ

a′2
CD(p′2)〉

(0)
δa
′
1a
′
2 = 2g2

YMNδ
a1a2εABCDe

2iϕ ,

〈ga1− (p1), ga2+ (p2)|M|ψ̄A,a′1(p′1), ψ
a′2
A (p′2)〉

(0)
δa
′
1a
′
2 = 2g2

YMNδ
a1a2

cosϑ

sinϑ
eiϕ ,

〈ga1− (p1), ga2+ (p2)|M|ψa
′
1
A (p′1), ψ̄A,a

′
2(p′2)〉

(0)
δa
′
1a
′
2 = 2g2

YMNδ
a1a2

sinϑ

cosϑ
e3iϕ . (2.33)
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Here we used the crossing conventions (2.25). For three scalars (and three anti-scalars)

and four fermions (and four anti-fermions) in N = 4 sYM theory these contributions

add up to

γ
(1)
IR =

g2
YMN

4π2

∫ π/2

0

dϑ

cosϑ sinϑ
, (2.34)

where it is important to include a minus sign for fermion propagators in the sum

of different contributions to the convolution. This generalises to arbitrary external

states as

γ
(1)
IR 〈{pi, ai}|O|0〉(0) = −g

2
YM

8π2
IIR
∑
j<k

taj t
a
k 〈{pi, ai}|O|0〉

(0) (2.35)

with divergent integral

IIR =

∫ π/2

0

dϑ

cosϑ sinϑ
. (2.36)

This infrared structure corresponds to the one-loop infrared divergence of amplitudes,

which in dimensional regularisation is given in (1.96), and we use the notation of

Section 1.3, in particular (ta)bc = −
√

2ifabc for fields in the adjoint. The general form

of (2.35) for n > 2 in N = 4 sYM theory is less conveniently obtained from (2.17)

and O = Tαβ,α̇β̇ since for a higher number n of external states the form factors are

non-minimal. Instead one can use another protected operator in this theory which is

the half-BPS highest-weight state

Tr(φn34) , (2.37)

and an external state 〈φa112, ..., φ
an
12 | of length n. For this operator there is only one

intermediate state giving a non-vanishing contribution to the convolution of (2.17)

and the relevant amplitude isM(φai12, φ
aj
12, φ̄

a′j
12, φ̄

a′i
12). This amplitude is divergent in the

limit of ϑ→ 0 and ϑ→ π/2, specifically

M(φai12, φ
aj
12, φ̄

a′j
12, φ̄

a′i
12)(0)

∣∣∣
ϑ→0

= g2
YM

faia
′
iafaja

′
ja

2ϑ2
+O(ϑ0) ,

M(φai12, φ
aj
12, φ̄

a′j
12, φ̄

a′i
12)(0)

∣∣∣
ϑ→π/2

= g2
YM

faia
′
jafaja

′
ia

2(π/2− ϑ)2
+O((ϑ− π/2)0) . (2.38)

The colour structure of these divergences corresponds to those induced by (2.35) and

the proportionality factor is fixed by demanding that Tr(φn34) is protected. We will use

the structure of the infrared contributions (2.31) and (2.35) to cancel IR divergences

in the convolution term in (2.17) already at the integrand level.
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2.2 N = 4 sYM theory from on-shell methods

We now move on to a discussion of the mixing of dimension-4 operators in N = 4 sYM

theory using the on-shell approach of (2.17). We start by reviewing the computation

of the β-function in pure Yang–Mills theory to set up the notation. In the following

chapters we will be interested in the computation of non-planar anomalous dimensions,

and as a warm-up exercise we begin with a study of the mixing of SU(4)-invariant

marginal operators and extract their one-loop anomalous dimensions directly from

(2.17). In this sector we will find the known N = 4 sYM on-shell Lagrangian (1.17),

as well as descendants of the Konishi operator.

β-function in pure Yang–Mills. As a first exercise we use (2.17) to extract the

β-function of pure YM theory following [31]. It starts by realising that the β-function

is closely related to the anomalous dimension of the Lagrangian γL [31, 133,134]

γL = g2
YM

∂

∂g2
YM

(
β(g2

YM)

g2
YM

)
. (2.39)

In pure Yang–Mills theory the Lagrangian is simply given by

LYM = Tr

(
−1

4
FαβF

αβ

)
, (2.40)

where we used (1.18) to express it entirely in terms of the chiral part Fαβ of the field

strength. In a theory with only gluons the operator LYM is the only on-shell Lorentz-

and gauge-invariant operator with classical dimension 4 and thus the one-loop mixing

in (2.17) is trivial and for minimal form factors reduces to

γ
(1)
L 〈1

a1 , 2a2|LYM|0〉(0) = − 1

π
〈1a1 , 2a2|M⊗ LYM|0〉(0) + γ

(1)
IR 〈1a1 , 2a2|LYM|0〉(0) .

(2.41)

The only non-vanishing contribution to this relation at leading order in the coupling

can be obtained from a purely gluonic external state, specifically 〈g−, g−| and with

(1.60) the tree-level minimal form factor of LYM is

〈ga1− (p1), ga2− (p2)|LYM|0〉(0) = −1

2
δa1a2 〈12〉2 . (2.42)

The convolution term in (2.41) is only non-zero if the intermediate state consists of two

negative-helicity gluons, cf. (2.18). The relevant MHV amplitude in the parametrisa-

tion (2.19) including the colour-delta function from the form factor evaluates to

M(0)(ga1− (p1), ga2− (p2), g
a2′
+ (−p′2), g

a1′
+ (−p′1))(0)δa1′a2′ = 2g2

YMN
δa1a2

cos2 ϑ sin2 ϑ
. (2.43)
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Thus the anomalous dimension of the Yang–Mills Lagrangian is

γ
(1)
L = −g

2
YMN

4π2
IIR + γ

(1)
IR = −g

2
YMN

8π2

11

3
, (2.44)

where in the second step we use (2.31) and combine the two terms at the level of the

integrand before performing the ϑ-integration. With (2.39) this implies

β(g2
YM) = −g

4
YM

8π2
· 11N

3
+O(g6

YM) (2.45)

in pure Yang–Mills theory as expected.

One-loop mixing of SU(4)-invariant marginal operators. Now we move on

to the study of N = 4 sYM theory and the mixing problem of all chiral on-shell

SU(4)-invariant dimension-4 operators at one-loop order. They are given by the basis

G := Tr(FαβF
αβ) ,

F := Tr(ψαA[φAB, ψBα]) ,

S1 := Tr([φAB, φCD][φAB, φCD]) , S2 := Tr(φABφCDφABφCD) ,

S3 := Tr(φABφCD) Tr(φABφCD) , S4 := Tr(φABφAB) Tr(φCDφCD) . (2.46)

The corresponding tree-level minimal form factors are, using (1.60),

〈ga1− (p1), ga2− (p2)|G|0〉(0) = 2δa1a2 〈12〉2 ,

〈ψ̄A,a1(p1), ψ̄B,a2(p2), φCD,a3|F|0〉(0)
= −2

√
2ifa1a2a3εABCD 〈12〉 ,

〈φa1AB, φ
a2
CD, φ

a3
EF , φ

a4
GH |S1|0〉(0) = 25 [εABCDεEFGH(−fa1a3efa2a4e − fa1a4efa2a3e)

+ εABEF εCDGH(−fa1a2efa3a4e + fa1a4efa2a3e)

+ εABGHεCDEF (+fa1a2efa3a4e + fa1a3efa2a4e)] ,

〈φa1AB, φ
a2
CD, φ

a3
EF , φ

a4
GH |S2|0〉(0) = 24 [εABCDεEFGH Tr(a1a3a2a4 + a1a4a2a3)

+ εABEF εCDGH Tr(a1a2a3a4 + a1a4a3a2)

+ εABGHεCDEF Tr(a1a2a4a3 + a1a3a4a2)] ,

〈φa1AB, φ
a2
CD, φ

a3
EF , φ

a4
GH |S3|0〉(0) = 24 [εABCDεEFGH(δa1a3δa2a4 + δa1a4δa2a3)

+ εABEF εCDGH(δa1a2δa3a4 + δa1a4δa2a3)

+εABGHεCDEF (δa1a2δa3a4 + δa1a3δa2a4)] ,

〈φa1AB, φ
a2
CD, φ

a3
EF , φ

a4
GH |S4|0〉(0) = 25 [εABCDεEFGH δa1a2δa3a4 + εABEF εCDGH δa1a3δa2a4

+ εABGHεCDEF δa1a4δa2a3 ] . (2.47)

At one-loop order only operators of the same length mix with each other and thus the

operators G, F and ~S := {S1, S2, S3, S4} decouple. We compute the remaining mixing
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via (2.17) and the superamplitude (1.57) in the superfield formalism for general MHV

external states and find

(∆γ(1))G
G =

λ

8π2
· (−2 IIR) ,

(∆γ(1))F
F =

λ

8π2
· (−3 IIR + 6) ,

(
∆γ(1)

)~S
~S

=
λ

8π2
·


−4 IIR + 11 −10 −20/N −10/N

1 −4 IIR + 2 −12/N 2/N

−5/N 0 −4 IIR 2

−6/N 0 0 −4 IIR + 12

 , (2.48)

where ∆γ = γ−γIR. Using (2.35) we can compute the infrared contribution γIR and it

removes the infrared divergent integrals IIR in (2.48). Note that in the planar limit, the

single- and double-trace scalar operators decouple. We can diagonalise this operator

mixing and find the following one-loop anomalous dimensions and eigenoperators O

in this sector:

γ
(1)
1 = 0 O1 = G ,

γ
(1)
2 =

λ

8π2
· 6 O2 = F ,

γ
(1)
3 =

λ

8π2
·

1

2

(
13 +

√
41 +O(N−2)

)
O3 = S1 −

1

2

(
9−
√

41
)

S2 +O(N−1) ,

γ
(1)
4 =

λ

8π2
·

1

2

(
13−

√
41 +O(N−2)

)
O4 = S1 −

1

2

(
9 +
√

41
)

S2 +O(N−1) ,

γ
(1)
5 =

λ

8π2
·
(
12 +O(N−2)

)
O5 = S4 +O(N−1) ,

γ
(1)
6 =

λ

8π2
·
(
0 +O(N−2)

)
O6 = −6S3 + S4 +O(N−1) . (2.49)

For the first two eigenstates we give the exact one-loop anomalous dimensions and

operator dependence, while for the remaining states we only give the leading terms in

a 1/N expansion corresponding to the planar eigenstates and -values. Higher orders

can be easily obtained from the diagonalisation of (2.48).

Note that the operator O1 with vanishing one-loop anomalous dimension is the

leading-coupling contribution to the N = 4 sYM Lagrangian and we will find the

higher-order contributions in the next paragraph. Similarly, operator O2 is the leading-

order part of an operator from the Konishi multiplet, and in particular a descendant

of the su(4) Konishi operator K = Tr(φI φ̄I). This multiplet contains the simplest op-

erators whose scaling dimensions are not protected from quantum corrections and it

has thus been of great interest in the study of the spectrum of anomalous dimensions
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Figure 2.4: Length-increasing contributions to the mixing of a length-two operator
OA to a length-four operator.

and correlation functions in supersymmetric gauge theories. Moreover, the operator

O5 in the planar limit just corresponds to K2 and its planar anomalous dimension is

twice that of the Konishi multiplet.

Upper off-diagonal mixing. The N = 4 sYM theory dilatation operator has

length-changing effects starting at O(g3
YM). They were studied in the planar limit

where they give rise to fluctuations in the lengths of the corresponding “dynamic”

spin chains [135, 136]. We will study such effects here as they are relevant to the

mixing in the sector spanned by the operators (2.46) and obtain them from (2.17) by

focussing on this relation for operators OA and OB of different lengths. In this work,

we only discuss the length-increasing cases, i.e. the mixing of G to F and ~S, as well

as of F to ~S. This will allow us to extract the on-shell N = 4 sYM Lagrangian as an

eigenoperator of the mixing problem with vanishing anomalous dimension.

In the case of a length-two operator OA mixing into a length-four operator OB,

the convolution 〈1, 2, 3, 4|M⊗OA|0〉(0) obtains contributions from non-minimal form

factors and length-changing amplitudes which are illustrated in Figure 2.4. While the

intermediate momenta p′1 and p′2 in the cut of Figure 2.4 (iii) can be parametrised as

in the length-preserving case, cf. (2.19), we need to find new parametrisations for the

two other configurations. We begin with case (i) where the intermediate momenta

satisfy p′1 + p′2 = p1 + p2 + p3 + p4 and parametrise them in terms of two on-shell

momenta defined as

pa =
s1234

s12 + s13 + s14

p1 , pb = p2 + p3 + p4 −
s234

s12 + s13 + s14

p1 (2.50)

with spinor-helicity variables

λa = λ1

√
s1234

s12 + s13 + s14

, λb = ([12]λ2 + [13]λ3 + [14]λ4)
1√

s12 + s13 + s14

. (2.51)

The dependence of the intermediate momenta p′1 and p′2 on the new momenta pa

and pb is then given by (2.19) in terms of the two angles ϑ and ϕ. For p4 → 0 these
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formulas give a parametrisation for the case (ii) of Figure 2.4 and reproduce the 2→ 3

parametrisation discussed in [31].

We begin the study of length-increasing cuts in the sector spanned by (2.46) with

a discussion of the cut from the operator G to F which we obtain from

(∆γ)OG 〈Φ
a1
1 (p1),Φa2

2 (p2),Φa3
3 (p3)|O|0〉 = − 1

π
〈Φa1

1 (p1),Φa2
2 (p2),Φa3

3 (p3)|M⊗G|0〉 .

(2.52)

The external state again consists of arbitrary component fields Φi ∈ {g±, φAB, ψA, ψ̄A}.
At leading order in the coupling, the left-hand side of this relation has contributions

from a minimal form factor of F and a non-minimal form factor of G

(∆γ)OG 〈Φ
a1
1 (p1),Φa2

2 (p2),Φa3
3 (p3)|O|0〉

∣∣
O(g3YM)

= (∆γ(1))G
G 〈Φ

a1
1 (p1),Φa2

2 (p2),Φa3
3 (p3)|G|0〉(0.5)

+ (γ(1.5))F
G 〈Φ

a1
1 (p1),Φa2

2 (p2),Φa3
3 (p3)|F|0〉(0) , (2.53)

where 〈Φa1
1 (p1),Φa2

2 (p2),Φa3
3 (p3)|G|0〉(0.5) denotes the tree-level non-minimal form fac-

tor of G which comes with one power of the coupling gYM. At leading order on the

right-hand side of (2.52), we have contributions from cuts with minimal and non-

minimal form factors of G:

〈Φa1
1 (p1),Φa2

2 (p2),Φa3
3 (p3)|M⊗G|0〉|O(g3YM)

= 〈Φa1
1 (p1),Φa2

2 (p2),Φa3
3 (p3)|(M2←2

12 ⊗G +M2←2
13 ⊗G +M2←2

23 ⊗G+

+M3←2
123 ⊗G)|0〉(1.5) . (2.54)

The first three contributions stem from the convolution of the non-minimal form factor

〈Φ1,Φ2,Φ3|G|0〉 with a 2 → 2 scattering matrix. The subscripts on M2←2 indicate

those external particles of the convolution that attach to the scattering amplitude.

The last contribution corresponds to the convolution of the minimal form factor of G

and the five-point MHV superamplitude (1.57). The three-point non-minimal form

factors of G can be found in the Appendix A. By computing the mixing for arbitrary

MHV external states we find

(∆γ(1))G
G =

λ

8π2
· (−3IIR) , (γ(1.5))F

G =
λ

8π2
· 6gYM . (2.55)

After subtracting the infrared divergence, the first term of (2.55) reproduces the

one-loop anomalous dimension found in the length-preserving cuts, cf. (2.48). The

anomalous dimension (γ(1.5))F
G governs the mixing from the operator G to F atO(g3

YM).
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For the mixing of F to operators ~S we compute

(∆γ)OF 〈Φ
a1
1 (p1),Φa2

2 (p2),Φa3
3 (p3),Φa4

4 (p4)|O|0〉

= − 1

π
〈Φa1

1 (p1),Φa2
2 (p2),Φa3

3 (p3),Φa4
4 (p4)|M⊗ F|0〉 . (2.56)

At leading order on the left-hand side, we have contributions from minimal form

factors of ~S and a non-minimal form factor of F

(∆γ)OF 〈Φ
a1
1 (p1),Φa2

2 (p2),Φa3
3 (p3),Φa4

4 (p4)|O|0〉
∣∣
O(g3YM)

= (∆γ(1))F
F 〈Φ

a1
1 (p1),Φa2

2 (p2),Φa3
3 (p3),Φa4

4 (p4)|F|0〉(0.5) +

+ (γ(1.5))
~S
F 〈Φ

a1
1 (p1),Φa2

2 (p2),Φa3
3 (p3),Φa4

4 (p4)|~S|0〉
(0)

. (2.57)

At leading order on the right-hand side, we have contributions from cuts including

minimal and non-minimal form factors of F:

〈Φa1
1 (p1),Φa2

2 (p2),Φa3
3 (p3),Φa4

4 (p4)|M⊗ F|0〉|O(g3YM)

= 〈Φa1
1 (p1),Φa2

2 (p2),Φa3
3 (p3),Φa4

4 (p4)|(M2←2
12 ⊗ F +M2←2

13 ⊗ F +M2←2
23 ⊗ F

+M2←2
14 ⊗ F +M2←2

24 ⊗ F +M2←2
34 ⊗ F

+M3←2
123 ⊗ F +M3←2

124 ⊗ F +M3←2
134 ⊗ F +M3←2

234 ⊗ F)|0〉(1.5) . (2.58)

Studying these expressions for general MHV external states and with the non-minimal

form factors given in Appendix A, we find

(∆γ(1))F
F =

λ

8π2
(−4IIR + 6) , (γ(1.5))S1

F =
λ

8π2
·
(
−gYM

2

)
, (γ(1.5))S2

F =
λ

8π2
· gYM ,

(γ(1.5))S3
F =

λ

8π2
· 2gYM

N
, (γ(1.5))S4

F =
λ

8π2
· gYM

N
. (2.59)

After subtracting the infrared divergence, the first expression in (2.59) reproduces

result from the length-preserving cuts in (2.48), and the remaining terms govern the

mixing from F to ~S.

Finally, for the mixing of G to length-four operators we look at

(∆γ)OG 〈Φ
a1
1 (p1),Φa2

2 (p2),Φa3
3 (p3),Φa4

4 (p4)|O|0〉

= − 1

π
〈Φa1

1 (p1),Φa2
2 (p2),Φa3

3 (p3),Φa4
4 (p4)|M⊗G|0〉 . (2.60)

The leading order contribution of this expression is O(g4
YM) and at this order the left-

hand side contains minimal form factors of ~S and non-minimal form factors of G and
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F, specifically

(∆γ)OG 〈Φ
a1
1 (p1),Φa2

2 (p2),Φa3
3 (p3),Φa4

4 (p4)|O|0〉
∣∣
O(g4YM)

= (γ(1))G
G 〈Φ

a1
1 (p1),Φa2

2 (p2),Φa3
3 (p3),Φa4

4 (p4)|G|0〉(1)

+ (∆γ(1.5))F
G 〈Φ

a1
1 (p1),Φa2

2 (p2),Φa3
3 (p3),Φa4

4 (p4)|F|0〉(0.5)

+ (γ(2))
~S
G 〈Φ

a1
1 (p1),Φa2

2 (p2),Φa3
3 (p3),Φa4

4 (p4)|~S|0〉
(0)

. (2.61)

At leading order on the right-hand side, we have contributions from cuts with minimal

and non-minimal form factors of G:

〈Φa1
1 (p1),Φa2

2 (p2),Φa3
3 (p3),Φa4

4 (p4)|M⊗G|0〉|O(g4YM) =

= 〈Φa1
1 (p1),Φa2

2 (p2),Φa3
3 (p3),Φa4

4 (p4)|(M2←2
12 ⊗G +M2←2

13 ⊗G +M2←2
23 ⊗G+

+M2←2
14 ⊗G +M2←2

24 ⊗G +M2←2
34 ⊗G+

+M3←2
123 ⊗G +M3←2

124 ⊗G +M3←2
134 ⊗G +M3←2

234 ⊗G+

+M4←2
1234 ⊗G)|0〉 , (2.62)

which contains an MHV six-point amplitude. The non-minimal form factors can again

be found in Appendix A and the mixing can be computed and we find

(∆γ(1))G
G =

λ

8π2
· (−4IIR) , (γ(1.5))F

G =
λ

8π2
· 6gYM , (γ(2))S1

G =
λ

8π2
· 3g2

YM

16
,

(γ(2))S2
G =

λ

8π2
· 3g2

YM

8
, (γ(2))S3

G =
λ

8π2
· 3g2

YM

4N
, (γ(2))S4

G =
λ

8π2
· 3g2

YM

8N
. (2.63)

The first two expressions reproduce previous results in (2.48) and (2.55), and the

remaining terms specify the mixing of G to ~S.

Gathering together all obtained results, we find the length-preserving and -increasing

part of the mixing matrix

γ(1) =
λ

8π2



0 6gYM 3g2
YM/16 3g2

YM/8 3g2
YM/4N 3g2

YM/8N

6 −gYM/2 gYM 2gYM/N gYM/N

11 −10 −20/N −10/N

1 2 −12/N 2/N

−5/N 0 0 2

−6/N 0 0 12


(2.64)

which allows us to obtain the full one-loop eigenstate corresponding to a vanishing

anomalous dimension

γ
(1)
1 = 0 O1 = G− gYMF− g2YM

24
S1 , (2.65)
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which is precisely the on-shell Lagrangian (1.17). From this we obtain the N = 4 sYM

β-function via (2.39) and find that it vanishes at one-loop order as expected. The

operator O1 is the only length-four SU(4)-invariant operator with vanishing anoma-

lous dimension, which is consistent with N = 4 sYM theory being the unique four-

dimensional CFT with N = 4 supersymmetry. The remaining entries in (2.64) can

be extracted from length-decreasing terms in the dilatation operator.

2.3 Scalar β-deformed dilatation operator

We now move on to the calculation of the one-loop dilatation operator of the scalar

subsector of β-deformed N = 4 sYM theory including its non-planar corrections. In

order to set up the notation we start with the known undeformed case in Section 2.3.1

and then move on to the β-deformed case in Section 2.3.2.

2.3.1 Undeformed dilatation operator

We derive the undeformed dilatation operator from the on-shell approach of [31, 32],

focusing on the scalar subsector of the theory. We extract it from (2.17) by studying

local operators OA composed of scalar fields only, i.e.

OA ∼ Tr(φI1φI2 . . . ) . . .Tr(. . . φIn) . (2.66)

The index I can take values 1, 2, ..., 6 corresponding to the set of six scalars {φ14, φ24,

φ34, φ23, φ31, φ12}.

One-loop closedness. We begin by re-deriving that purely scalar operators (2.66)

only mix among themselves at one-loop order, i.e. that the scalar sector is closed.

This can be seen from the convolution term of (2.17) which determines the mixing

between operators in this on-shell approach. At one-loop order only length-preserving

mixing occurs and thus we study this relation for minimal form factors. For the (i, j)th

component of the sum in the convolution term (2.18) to be non-vanishing, the external

fields of the minimal form factor must be scalars, i.e. all the fields 1a1 , 2a2 , ..., nan

excluding iai and jaj , as well as the intermediate states i′a
′
i and j′a

′
j . This reduces

the sum over intermediate states in the convolution to only include two scalar fields

φ
a′i
I′i

(p′i) and φ
a′j
I′j

(p′j). The mixing of OA is then governed via (2.18) by the one-loop

amplitude

〈iai(pi), jaj(pj)|M|φ
a′i
I′i

(p′i), φ
a′j
I′j

(p′j)〉
(2)

. (2.67)

The sum over intermediate scalars now includes three different cases:
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M OA
φ14

φ14

φ14

φ14

(i)

M OA
φ14

φ24

φ14

φ24

(ii)

M OA
φ14

φ23

φ12

φ34

(iii)

t

Figure 2.5: Non-vanishing contributions to one-loop mixing of the purely scalar oper-
ator OA for (i) case 1, (ii) case 2, and (iii) case 3.

1. the two scalars are of the same type, e.g. φI′i = φI′j = φ14,

2. the two scalars span an su(2) scalar sector, e.g. φI′i = φ14 and φI′j = φ24,

3. the two scalars form a singlet, e.g. φI′i = φ14 and φI′j = φ23.

In the first case, the amplitude (2.67) is only non-vanishing for external particles i, j

being identical to the scalars in the intermediate state, e.g. 〈φci14, φ
cj
14|M(0)|φai14, φ

aj
14〉

and we illustrate such a convolution term in Figure 2.5 (i). For an su(2) intermediate

state there exist purely scalar amplitudes, cf. Figure 2.5 (ii), and mixed amplitudes

with both scalars and fermions, cf. Figure 2.6 (i). Components of the one-loop MHV

superamplitude (1.57) of this latter type are proportional to e±iϕ by the parametri-

sation (2.19) and, since the minimal form factor in the convolution only depends on

the ϕ-independent total sum of momenta, these terms vanish in the integral (2.21) of

the convolution. Finally, if the sum over intermediate scalar states runs over a singlet

state, we may have an amplitude (2.67) where the external state |i, j〉 corresponds to

a scalar, fermionic or gluonic singlet state, cf. Figure 2.5 (iii) and 2.6 (ii,iii). Ampli-

tudes of the form 〈ψ, ψ̄|M(0)|φ, φ̄〉 are again proportional to e±iϕ and amplitudes of

the form 〈g+, g−|M|φ, φ̄〉 are proportional to e±2iϕ, and thus these cases all vanish

in the integral of the convolution. This implies that (2.17) is non-trivial only for

purely scalar external states. For a non-vanishing tree-level minimal form factor on

the left-hand side of this equation, the fields in the external state must correspond

to the fields in OB and thus OB is purely scalar. This proves that there only occurs

mixing in the scalar subsector at one-loop level.

Convolution term. In the following we make the mixing between scalar operators

explicit. The one-loop scalar four-point amplitude can be extracted from the MHV
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M OA
φ14

φ24

ψ̄124

ψ4

(i)

M OA
φ14

φ23

ψ̄234

ψ1

(ii)

M OA
φ14

φ23

g+

g−

(iii)

t

Figure 2.6: Vanishing contributions to one-loop mixing of the purely scalar operator
OA for (i) case 2, and (ii,iii) case 3.

superamplitude (1.57) and with the crossing convention (1.49) it is given by

〈φaiIi (pi), φ
aj
Ij

(pj)|M|φ
a′i
I′i

(p′i), φ
a′j
I′j

(p′j)〉 (0)

= −2g2
YM

(
faiajefa

′
ja
′
ie

sin2 ϑ
− faia

′
jefaja

′
ie

cos2 ϑ sin2 ϑ

)
×
(

cos2 ϑ δIiI′iδIjI′j + sin2 ϑ δIiI′jδIjI′i − sin2 ϑ cos2 ϑ δIi IjδI′i I′j

)
, (2.68)

with φĪ := φI . Inserted into the convolution (2.18), we can perform the sum over

intermediate scalars and the integration over Ω. Rearranging terms using the Jacobi

identity and furthermore using

: Tr[φI , φJ ][φ̌I , φ̌J ] : φaiIiφ
aj
Ij

= −4faiajefa
′
ia
′
jeφ

a′i
Ii
φ
a′j
Ij
,

: Tr[φI , φ̌
I ][φJ , φ̌

J ] : φaiIiφ
aj
Ij

= −4faia
′
iefaja

′
jeφ

a′i
Ii
φ
a′j
Ij
,

: Tr[φI , φ̌
J ][φĪ , φ̌

J̄ ] : φaiIiφ
aj
Ij

= −4faia
′
iefaja

′
jeδIiĪj

∑
Iφ

a′i
I φ

a′j
Ī
, (2.69)

the convolution terms can be cast into the form of an operator acting on the external

states of a form factor. This yields

(γ(1))BA 〈1a1 , ..., nan|OB|0〉
(0)

=

[
− g2

YM

16π2

(
: Tr[φI , φJ ][φ̌I , φ̌J ] : +

1

2
Tr[φI , φ̌

J ][φĪ , φ̌
J̄ ] :

− IIR : Tr[φI , φ̌
I ][φJ , φ̌

J ] :

)
+ γ

(1)
IR

]
〈1a1 , ..., nan|OA|0〉(0) . (2.70)

IR divergence. What is left is to determine the form of γIR. Using (2.69) and

translating its colour structure into an operator structure via (2.69) yields

γ
(1)
IR = − g2

YM

16π2
IIR : Tr[φI , φ̌

I ][φJ , φ̌
J ] : . (2.71)
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Dilatation operator in scalar sector. Inserting the result (2.71) into (2.70) we

find that the IR divergence exactly cancels the divergent part of the convolution term

and thus we obtain

(γ(1))BA 〈1a1 , ..., nan|OB|0〉
(0) (2.72)

= − g2
YM

16π2

(
: Tr[φI , φJ ][φ̌I , φ̌J ] : +

1

2
: Tr[φI , φ̌

J ][φĪ , φ̌
J̄ ] :

)
〈1a1 , ..., nan |OA|0〉(0) .

In order to convert this mixing relation of form factors into a mixing relation of local

operators, we note that at tree level the field content of the external state must match

the field content of the local operator of a minimal form factor. Furthermore, we may

map on the trace-structure of the local operator by multiplying the external state

by the appropriate colour-trace structure. Thus we can extract the one-loop mixing

matrix for purely scalar operators which is generated by the dilatation operator

D2 = − g2
YM

16π2

(
: Tr[φI , φJ ][φ̌I , φ̌J ] : +

1

2
: Tr[φI , φ̌

J ][φĪ , φ̌
J̄ ] :

)
, (2.73)

which is the known one-loop so(6) dilatation operator of N = 4 sYM theory [6].

2.3.2 Deformed dilatation operator

We now turn to the β-deformed theory and derive the scalar dilatation operator. The

deformation enters its computation via the form factor on-shell approach by deforming

the four-point single-trace amplitudes and introducing double-trace terms. The mixed

amplitudes contributing to the diagrams in Figure 2.6 only pick up a non-kinematic

phase factor in the deformed theory and thus the scalar sector remains closed at

one-loop order.

so(6) sector. In the so(6) sector the deformed amplitude is given in terms of the

deformed structure constants (1.83) by

〈φaiIi (pi), φ
aj
Ij

(pj)|M|φ
a′i
I′i

(p′i), φ
a′j
I′j

(p′j)〉 (0)

= −2g2
YM

[(
f
aiaje

ϕ(Ii,Ij)
f
a′ia
′
je

ϕ(Ii,Ij)

cos2 ϑ
−
f
aia
′
ie

ϕ(Ii,I′i)
f
aja
′
je

ϕ(Ij ,I′j)

sin2 ϑ cos2 ϑ

)
×
(

cos2 ϑδIiI′iδIjI′j − sin2 ϑ cos2 ϑδIiĪjδI′i Ī′jn
IiI
′
i
)

+

(
f
aiaje

ϕ(Ii,Ij)
f
a′ja
′
ie

ϕ(Ii,Ij)

sin2 ϑ
−
f
aia
′
je

ϕ(Ii,I′j)
f
aja
′
ie

ϕ(Ij ,I′i)

sin2 ϑ cos2 ϑ

)

×
(

sin2 ϑδIiI′jδIjI′i − sin2 ϑ cos2 ϑδIiĪjδI′i Ī′jn
IiI
′
j
)]

, (2.74)
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where fabcϕ(Ia,Ib)
δIaIb = fabc, so setting both the phase to 1 and sending κ̃ → 1. nIJ is

the particle-/anti-particle number and vanishes if I corresponds to a scalar index, i.e.

φI ∈ {φ14, φ24, φ34}, and J to an anti-scalar index, i.e. φJ ∈ {φ23, φ31, φ12}, and vice

versa, while nIJ is 1 if both indices correspond to either scalars or anti-scalars. The

occurrence of such a parameter in the four-point scalar amplitude makes the breaking

of the symmetry between chiral and anti-chiral scalars due to the breaking of the

SU(4) R-invariance in the β-deformed theory manifest.

The deformed structure constants satisfy

fabeϕ(a,b)f
cde
ϕ(c,d) = − 1

2
|κ̃|2
(

Tr
(
[a, b]ϕ(a,b)[c, d]ϕ(c,d)

)
− 1

N
Tr[a, b]ϕ(a,b) Tr[c, d]ϕ(c,d)

)
,

(2.75)

where ϕ(a, b) is the phase of the particles corresponding to colour indices a and b.

The deformed commutators on the right-hand side can be related to operators via the

deformed version of (2.69),

: Tr[φI , φJ ]ϕ[φ̌I , φ̌J ]ϕ : φaiIiφ
aj
Ij

= 2 Tr
(
[ai, aj]ϕ(Ii,Ij)[a

′
i, a
′
j]ϕ(Ii,Ij)

)
φ
a′i
Ii
φ
a′j
Ij
,

: Tr[φI , φ̌
J ]ϕ[φĪ , φ̌

J̄ ]ϕ : φaiIiφ
aj
Ij

= 2δIiĪj
∑

I Tr
(
[ai, a

′
i]ϕ(Ii,I)[aj, a

′
j]ϕ(Ii,I)

)
φ
a′i
I φ

a′j
Ī
, (2.76)

and analogue relations for the double-trace colour structures. Inserting the amplitude

(2.74) into the convolution (2.18) and using (2.76) and (2.69) yields

(γ(1))BA 〈1a1 , ..., nan|OB|0〉
(0)

=

[
− g2

YM

16π2

(
|κ̃|2
(

: Tr[φI , φJ ]ϕ[φ̌I , φ̌J ]ϕ : − 1

N
: Tr[φI , φJ ]ϕ Tr[φ̌I , φ̌J ]ϕ :

)
+
|κ̃|2

2

(
: Tr[φI , φ̌

J ]ϕ[φĪ , φ̌
J̄ ]ϕ : − 1

N
: Tr[φI , φ̌

J ]ϕ Tr[φĪ , φ̌
J̄ ]ϕ :

)
− IIR : Tr[φI , φ̌

I ][φJ , φ̌
J ] :

)
+ γ

(1)
IR

]
〈1a1 , ..., nan|OA|0〉(0) . (2.77)

Comparing with the undeformed result (2.70), we see that all finite terms get de-

formed, but the IR-divergent contribution is unchanged. This latter point is in accor-

dance with the one-loop soft divergence being universal and taking the form (2.35)

also in the deformed theory. Thus we again subtract (2.71) and obtain

Dϕ
2 =− |κ|

2

16π2

(
: Tr[φI , φJ ]ϕ[φ̌I , φ̌J ]ϕ : +

1

2
: Tr[φI , φ̌

J ]ϕ[φĪ , φ̌
J̄ ]ϕ :

− 1

N

(
: Tr[φI , φJ ]ϕ Tr[φ̌I , φ̌J ]ϕ : +

1

2
: Tr[φI , φ̌

J ]ϕ Tr[φĪ , φ̌
J̄ ]ϕ :

))
. (2.78)

In addition to deformed single-trace operators inherited from the undeformed theory,
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this operator contains double-trace terms which are necessary to make the theory

exactly conformal [47]. It is important to note that although they are formally sup-

pressed by 1/N , they can be relevant at leading order when acting on short operators

which we discuss in the following. In Chapter 3 we compute non-planar anomalous

dimensions from (2.78) perturbatively and in Chapter 4 we study statistical properties

of its anomalous-dimension spectrum. Note that the calculation of Dϕ
2 did not depend

on the explicit form of the phase ϕ and thus is valid in more general deformed theories

whose four-point scalar amplitudes can be brought into the form (2.74). However, as

these deformed theories are not necessarily conformal, the dilatation operator Dϕ
2 is

not necessarily a symmetry generator.

L = 2 mixing. We now study the mixing of length-two operators induced by (2.78).

The operators Tr(φIφJ), where φI , φJ ∈ su(2), remain protected in the deformed

theory. In particular when I 6= J the first double-trace contribution of (2.78) is

necessary for a vanishing anomalous dimension. The protectedness of these operators

was shown previously at one- and two-loop level by direct calculations in [74,75].

Also the Konishi operator K = Tr(φI φ̄I) remains an eigenstate of the one-loop

dilatation operator in the β-deformed theory (ϕ(φ1, φ2) = ϕ(φ2, φ3) = ϕ(φ3, φ1) = β)

with anomalous dimension

γ
(1)
K =

g2
YMN

8π2

(
3 + 2

[
|κ̃|2

(
1− 4

N2
sin2 β

)
− 1

])
, (2.79)

reproducing the results in [74,75] from direct calculation. The expression in the square

bracket corresponds to the condition on the deformed coupling κ of (1.64) which makes

the deformed theory exactly conformal through two loops. Setting this expression to

zero one finds that the Konishi operator has undeformed anomalous dimension

γ
(1)
K =

3λ

8π2
. (2.80)

The remaining two eigenstates in this length-two sector of U(1)3-uncharged operators

are protected and can be chosen to be Tr(φ1φ̄1 − φ2φ̄2) and Tr(φ2φ̄2 − φ3φ̄3). They

combine with the length-two operator in the su(2) sector to the symmetric traceless

operators QIJ := Tr(φIφJ)− 1
6
ηIJK with vanishing eigenvalues, corresponding to the

chiral primaries of the 20′ representation of SU(4).

In the more general γi-deformed theory, where γ1 := ϕ(φ1, φ2), γ2 := ϕ(φ2, φ3),

γ3 := ϕ(φ3, φ1) and γ1 6= γ2 6= γ3, the operator Tr(φIφJ) for φI , φJ ∈ su(2) remains

protected. Similarly the Konishi operator stays protected in the planar theory, how-

ever it mixes with the other uncharged operators at finite N . The corresponding
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symmetric mixing matrix of operators {Tr(φ1φ̄1),Tr(φ2φ̄2),Tr(φ3φ̄3)} is given by

γ(1) =
g2
YMN

8π2

1 |κ̃|2(1− 4 sin2 γ1/N
2) |κ̃|2(1− 4 sin2 γ3/N

2)

1 |κ̃|2(1− 4 sin2 γ2/N
2)

1

 . (2.81)



Chapter 3

Perturbative non-planar anomalous

dimensions

The action of the (β-deformed) N = 4 sYM dilatation operator (1.36)-(1.38) and

(2.78) on the space of multi-trace states gives rise to complicated mixing problems.

Symmetries simplify the diagonalisation of this mixing by arranging states into closed

sectors, with states belonging to different sectors not being allowed to mix. For

example, only states that have the same classical scaling dimension can mix, and both

the su(2) and sl(2) sector are closed. Despite these symmetries, with an increasing

number of field insertions into states, the dimension of the mixing problem even in

closed sectors increases very quickly. Thus, when going beyond short operators, its

solution by direct diagonalisation quickly becomes inconceivable and a systematic

analytic approach is desirable.

A step forward in this quest is the realisation that the action of the one-loop dilata-

tion operator on a general multi-trace operator can be decomposed into a planar and

non-planar piece. Take as an example the length-six single-trace operator Tr(X2Z4)

on which the one-loop dilatation operator (1.36) acts as

D2 Tr(X2Z4) = 4
(
Tr(X2Z4)− Tr(XZXZ3)

)
+

4

N

(
Tr(X2Z2) Tr(Z2)− Tr(XZXZ) Tr(Z2)

)
, (3.1)

where we repeatedly use the splitting and fusion identities (1.34). The leading term

in a large-N expansion corresponds to the superposition of single-trace operators and

the subleading term is a double-trace contribution. Similarly, we can decompose the

action of the one-loop dilatation operator on general multi-trace operators into planar

and non-planar pieces as [137]

D2 = H(0) +
1

N
H− +

1

N
H+ . (3.2)

63
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The planar piece H(0) leaves the number of traces in an operator unchanged, while

the non-planar corrections H±, which are suppressed by a factor of 1/N , increase or

reduce the number of traces in a given operator. In order to find the eigenvalues of D2,

one can first solve the planar problem using integrability, and then use perturbation

theory to find the 1/Nk corrections by treating 1
N
H± as a small perturbation. We

review the solution of the planar problem in Section 3.1 and then derive expressions

for perturbative non-planar corrections in the undeformed theory in Section 3.2. Al-

though this approach to non-planar dimensions is promising at first sight, it is made

complicated by degeneracies in the planar spectrum and thus degenerate perturba-

tion theory has to be employed. In order to avoid this obstacle, one can consider the

β-deformed N = 4 sYM theory, in which most degeneracies in the su(2) sector are

lifted, and we will do so in Section 3.3.

3.1 Planar theory and integrability

3.1.1 Integrable structures in N = 4 sYM theory

A seminal development in the understanding of N = 4 sYM theory was the realisation

that in its planar limit there occur integrable structures, first discovered in the scalar

sector of N = 4 sYM theory in [11]. Specifically, the one-loop mixing problem in the

su(2) sector can be mapped to the spectral problem of the Heisenberg spin chain. The

latter was already studied long before its relevance for super Yang–Mills theories was

realised, see e.g. [138, 139], and thus there were many tools at hand for its solution.

We review these developments in the following, in particular as we will make use of

the spin-chain notation and the results from integrability to organise the computation

of non-planar corrections.

Heisenberg spin chain in su(2) sector. In order to make the mapping between

the Heisenberg spin chain and the planar su(2) one-loop mixing problem explicit,

we study the action of the dilatation operator D2 given in (1.36) on the space of

multi-trace operators composed of fields X and Z. In the large-N limit this action is

enhanced by a factor of N when acting on adjacent fields X and Z in a trace. This

action preserves the number of traces of an operator and corresponds to the leading

term H(0) in (3.2). With the number of traces being conserved, multi-trace and single-

trace operators decouple and the multi-trace mixing problem is essentially solved by

the single-trace mixing problem: multi-trace eigenstates of H(0) are products of single-

trace eigenstates and the corresponding eigenvalue is the sum of the eigenvalues of the

constituent single-trace operators. On the space of single-trace operators the planar
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one-loop dilatation operator (1.36) acts as

HXXX = 2
L∑
i=1

(1i,i+1 − Pi,i+1) . (3.3)

Here Pi,i+1 = 1
2
(1 ⊗ 1 + σa ⊗ σa)i,i+1 denotes the permutation operator acting on

positions i and (i + 1) in a trace of L scalar fields and similarly 1i,i+1 = (1 ⊗ 1)i,i+1

corresponds to the identity operator. The operator (3.3) is the famous Heisenberg

Hamiltonian [140] of su(2) spin chains. Thus we can map the problem of finding one-

loop anomalous dimensions in the su(2) sector to the problem of finding the energy

spectrum of the cyclic Heisenberg spin chain.

Integrability of the Heisenberg spin chain. The solution of the Heisenberg

spin chain can be achieved by various approaches going under the name of “Bethe

ansatz”. We will discuss the coordinate Bethe ansatz in Section 3.1.2, which is the

original ansatz developed by Bethe [138], and will comment on the algebraic Bethe

ansatz in Appendix B, which goes back to Faddeev [139]. The solution of the Heisen-

berg spin chain is characterised by a remarkable simplicity, specifically the energy of

multi-particle eigenstates is just a sum of single-particle energies, and multi-particle

scattering factorises into two-particle scattering. This simplicity is characteristic of

integrable models and hints towards the existence of hidden symmetries. Indeed, one

can show that the Heisenberg spin chain has a tower of conserved local charges which

can be derived from its Lax operator, see e.g. [141]. An alternative formulation of this

system’s integrability for an infinitely long spin chain is based on a non-local sym-

metry algebra called Yangian, in particular Y [su(2)] for the Heisenberg spin chain,

introduced by Drinfel’d [142–145].

Integrability beyond su(2) and one-loop order. The analogy between the one-

loop dilatation operator and an integrable spin-chain Hamiltonian extends beyond

the su(2) sector to the full space of N = 4 sYM local operators, where the complete

one-loop dilatation operator was found in [10]. The corresponding Hamiltonian is

that of an integrable psu(2, 2|4) spin chain [12] and was shown to be invariant under

the Yangian algebra Y [psu(2, 2|4)] [146], making the whole planar mixing problem

solvable by integrability methods. At higher loop orders the planar dilatation operator

is no longer of nearest-neighbour type, but remains integrable and can be solved via

an asymptotic Bethe ansatz [147, 148]. It is asymptotic in the sense that it is only

valid for local operators whose length is larger than the spin-chain interaction length

at a given order in the perturbative g2-expansion, and otherwise receives wrapping

corrections [149]. An efficient way for explicit computations of the spectrum of planar

N = 4 sYM theory at finite coupling is via the quantum spectral curve [150], see
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also [151].

Integrable structures do not only appear in the spectral problem of planar N = 4

sYM theory, but were also unveiled in the context of other observables of this the-

ory. For example, structure constants of three-point correlators can be computed

non-perturbatively via an integrable bootstrap [20], and similarly planar scattering

amplitudes can be described at finite coupling via a dual description in terms of polyg-

onal null Wilson loops and an integrable flux-tube Hamiltonian [152,153]. Moreover,

integrable structures were also uncovered in the dual gravity theory and in particular

superstrings on AdS5×S5 are classically integrable [14]. This integrability can be used

to find explicit classical string solutions, like those of spinning strings [154, 155], and

more generally to describe classical solutions as solutions of algebraic curves [156–161].

A comprehensive overview of integrability in the context of the AdS/CFT correspon-

dence is given in the review articles of [16].

3.1.2 Coordinate Bethe ansatz for the Heisenberg spin chain

Spin-chain notation. In order to solve the mixing problem of H(0) on the space of

su(2) single-trace operators, it is first useful to introduce a notation which resembles

the notation of spin chains: Single-trace operators with M insertions of X fields in a

background of (L−M) Z’s will be denoted as

Tr(

n1−1︷ ︸︸ ︷
Z . . . Z X

n2−n1−1︷ ︸︸ ︷
Z . . . Z X . . . )→ |

n1−1︷ ︸︸ ︷
↑ . . . ↑ ↓

n2−n1−1︷ ︸︸ ︷
↑ . . . ↑ ↓ . . .〉L ≡ |n1, n2, . . . , nM〉L . (3.4)

Note that we do not transfer the cyclicity property of single-trace operators to the no-

tation |..〉 on the right-hand side, where we only impose periodicity such as |L+ 1〉L :=

|1〉L, and so the two notations are not equivalent. Nevertheless, it will be more con-

venient to first work with states |{n}〉 to solve the planar mixing problem and then

impose cyclicity of eigenstates at the very end. Multi-trace operators with K traces

and M insertions of X fields, where M =
∑K

k=1Mk, can then be denoted by products

of such states

K∏
k=1

|n(k)
1 , . . . , n

(k)
Mk
〉
Lk

, (3.5)

which is an element of the symmetrised tensor product. It will often be convenient to

use the compressed notation |{n}〉 and
∏

k |{n(k)}〉 for single- and multi-trace states,

respectively. In the following we compute overlaps of states and thus we define the
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natural dual basis 〈{m}| with normalisation

Lm〈m1,m2, . . . ,mMm|n1, n2, . . . , nMn〉Ln = δLm,LnδMm,Mn

Mn∏
j=1

δmj ,nj . (3.6)

In this basis of states, the action of the planar dilatation operator (3.3) is given by

the well-known formula

H(0) |n1, n2, . . .〉L

= 2
M∑
j=1

(
2 |. . . , nj, . . .〉L − |. . . , nj − 1, . . .〉L − |. . . , nj + 1, . . .〉L

)
. (3.7)

This spin-chain Hamiltonian can now be diagonalised by means of the coordinate

Bethe ansatz. It organises eigenstates by their number of excitations M based on the

SU(2) spin symmetry of (3.3). The lowest-energy state is degenerate with states

|∅〉 = |↑↑ . . . ↑〉 and |∅̄〉 = |↓↓ . . . ↓〉 (3.8)

and vanishing energy. These states correspond to operators consisting of a single type

of scalar field, Tr(ZL) and Tr(XL). They are half-BPS and due to supersymmetry

their dimensions receive no quantum corrections. Choosing |∅〉 as vacuum, we can

build excited states as linear combinations of basis vectors (3.4) with fixed L and M

as

|{p}〉 =
∑
{n}

ψ
{p}
{n} |{n}〉 (3.9)

in terms of a wavefunction ψ
{p}
{n} depending on the quantum numbers of the particular

state. The states are characterised by the momenta {p} = {p1, p2, . . . , pM} of the M

excitations (or “magnons”) and the sum in (3.9) is over the positions of excitations

ranging over the nested values 1 ≤ n1 < n2 < · · · < nM ≤ L. Using (3.6) the scalar

product of two such states |{p}〉 and |{q}〉 is given by

〈{q}|{p}〉 =
∑
{n}

(
ψ
{q}
{n}
)∗
ψ
{p}
{n} . (3.10)

Bethe ansatz. The states (3.9) are eigenstates of the Heisenberg Hamiltonian (3.7)

if the wavefunctions satisfy

ψ
{p}
{n} ≡ ψp1,...,pMn1,...,nM

=
1∏

j<k

√
S(pj, pk)

∑
σ∈SM

ei
∑M
j=1 pσ(j)nj

∏
j>k

σ(j)<σ(k)

S(pσ(j), pσ(k)) , (3.11)
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which is a sum over all permutations σ of the M excitations, with permutation group

SM . This expression furthermore contains the two-magnon S-matrix

S(pj, pk) = −e
ipj+ipk + 1− 2eipk

eipj+ipk + 1− 2eipj
, (3.12)

and we have made a particular choice for the overall, non-physical, phase of the

wavefunction which is convenient for subsequent purposes. For the states (3.11) to

satisfy periodic boundary conditions, the momenta must satisfy the Bethe equations,

i.e. for each j = 1, . . . ,M

eiφj = 1 , where eiφj ≡ eipjL
M∏
k 6=j

S(pj, pk) , (3.13)

which quantises the momenta {p} and implies that the wavefunctions satisfy the

condition

ψ{p}n1,n2,...,nM
= ψ

{p}
n2,...,nM ,n1+L . (3.14)

Each eigenstate corresponds to a solution of the algebraic equations (3.13) with pair-

wise distinct momenta and the energy eigenvalue is given as a sum over individual

magnon energies

E(0)({p}) =
M∑
j=1

ε(pj) , ε(pj) = 4(1− cos pj) . (3.15)

The cyclicity of the trace for gauge-theory operators becomes the condition that the

spin chain is invariant under the shift nj → nj + 1 and so we consider only states

which satisfy the condition

M∏
j=1

eipj = 1 . (3.16)

Further useful notations. It is convenient to introduce rapidity variables uj as

uj =
1

2
cot

pj
2

or eipj =
uj + i/2

uj − i/2
(3.17)

for each excitation, and then the S-matrix (3.12) and the individual magnon energies

(3.15) are given by

S(uj, uk) =
uj − uk − i
uj − uk + i

and ε(uj) =
2

u2
j + 1

4

, (3.18)
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and the periodicity (3.13) and cyclicity constraint (3.16) become

(
uj + i

2

uj − i
2

)L M∏
k 6=j

uj − uk − i
uj − uk + i

= 1 and
M∏
j=1

uj + i
2

uj − i
2

= 1 , (3.19)

respectively. The solutions {u} to the first relation in (3.19) are called “Bethe roots”.

It will also be useful to define the quantity

h(uj, uk) =
uj − uk

uj − uk + i
, (3.20)

so that the S-matrix is given as

S(uj, uk) =
h(uj, uk)

h(uk, uj)
, (3.21)

and a normalisation factor for states with momenta {p} corresponding to rapidities

{u} as

N (p(u)) =

∏
i<j h(ui, uj)∏

j<k

√
S(uj, uk)

(3.22)

and generalisations such as N (p, q) = N (p)N (q).

Finally, similar to [162], we will use the following short-hand notation for products

f {a} =
∏
i

f(ai) , f
{a}
< =

∏
i<j

f(ai, aj) , h{a}{b} =
∏
i,j

h(ai, bj) (3.23)

and

{z}â = {z1, . . . , ẑa, . . . , zn} = {z1, . . . , za−1, za+1, . . . , zn} (3.24)

for lists with a missing element. Using this notation a Bethe state can be written as

|{p}〉 = N (p)
∑
{n}

∑
σ∈SM

1

h
{pσ}
<

eipσ ·n |{n}〉 (3.25)

and its conjugate as

〈{p}| = N (p∗)
∑
{n}

∑
σ∈SM

1

h
{p∗σ}
>

e−ip
∗
σ ·n 〈{n}| (3.26)

where the functions h
{p}
< etc. should be understood as being defined in terms of the

set of rapidities {u} corresponding to the momenta {p(u)}.
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Singular Bethe states. The Bethe equations (3.19) allow for solutions{
u1 =

i

2
, u2 = − i

2
, u3, ..., uM

}
, (3.27)

which is apparent when casting (3.19) into the pole-free form

(
uj +

i

2

)L M∏
k 6=j

(uj − uk − i) =

(
uj −

i

2

)L M∏
k 6=j

(uj − uk + i) . (3.28)

The associated states are called “singular” as their wavefunctions (3.11) and energies

(3.18) diverge. One can regularise both quantities by introducing a regulator ε in the

rapidities u1,2 as

u1 =
i

2
+ ε+ c · εL , u2 = − i

2
+ ε , (3.29)

where c can be systematically found by demanding that the corresponding Bethe

state is an eigenstate of the Heisenberg Hamiltonian [163]1. Alternatively, one can

regularise the Bethe equations by the introduction of a twist [165] which is equivalent

to the deformation parameter β we introduce below.

Primary and descendant states. The Bethe states (3.9), with wavefunctions

(3.11) and characterised by the Bethe roots, do not span the full space of eigenstates.

Instead they are the highest-weight (or “primary”) vectors as can be shown via the

algebraic Bethe ansatz [139, 166]. The remaining eigenstates (“descendants”) of a

multiplet can be obtained from the highest-weight state by repeatedly acting with

the spin-lowering operator J−. This effectively adds magnons with infinite rapidity

u = ∞, i.e. vanishing momentum p = 0 mod 2π, to a given set of Bethe roots. The

Bethe states and their descendants have been shown to span the complete space of

2L eigenstates of the Heisenberg Hamiltonian (3.3) [164].

Degeneracies in the su(2) spectrum. The plethora of degeneracies in the spin-

chain energy spectrum translate into degeneracies in the planar spectrum of eigenop-

erators to the dilatation operator (1.36). For example, the M = 1 cyclic eigenstates

are degenerate with the vacuum |∅〉. Moreover, all descendants are degenerate with

their corresponding highest-weight state. A further source of degeneracies is the in-

variance of the Heisenberg Hamiltonian (3.3) under parity transformations P which

reverse the ordering of spins inside spin chains, e.g.

P |↑↓↓↑↓〉 = |↑↓↑↓↓〉 , (3.30)

1Note that not all combinations of L and M allow for singular solutions, for details see [163,164].
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and this gives rise to degenerate parity pairs.

Interestingly, the energies following from the Bethe equations also demonstrate a

particular degeneracy relevant to the mixing problem between multi-trace operators,

see e.g. [9,13,25]. For M = 2 this can be easily illustrated as one can in fact solve the

Bethe equations in the cyclic case (for which ei(p1+p2) = 1) for any length L. In terms

of the momenta such solutions are given by

p1 = −p2 =
2πn

L− 1
, (3.31)

with n ∈ Z and2 0 < n < L−1
2

. Thus states with different lengths La, Lb, and mode

numbers na, nb, but equal ratios

na
La − 1

=
nb

Lb − 1
(3.32)

have equal energies. Therefore, in the planar limit, the single-trace state corresponding

to the spin-chain state

∣∣ {2πm
L−1

,−2πm
L−1

} 〉
L

(3.33)

is degenerate with the double-trace state corresponding to the product of two spin

chains

∣∣{ 2πm̃
L−L1−1

,− 2πm̃
L−L1−1

}〉
L−L1

∣∣∅〉
L1

(3.34)

for m̃
L−L1−1

= m
L−1

. While it is less straightforward to show, analogous degeneracies

generally also occur for higher excitation numbers and we discuss an example with

L = 8, M = 3 below.

sl(2) sector. Similar to the su(2) case, in the sl(2) sector the one-loop dilatation

operator (1.38) reduces to an integrable nearest-neighbour Hamiltonian in the planar

limit that corresponds to a non-compact version of the XXX Heisenberg Hamiltonian

[139]. The corresponding Bethe equations are similar to the su(2) case in (3.19) and

given by

(
uj + i

2

uj − i
2

)L M∏
k 6=j

uj − uk + i

uj − uk − i
= 1 . (3.35)

2Note that p1 = −p2 = 0 does not correspond to an eigenstate of the Heisenberg Hamiltonian, as
it is neither a highest-weight state (which have distinct Bethe roots), nor a descendant of a Bethe
state.
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3.1.3 Deformed planar theory

N = 4 sYM theory is contained in a larger class of supersymmetric four-dimensional

CFTs which may be reached by marginal deformations, cf. Section 1.2. One example

is the β-deformed N = 4 sYM theory where planar integrability is preserved at one-

loop order [70, 71]. We discuss this integrable model in the closed su(2) sector in the

following.

Deformed spin chain. The action of the planar piece of the dilatation operator

(2.78) on su(2) single-trace operators of length L > 2 is quite similar to the unde-

formed action (3.7), and is given by

H
(0)
β |n1, n2, . . .〉L

= 2
M∑
j=1

(
2 |. . . , nj, . . .〉 − e2iβ |. . . , nj − 1, . . .〉 − e−2iβ |. . . , nj + 1, . . .〉

)
. (3.36)

It can be related to an integrable deformation of the Heisenberg Hamiltonian [70,71]

Hβ
XXX =

L∑
i=1

[
1i,i+1 − σzi σzi+1 − 2e2iβσ−i σ

+
i+1 − 2e−2iβσ+

i σ
−
i+1

]
, (3.37)

so that the planar spectrum can still be solved using integrability.

The SU(2) symmetry of the undeformed spin chain (3.3) is broken to a U(1) by

the β-deformation, which corresponds to a conserved total spin. Thus the number

of excitations M = L −
∑

i σ
z
i is still a good quantum number and we can arrange

eigenstates into sectors with fixed M . The lowest-energy states are the same as in the

undeformed theory, i.e. (3.8), and we again choose |∅〉 (M = 0) as the vacuum state.

The one-excitation eigenstate is given by the undeformed Bethe state, but its energy

becomes

E
(0)
β (p) = εβ(p) = 4(1− cos(p+ 2β)) , (3.38)

which is no longer degenerate with the vacuum energy for the cyclic case p = 0. For

a higher number of excitations, the eigenstates are given by the Bethe ansatz (3.25)

but with deformed S-matrix

Sβ(pj, pk) = −e
i(pj+pk)e2iβ + e−2iβ − 2eipk

ei(pj+pk)e2iβ + e−2iβ − 2eipj
. (3.39)

The Bethe equations are the same as in the undeformed theory (3.13) but with the

S-matrix replaced with Sβ and the trace cyclicity condition (3.16) is unchanged.

The dependence of the S-matrix on the deformation parameter can be removed by
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defining the shifted momenta

p̃j = pj + 2β (3.40)

so that

Sβ(pj, pk) = −e
i(p̃j+p̃k) + 1− 2eip̃k

ei(p̃j+p̃k) + 1− 2eip̃k
. (3.41)

Thus, if we introduce the rapidity as

u =
1

2
cot

p̃

2
, (3.42)

both the β-deformed S-matrix Sβ and the corresponding function hβ can be defined as

in the undeformed case, i.e. via (3.18) and (3.20). Note however that this parametri-

sation makes the parameter β manifest in the Bethe equations and cyclicity condition

as (
uj + i

2

uj − i
2

)L M∏
k 6=j

uj − uk − i
uj − uk + i

= e2iLβ and
M∏
j=1

uj + i
2

uj − i
2

= e2iMβ . (3.43)

Fate of multi-trace degeneracies. One consequence of the deformation is that

the degeneracy occurring in the undeformed theory between M = 2 single-trace (3.33)

and double-trace operators (3.34) is lifted. This can be seen from the solution of the

two-magnon Bethe equations, which is to first non-vanishing order in the deformation

parameter given by

p(m,L) =
2πn

L− 1
− 2β2

L− 1
cot

(
nπ

L− 1

)
+O(β4) , n ∈ Z . (3.44)

For generic real values of β there will be no integers m̃ and L1 such that p(m̃, L −
L1) = p(m,L) and hence the degeneracy between double- and single-trace operators

is lifted. While we do not have a similar proof for states with more excitations, direct

diagonalisation of the dilatation matrix for short operators shows that the degeneracy

between single- and double-trace states is lifted in all cases of operators which were

unprotected in the undeformed theory.

3.2 Perturbation theory in the undeformed theory

Mapping the problem of computing anomalous dimensions to that of computing in-

tegrable spin-chain energies proved to be an important step in solving the planar

spectral problem. In this section we will make use of the planar results from inte-
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(i) (ii)

Figure 3.1: The action of the non-planar dilatation operator on single-trace states
(i) can be viewed as a simultaneous splitting of the spin-chain and an application of

the planar Hamiltonian density, H
(0)
j , on pairs of non-adjacent spins. The action on

double-trace operators (ii) is given by applying H
(0)
j to pairs of spins, one drawn from

each spin chain, while joining the two chains together.

grability to obtain one-loop non-planar corrections E(N) to the scaling dimension

perturbatively, i.e.

∆(g,N) = L+ g2E(N) +O(g4) , with E(N) =
∞∑
k=0

1

Nk
E(k) . (3.45)

Doing so, we focus on operators in the scalar su(2) sector. Since the subleading ac-

tion H± of the dilatation operator is length-changing, there is no O(N−1) correction

to planar anomalous dimensions of general single-trace operators, but instead non-

planar corrections start at O(N−2). For a given Bethe state |{p}〉 with planar energy

E(0)({p}) these leading contributions can be computed via Rayleigh-Schrödinger per-

turbation theory as

E(2)({p}) ∼
∑
{I}

〈{p}|H−|{I}〉 〈{I}|H+|{p}〉
E(0)({p})− E(0)({I})

, (3.46)

up to a normalisation factor, which we make precise later. The sum in (3.46) is over

intermediate double-trace states {I}. In Sections 3.2.1-3.2.3 we study the action of

the non-planar dilatation operator on the planar eigenstates, schematically shown in

Figure 3.1, and subsequent overlaps with other Bethe states, and give examples for

non-planar corrections in Section 3.2.4. However, this procedure fails when there

are degeneracies in the planar spectrum. In particular, when there is a degeneracy

between a single- and a double-trace state, there can be O(N−1)-corrections. We will

give an explicit example of such a case in Section 3.2.4.
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3.2.1 Matrix elements from ordered partitions

Matrix elements of H−. We consider first the action of H− on a double-trace oper-

ator corresponding to the product of a length Lq Bethe state |{q}〉 with Q excitations

and a length Lr state |{r}〉 with R excitations. There are LqLr terms corresponding

to the action of the dilatation operator on each pair of sites of the two spin chains.

The terms where it acts on a Z field at the i-th site of one of them can be rewritten

using the Bethe equations, so that they become equivalent to the action on a Z at

the first site. This can be seen by gathering all the terms in the state (3.9) with a Z

field at the i-th site and using the cyclicity and Bethe equation to write them with

the Z field at the first position:

M∑
l=0

∑
1≤n1<...<nl≤i−1

i+1≤nl+1<...<nM≤L

ψ
{p}
{n}|n1, . . . , nl〉i−1 ⊗ |Z〉 ⊗ |nl+1, . . . , nM〉L−i

=
∑

2≤n1<...<nM≤L

ψ
{p}
{n} |Z〉 ⊗ |{n}〉L−1 . (3.47)

Analogously, the action on an X field at the i-th site can be rewritten as the action

on the same chain with the X field placed at the first site by realising that

M∑
l=1

∑
1≤n1<...<nl=i
i=nl<...<nM≤L

ψ
{p}
n1,...,nl=i,...,nM

|n1, . . . , nl = i, . . . , nM〉 =
∑

1=n1<...<nM≤L

ψ
{p}
{n} |{n}〉 . (3.48)

With these and similar simplifications the action of H− on the double-trace state can

be written as

H−|{q}〉|{r}〉 = 2LqLr

( ∑
1≤m1<...<mQ=Lq
2≤n1<...<nR≤Lr

ψ
{q}
{m}ψ

{r}
{n}|{m}Q̂〉 ⊗ |[X,Z]〉 ⊗ |{n+ Lq}〉

+
∑

1≤m1<...<mQ≤Lq−1
1=n1<...<nR≤Lr

ψ
{q}
{m}ψ

{r}
{n}|{m}〉 ⊗ |[Z,X]〉 ⊗ |{n+ Lq}1̂〉

+ {terms with q � r}

)
, (3.49)

where the terms on the right-hand side all correspond to single-trace operators.

The overlap with a dual state 〈{p}|, of length Lp = Lq + Lr and with P = Q+R
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excitations, can then be computed

〈{p}|H−|{q}〉|{r}〉

= 2LqLrN (p∗, q, r)
∑
ρ,σ,τ

1

h
{p∗ρ}
> h

{qσ}
< h

{rτ}
<

×

(
δQ 6=0(eip

∗
ρ(Q) − 1)eiLqqσ(Q)e−i(Lq+1)(p∗ρ)Q+R

Q PLq

(
{qσ − p∗ρ}

Q−1
1

)
PLr

(
rτ − {p∗ρ}

Q+R
Q+1

)
+ δQ 6=0(1− eip

∗
ρ(R+1))e−i(Lr+1)(p∗ρ)Q+R

R+1 PLq

(
{qσ}Q2 − {p∗ρ}

R+Q
R+2

)
PLr

(
rτ − {p∗ρ}R1

)
+ {terms with q � r}

)
, (3.50)

where we define the sets {tλ}ba := {tλ(a), . . . , tλ(b)} and denote products of exponentials

over such sets using the notation eiL(tλ)ba :=
∏b

i=a e
iLtλ(i) . The factors of PL(z) in (3.50)

correspond to the geometric sums of exponentials in the wavefunctions which can be

rewritten as sums over ordered partitions

PL(z) :=
∑

1≤n1<...<n|z|≤L−1

eiz·n =

|z|∑
l=0

l∏
k=1

1

e−i
∑l
j=k zj − 1

|z|∏
k=l+1

eizkL

ei
∑k
j=l+1 zj − 1

. (3.51)

Matrix elements of H+. Using these notations we can write a similar expression

for overlaps of H+ as sums over ordered partitions:

〈{r}|〈{q}|H+|{p}〉

= 2LpN+(p, q∗, r∗)
∑
ρ,σ,τ

1

h
{pρ}
< h

{q∗σ}
> h

{r∗τ}
>

×

(
δQ 6=0(eiq

∗
σ(Q) − 1)e−iLqq

∗
σ(Q)ei(Lq−1){pρ}Q+R

Q PLq−1

(
{pρ − q∗σ}

Q−1
1

)
PLr+1

(
{pρ}Q+R

Q+1 − r
∗
τ

)
+ δQ 6=0(1− eiq

∗
σ(1))ei(Lr+1)(pρ)R+Q

R+1 PLq−1

(
{pρ}R+Q

R+2 − {q
∗
σ}

Q
2

)
PLr+1

(
{pρ}R1 − r∗τ

)
+ {terms with q � r}

)
. (3.52)

The normalisation in this case is defined slightly differently with N+ = N /S, where

S is a symmetry factor that equals 2 when the states in the double trace are equal

and 1 otherwise.

Carrying out the geometric sums via (3.51) makes these formulas useful for analysing

states of arbitrary lengths. However, while these expressions are reasonably compact,

they involve sums over permutations for each of the sets of external momenta and

so they quickly become impractical as the number of excitations grows. The same

growth is known from the computation of spin-chain scalar products in the coordi-
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nate Bethe ansatz and by making use of known results in this framework we can find

further simplifications.

3.2.2 Matrix elements from spin-chain scalar products

The scalar product of two Bethe states

〈{l}|{k}〉L =
∑

1≤n1<...n|k|≤L

ψ∗
{l}
{n}ψ

{k}
{n} = N (k, l∗)

∑
ρ,σ

PL+1(kρ − l∗σ)

h
{l∗σ}
> h

{kρ}
<

(3.53)

involves double sums over permutations and so is generally complicated to evaluate.

Fortunately, there are well-known formulas for such scalar products which were devel-

oped in the algebraic Bethe ansatz approach to integrable spin chains (see Appendix

B for a brief review). In the case where both sets of momenta {k} and {l} do not

satisfy the Bethe equations (i.e. they are off-shell), the scalar product can be written

as a sum over partitions of the sets of momenta into subsets of equal cardinality [167],

cf. (B.14). Similar simplifications can be used to rewrite the expressions (3.50) and

(3.52). Each term in the formulas for the overlaps non-trivially involves one mo-

mentum of an excitation from the single-trace operator, which we label pj, and one

excitation momentum from the double-trace operator, i.e. from either {q} or {r},
which we label as qi or ri. The remaining momenta are simply contracted using a

rescaled spin-chain scalar product

({l}|{k})L :=
〈{l}|{k}〉L
N (k, l∗)

. (3.54)

We can thus write the overlaps (3.50) and (3.52) in terms of the off-shell scalar

products by splitting the single-trace excitation momenta into three subsets, {p} =

s∪ t∪{pj}, with the cardinality of s equal to that of {q}î (or {r}î) and the cardinality

of t equal to that of {r} (resp. {q}). In terms of off-shell scalar products, the overlap

of H− can then be written as a sum over all such splittings

〈{p}|H−|{q}〉|{r}〉

= 2LqLrN (p∗, q, r)
∑
i,j

s∪t={p}ĵ

eip
∗
j − 1

hqiqî

[
s
Lq+1 ∗
	 − tLr+1 ∗

�

]
(s|{q}î)Lq−1(t|{r})Lr−1

+ {terms with q � r} (3.55)
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and that of H+ as

〈{r}|〈{q}|H+|{p}〉

= 2LpN+(p, q∗, r∗)
∑
i,j

s∪t={p}ĵ

eiq
∗
i − 1

hq
∗
î
q∗i

[
s
Lq−1
j 	 − tLr+1

j �

]
({q}î|s)Lq−2({r}|t)Lr

+ {terms with q � r} . (3.56)

In addition to the scalar products of Bethe states these expressions involve factors

of the form (eip − 1), which are essentially the same as arise in the planar dilatation

operator, and ordering factors for which we introduced the notation

sLj 	 =
e−iLs

hpjthspjhst
, tLj � =

e−iLt

hpjshtpjhts
. (3.57)

These terms account for the phase acquired by the pj magnon as it is shifted around

the chain before being contracted with a magnon from the double-trace operator. For

each configuration there are two different ways to carry out this reordering and the

overlap is a superposition of both.

Spin-chain scalar products have previously appeared in the context of N = 4

sYM theory in the computation of structure constants. In the all-order hexagon

approach [20], structure constants are written as sums over partitions of the magnon

excitations and it was noted that this formulation is related to the scalar-product

formula of Korepin [167]. It is therefore convenient to use a tree-level version of the

hexagon formulation of scalar products

({l(v)}|{k(u)}) = (−1)M
M∏
j=1

(uj + i/2)(v∗j − i/2)
∑

α∪ᾱ={k}
β∪β̄={l∗}

eiL(ᾱ−β̄)G(α, β)G(β̄, ᾱ)

hαᾱhβ̄β
,

(3.58)

where

G(α(u), β(v∗)) =
det
[

i
(uj−v∗k)(uj−v∗k+i)

]∏
j,k(uj − v∗k + i)∏

j<k(uk − uj)(v∗j − v∗k)
, (3.59)

in order to rewrite the overlaps (3.55) and (3.56).

3.2.3 A hexagon-like formulation

Hexagons in structure constants. In the previous section we obtained the non-

planar dilatation operator matrix elements as sums over partitions of the rapidities,

in a way that is reminiscent of the hexagon formulation of three-point correlation

functions [20]. In that context, the partitions of the rapidities arise naturally in
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the large-volume regime where the correlation function is broken down to its simplest

building blocks, the hexagon form factors. Crucially, these form factors satisfy a set of

axioms which, together with the diagonal symmetries and some educated guesswork,

can be used to obtain an all-loop description of structure constants. A particular

feature of the hexagon is its conical defect which is associated with the existence

of three asymptotic regions and corresponds to a monodromy composed by three

crossing operations. In the context of non-planar overlaps between a single-trace and

a double-trace operator, a similar role seems to be played by the three distinct traces.

In this section we investigate the properties of the objects arising from the action of

H+ and H− and find that they satisfy some of the form factor axioms appearing in

the context of correlation functions.

The sum over determinants occurring in our rewriting of off-shell scalar products

(3.58) can be found in a straightforward way from the hexagonalisation of three-point

functions [20]. To be precise, we consider the three-point function of two unprotected

operators in the SU(2) sector, one with X excitations and the other with X̄, and one

rotated half-BPS operator. The X and X̄ fields must be Wick contracted at tree level

in order to produce a non-vanishing contribution. If there are l Wick contractions

between the excited operators, then the structure constant is

C
X̄|X
{p}|{q} ∝

∑
α∪ᾱ={p}
β∪β̄={q}

ωl(α, ᾱ)ωLq−l(β, β̄)H(α|β)H(β̄|ᾱ) , (3.60)

with the splitting factor defined as

ωl(α, ᾱ) = eiᾱl
∏

ui∈ᾱ,uj∈α
i<j

S(ui, uj) . (3.61)

The hexagon function H in this particular configuration is simply related to our

determinant expression (3.59) by

H(α|β) = hα<h
β
<G(α, β) . (3.62)

The hexagon description of three-point functions allows the evaluation of general

configurations where all three operators are excited. If we now let two of the opera-

tors have X̄ excitations, while the other is composed of X fields, then the structure

constant becomes

C
X̄|X|X̄
{p}|{q}|{r} ∝

∑
α∪ᾱ={p}
β∪β̄={q}
γ∪γ̄={r}

ωlpq(α, ᾱ)ωlqr(β, β̄)ωlpr(γ, γ̄)H(α|β|γ)H(γ̄|β̄|ᾱ) , (3.63)
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where lij denotes the number of Wick contractions between operators i and j at tree

level and the sum over partitions is further restricted by the fact that H(α|β|γ) is

non-vanishing only when the cardinality of β matches that of α ∪ γ. It is interesting

to note that while (3.63) is given as a sum over partitions of three sets of rapidities, a

naive tree-level evaluation would give rise to geometric sums naturally yielding a sum

over five partitions

C
X̄|X|X̄
{p}|{q}|{r} ∝

∑
α∪ᾱ={p}
γ∪γ̄={r}

∑
s∪t={q}
β∪β̄=s
δ∪δ̄=t

ei(ᾱ−β̄)l12ei(γ̄−δ̄)l23eisl12

hαᾱhγγ̄hδ̄δhβ̄βhts
G(α, β)G(β̄, ᾱ)G(γ, δ)G(δ̄, γ̄) .

(3.64)

The equivalence of these descriptions follows from the tree-level relation

H(α|β|γ) = hα<h
β
<h

γ
<

∑
µ∪ν=β

G(α, µ)G(ν, γ)

hµν
. (3.65)

Note that, computationally speaking, (3.63) is not necessarily a more efficient version

of (3.64) as the objects H(α|β|γ) do not have a known compact determinant descrip-

tion. Nevertheless, there is a conceptual advantage due to the fact that hexagon func-

tions can be bootstrapped: their known analytical properties allow for an integrability-

based framework to directly compute them at any coupling, thus circumventing the

perturbative evaluation of three-point functions by methods such as Feynman dia-

grams. Specifically, the hexagon functions obey the Watson equation

H(. . . | . . . , βi, βi+1, . . . | . . .) = S(βi, βi+1)H(. . . | . . . , βi+1, βi . . . | . . .) , (3.66)

which holds similarly for an exchange of excitations in the other edges, and they also

satisfy the decoupling conditions

−i Res
α|α|=β1

[
H(. . . , α|α||β1, . . . | . . .)

]
= H(. . . , α|α|−1|β2, . . . | . . .) ,

−i Res
β|β|=γ1

[
H(. . . | . . . , β|β||γ1, . . .)

]
= H(. . . , | . . . , β|β|−1|γ2, . . .) . (3.67)

Together with the diagonal symmetries of three-point functions, these form-factor

axioms allow the determination of the hexagon functions at any value of the coupling

[20].

Hexagons in non-planar overlaps. With this in mind, we can attempt a similar

rewriting of the dilatation-operator overlaps. It is useful to work with normalised

spin-chain states where we divide by the norms of on-shell Bethe states ‖{p}‖ :=√
〈{p}|{p}〉. These can be conveniently calculated using the Gaudin formula (B.16)



Chapter 3. Perturbative non-planar anomalous dimensions 81

which for the coordinate Bethe-ansatz normalisation is

‖{p(u)}‖2 = (−1)M
∏
j

(uj + i/2)(uj − i/2) det ∂uφ(u) (3.68)

with φ defined in (3.13). This can be combined with the normalisation factors of the

overlaps to define a new normalisation factor

Ñ (p(u), q(v), r(w)) =
N (p, q, r)

h
{p}
< h

{q}
< h

{r}
<

√
det ∂uφ(u) det ∂vφ(v) det ∂wφ(w)

, (3.69)

where we used the fact that solutions of the Bethe equations are invariant under

complex conjugation, e.g. {u∗} = {u} [168], and the cyclicity condition to simplify

the expressions3. The overlap with normalised external states can then be written as

V −(q, r; p)

= 2LqLr Ñ (p, q, r)
∑

α∪ᾱ={q}
β∪β̄={p}
γ∪γ̄={r}

ωLq(α, ᾱ)ωLr(β, β̄)ω0(γ, γ̄)

×
[
H(α|β|γ)

(
H−1 (γ̄|β̄|ᾱ) +H−2 (γ̄|β̄|ᾱ)

)
+
(
H−1 (α|β|γ) +H−2 (α|β|γ)

)
H(γ̄|β̄|ᾱ)

]
,

(3.70)

where H is the same as in (3.65), and we define the new functions H−i as

H−1 (α|β|γ) = hα<h
β
<h

γ
<

∑
i,j

µ∪ν=βĵ

(eiβj − 1)(e−iβj − 1)(eiαi − 1)G(αî, µ)G(ν, γ)

ei(µ+γ−αî−ν)hαiαîhµβjhβjνhµν
,

H−2 (α|β|γ) = hα<h
β
<h

γ
<

∑
i,j

µ∪ν=βĵ

(eiβj − 1)(e−iβj − 1)(e−iγi − 1)G(α, µ)G(ν, γî)

ei(µ+γî−α−ν)hγîγihµβjhβjνhµν
. (3.71)

We remind the reader that µk̂ denotes the set of rapidities µ without µk, following

the notation introduced in (3.24), while the short-hand notations for products are

defined in (3.23). This decomposition of the overlap in (3.70) seems to fit the splitting

of Figure 3.1 (ii) particularly well. By cutting the pair of pants depicted in that

figure, one would naively expect the side facing away to be represented by the original

hexagon H of (3.65), while the side facing forward should lead to a new structure

containing the action of the commutator from the dilatation operator. Similarly, the

3There is a potential ambiguity in our simplifications arising from square roots of S-matrices in
N . In principle, there exist combinations of rapidities such that products of S-matrices cross the
square-root branch cut resulting in additional minus signs in the normalisation. Nevertheless, the
same ambiguity seems to appear in the Gaudin norm and so these signs cancel. Moreover, the signs
appear symmetrically in the overlaps of H− and H+ and thus certainly cancel in the calculation of
energies.
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overlap V + can be rewritten as

V +(p; q, r)

= 2Lp Ñ+(p, q, r)
∑

α∪ᾱ={q}
β∪β̄={p}
γ∪γ̄={r}

ωLq(α, ᾱ)ωLr(β, β̄)ω0(γ, γ̄)

×
[
H+

0 (α|β|γ)
(
H+

1 (γ̄|β̄|ᾱ) +H+
2 (γ̄|β̄|ᾱ)

)
+
(
H+

1 (α|β|γ) +H+
2 (α|β|γ)

)
H+

0 (γ̄|β̄|ᾱ)
]
, (3.72)

where the normalisation is now Ñ+ = Ñ /S, with S a symmetry factor that equals

2 when the states in the double-trace are the same, and 1 otherwise, and we have

further defined the functions H+
i

H+
0 (α|β|γ) = hα<h

β
<h

γ
<

∑
µ∪ν=β

ei(α−µ)G(α, µ)G(ν, γ)

hµν
,

H+
1 (α|β|γ) = hα<h

β
<h

γ
< e

i(α+γ−β)
∑
i,j

µ∪ν=βĵ

(eiαi − 1)(e−iαi − 1)(e−iβj − 1)G(αî, µ)G(ν, γ)

ei(µ−αî)hαiαîhµβjhβjνhµν
,

H+
2 (α|β|γ) = hα<h

β
<h

γ
<

∑
i,j

µ∪ν=βĵ

(eiγi − 1)(e−iγi − 1)(eiβj − 1)G(α, µ)G(ν, γî)

ei(γî−ν)hγîγihµβjhβjνhµν
. (3.73)

Unfortunately, in this case we are not able to write any of the new objects in terms of

the original hexagon function H, since the partitions of the rapidities β into µ and ν

appear with a distinct structure. The decomposition is however very similar to that

of V −, and seems to match once again the intuition derived from Figure 3.1 (i), with

the cutting producing a product between a simpler structure with a more complex

ones. Although these formulas appear quite involved, once the rapidities are known

they can be straightforwardly evaluated by using a suitable computer program such

as Mathematica.

While the expressions (3.70) and (3.72) are a post hoc massaging of the expressions

in (3.55) and (3.56), when written in this form they clearly resemble the formulas for

structure constants. Importantly, the new objects H+
i and H−i also obey the Watson

equations (3.66) and decoupling conditions (3.67), which follows from the analogous

properties of the object H(α|β) defined in (3.62). This is non-trivial as it occurs

only for certain functions of the rapidities in the summands of (3.71) and (3.73)

and hints towards the possibility that non-planar dilatation-operator overlaps can be

written in terms of hexagon-like objects and potentially bootstrapped, even at higher

orders in perturbation theory. Alternatively, and given that the configuration of traces

corresponds to an extremal setup, it might also be natural to consider a decomposition
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Figure 3.2: Both V + and V − can be seen as a pair of pants where the asymptotic
regions correspond to the three distinct traces involved in the overlap. We have found
that each of them can be decomposed into hexagon-like objects satisfying the Watson
and decoupling conditions. By glueing them together one can reconstruct the torus,
thus finding the non-planar corrections to two-point functions.

into octagon form factors [169, 170]. One can massage the expressions in (3.70) and

(3.72) such that they are of the form

V ± ∝
∑

α∪ᾱ={p}

ωLr(α, ᾱ) O({q}|α|{r}|ᾱ) , (3.74)

and while there is no benefit in such a rewriting at tree-level, the octagon might be

better suited for a higher-loop bootstrap.

The matrix elements V ± are relevant for non-planar corrections of the one-loop

anomalous dimensions according to (3.46). This expression contains a sum over inter-

mediate double-trace operators, which has a natural representation of cutting a torus

into two pairs of pants. The fact that the overlaps themselves have a decomposition

into hexagon-like objects therefore seems to indicate a possible tessellation of the torus

as depicted in Figure 3.2. The decomposition of each pair of pants into octagons would

arise from cutting only along the seams that are adjacent to the single-trace operator,

while keeping the zero-length bridges between the components of the double-trace

operator intact.

There is an implicit notion of crossing that comes with the decoupling condition.

It is natural to imagine that, once such an operation is defined, the excitations can be

moved around, so that we relate the hexagon-like objects to a single function where all

rapidities are on the same edge. It is upon crossing of the excitations in (3.67) to the

same edge that a particle-antiparticle pair X̄(u2γ)X(u) can form in a manifest way

and decouple from the corresponding form factor. Such a formulation of H+
i and H−i

with all excitations on the same edge would also be the ideal setup for implementing

a bootstrap of those objects. Unfortunately, crossing operations do not commute

with the perturbative expansion, and since our one-loop analysis gives access only to

the more complicated form of these objects, we were not able to further explore the

possibility of such a bootstrap programme.
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3.2.4 Anomalous dimensions from overlaps

The main goal in calculating the above overlaps is to perturbatively compute the

leading non-planar correction to operator anomalous dimensions using first-order

Rayleigh–Schrödinger perturbation theory. We denote the planar energies as E(0)

and their non-planar corrections at order N−k as E(k). Given a single-trace operator

characterised by momenta {p(u)}, satisfying the Bethe equations, and by its planar

energy E(0)({p}), the non-planar correction is, cf. (3.46),

E(2)({p}) =
∑
{I}

V −(p; I)V +(I; p)

E(0)({p})− E(0)({I})
. (3.75)

The sum over I is taken over all intermediate double-trace states

|I〉 = |{q}〉Lq |{r}〉Lr (3.76)

where we must sum over all lengths 1 < Lq < Lp−1 and for each length sum also over

all solutions {q}, {r} of the Bethe equations corresponding to operators of lengths Lq

and Lr and planar energy E(0)({I}) = E(0)({q}) + E(0)({r}).

A length-six example. As a simple example let us consider the unprotected op-

erators of length six in the [2, 2, 2] SO(6) representation. There are two single-trace

operators with planar energies and rapidities given by

E
(0)
(6,2a) = 2(5 +

√
5) , u(6,2a),1 = −u(6,2a),2 =

1

2

√
1− 2√

5
,

E
(0)
(6,2b) = 2(5−

√
5) , u(6,2b),1 = −u(6,2b),2 =

1

2

√
1 +

2√
5
, (3.77)

both of which mix with the double-trace operator with

E
(0)
(4,2) = 12 , u(4,2),1 = −u(4,2),2 =

1

2
√

3
. (3.78)

The overlaps can be simply found from the general formulas (3.70) and (3.72)

V −(u(6,2a);u(4,2), ∅) =
4

3
(5 + 3

√
5) , V −(u(6,2b);u(4,2), ∅) =

4

3
(5− 3

√
5) ,

V +(u(4,2), ∅;u(6,2a)) = V +(u(4,2), ∅;u(6,2b)) = 6
√

2 . (3.79)

The resulting non-planar corrections are

E
(2)
(6,2a) = 8(5 + 2

√
5) and E

(2)
(6,2b) = 8(5− 2

√
5) . (3.80)
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These results are in agreement with those found by direct calculation [171], and also

follow from directly diagonalising the dilatation operator [13].

Solution for M = 2 and BMN limit. If there are only two magnons in a cyclic

spin chain, one can solve the Bethe equations via (3.31). Given such a complete set of

solutions, it is possible to numerically carry out the sum over intermediate states so

that one can quite efficiently compute the corrections to energies even for long states,

e.g. n = 1 for L = 100, 250, 400, which to six digits gives

E
(2)
L={100,250,400} = L2{0.758732, 0.770021, 0.772582} . (3.81)

From this and similar numerical examples it can be seen that the corrections to the

energies of long operators scale as L2/N2. This is essentially the well-known BMN

limit [172] where one considers operators with large R-charge J . The non-planar

corrections to two-magnon states in the BMN limit were computed in [6, 25], see

also [9, 173], and shown to be

∆n = L+ g′
[
16πn2 + g2

2

(
1

3
+

35

8π2n2

)]
. (3.82)

It is straightforward to check that our general expressions reproduce this result by

substituting the large-L solution for the two-magnon rapidities,

un,1 = −un,2 =
L− 1

2πn
+O(L−1) , (3.83)

into (3.70) and (3.72) and taking the large-L limit. Doing so, we must consider the

overlaps with all double-trace operators consisting of a vacuum state of length (1−r)L
and a two-magnon state with rapidities um,1 = −um,2 = rL−1

2πm
. Following [9] we then

expand in L, sum over m = 0, . . . ,∞ and approximate the sum over intermediate

lengths by an integral over r from 0 to 1. At leading order in J = L−2 this reproduces

(3.82), while at subleading order we find the same result but with J replaced with

L − 1 = J + 1 which is the natural parameter from the perspective of the Bethe

equations.

Example for a degenerate parity pair. It is naturally interesting to consider

higher numbers of excitations. For example at L = 7 with three excitations, i.e. for

states in the [3, 1, 3] representation, we have two single-trace operators with planar

dimensions E
(0)
(7,3a/b) = 10. Due to the degeneracy of the states, a naive application of

relation (3.75) will fail as it is not clear which linear combination of the Bethe states

to use as planar eigenstates. We may use the fact that the two degenerate states are

distinguished by their transformation under the parity operation (3.30) [13], which
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commutes with the complete non-planar dilatation operator. Thus the non-planar

eigenoperators must have definite parity, and consequently so do their planar limits.

The rapidities for the two L = 7 and M = 3 Bethe solutions u(7,3a) and u(7,3b) can

be easily found using the method (and Mathematica programme) of [174]. They can

be seen to transform into each other under parity, which acts on finite rapidities by

ui → −ui, while rapidities at infinity are left invariant. The two parity eigenstates

can then be formed from the corresponding Bethe eigenstates as

|±〉 = 1√
2
(|u(7,3a)〉 ± |u(7,3b)〉) . (3.84)

Having identified the proper planar linear combinations, we can proceed by comput-

ing the mixing with double-trace operators. We choose as our basis of double-trace

operators

|u(5,3)〉5 |∅〉2 , |u(5,2)〉5 |∞〉2 , |u(4,2)〉4 |∞〉3 , (3.85)

where we have labelled the Bethe states by the magnon rapidities rather than the

momenta, and u(5,3) = {1
2
,−1

2
,∞}, and u(5,2) = {1

2
,−1

2
}. The first two operators both

have positive parity and the linear combination√
2
3
|u(5,3)〉5 |∅〉2 −

√
1
3
|u(5,2)〉5 |∞〉2 (3.86)

is a non-protected operator in the [3, 1, 3] representation. The other linear combination

is a descendant of a two-excitation double-trace operator from [2, 3, 2]. The non-

vanishing overlaps following from (3.70) and (3.72) are

V −(u(7,3a);u(5,3), ∅) = V −(u(7,3b);u(5,3), ∅) = +2
√

14
3
,

V −(u(7,3a);u(5,2),∞) = V −(u(7,3b);u(5,2),∞) = −2
√

7
3
,

V +(u(5,3), ∅;u(7,3a)) = V +(u(5,3), ∅;u(7,3b)) = +40
√

2
21
,

V +(u(5,2),∞;u(7,3a)) = V +(u(5,2),∞;u(7,3b)) = −40
√

1
21
. (3.87)

The overlaps involving |u(4,2)〉4 |∞〉3 are all zero as this operator is a descendant and

thus cannot mix with the primary states |±〉. Now we apply (3.75) and find that the

non-planar corrections arise from the mixing of the positive-parity eigenstate |+〉 with

the double-trace state (3.86) (which has planar energy E(0) = 8) and are given by

E
(2)
(7,3+) = 80 , E

(2)
(7,3−) = 0 , (3.88)

in agreement with [13,175].
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Example for a degeneracy between single- and double-trace states. The

occurrence of degenerate parity pairs in the planar limit is quite general and so to use

non-degenerate perturbation theory we must work within sectors of definite parity.

Unfortunately, there are further degeneracies which are relevant to the mixing problem

between multi-trace operators, of which we have given an example for M = 2 in (3.33)

and (3.34). As another example we consider L = 8, M = 3 for which the Bethe

equations have three solutions. Two of these, whose rapidities we denote u(8,3a) and

u(8,3b), form a degenerate parity pair with energy E
(0)
(8,3a/b) = 8, while the third is a

singular solution with energy E
(0)
(8,3s) = 12. There is a positive-parity double-trace

state √
3
4
|u(5,3)〉5 |∅〉3 −

√
1
4
|u(5,2)〉5 |∞〉3 (3.89)

which is degenerate with the parity pair and which mixes with the positive-parity

single-trace state. The mixing matrix can be computed from the overlaps and is(
8 −4

√
15
N

− 32√
15N

8

)
(3.90)

from which we can compute the leading corrections to the energies E(1) = ±8
√

2. We

can now proceed to use the corresponding eigenstates to find the subleading 1/N2

corrections. As we proceed to longer lengths and more impurities, the diagonalisation

of the mixing matrix will rapidly become more difficult.

Deforming the theory. One way to remove above degeneracies and thus avoid this

problem is to deform the theory. In principle, if we can completely solve the deformed

problem, one can hope to remove the deformation parameter at the end to obtain the

undeformed result. However, as this requires resumming the 1/N -corrections before

removing the deformation, we will only make preliminary steps in this direction.

Another reason for considering the deformed theory is related to the occurrence of

singular solutions (3.27) of the Bethe equations. Already at L = 6 and M = 3 there is

a solution {u1 = i/2, u2 = −i/2, u3 = 0} for which the Bethe wavefunction is singular

and a naive application of the above formulas leads to unphysical infinities. It is

possible to regularise the Bethe equations by the introduction of a twist, see [165] for a

useful discussion and further references, and this twist is equivalent to the deformation

parameter of the β-deformed theory. We can use the solutions of the twisted Bethe

equations and the overlaps of the deformed theory to compute non-planar energies

which reproduce the undeformed results in the limit of vanishing deformation.
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3.3 Perturbation theory in the β-deformed theory

We now move on to an analogous discussion of perturbative non-planar anomalous

dimensions in β-deformed N = 4 sYM theory, which we introduced in Section 1.2 and

where due to the deformation of the coupling constant we do perturbation theory in

the deformed ’t Hooft coupling

λκ = |κ|2N . (3.91)

The β-deformation modifies the action of both the planar piece and the length-

changing pieces in the dilatation operator (2.78), but it also introduces new terms. To

identify the precise decomposition of Dβ
2 , we first use the fusion and splitting formulas

(1.34) to find the action on single-trace states

Dβ
2 Tr(XAZB) =

2

N

(
e−iβ Tr(A) Tr([X,Z]βB)− eiβ Tr([X,Z]βA) Tr(B)

)
+

2(eiβ − e−iβ)

N2

(
Tr([X,Z]β{A,B}) + Tr([X,Z]β) Tr(A) Tr(B)

)
− 4(eiβ − e−iβ)

N3
Tr([X,Z]β) Tr(AB) . (3.92)

Here the double-trace part of Dβ
2 contributes the triple-trace term at order 1/N2.

Similarly, for the action on double-trace states we find

Dβ
2 Tr(XA) Tr(ZB) =

2

N

(
e−iβ Tr([X,Z]βBA)− eiβ Tr([X,Z]βAB)

)
+

2(eiβ − e−iβ)

N2

(
Tr(A) Tr([X,Z]βB) + Tr([X,Z]βA) Tr(B)

+ Tr([X,Z]β) Tr(AB)
)

− 4(eiβ − e−iβ)

N3
Tr([X,Z]β) Tr(A) Tr(B) . (3.93)

These relations suggest that the deformed one-loop dilatation operator can be decom-

posed into planar and non-planar pieces similar to the undeformed case (3.2) with

additional subleading contributions as

Dβ
2 = H

(0)
β +

1

N
H−β +

1

N
H+
β +

1

N2
H

(2)
β +

1

N3
H

(3)
β . (3.94)

As for the undeformed case H
(0)
β leaves the number of traces in an operator unchanged,

while H±β increases/reduces the number of traces. H
(2)
β and H

(3)
β are subleading terms

which only occur in the deformed theory. H
(2)
β has a contribution which leaves the

number of traces unchanged such that we have an additional term in the leading
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anomalous dimension correction

E
(2)
β ({p}) =

∑
{I}

V −β (p; I)V +
β (I; p)

E
(0)
β ({p})− E(0)

β ({I})
+ V

(2)
β ({p}) . (3.95)

3.3.1 Matrix elements

The action of the non-planar dilatation operator on Bethe states and the correspond-

ing overlaps can be computed by essentially the same methods as for the undeformed

theory, the only difference being that there is an additional diagonal contribution H
(2)
β .

We first compute the off-diagonal pieces H±β and then move on to the new diagonal

term.

Off-diagonal overlaps. We write the overlaps of H±β using the same notation4 as

in Section 3.2. For H−β the overlaps are almost identical to (3.55) and given by

〈{p}|H−β |{q}〉|{r}〉

= 2LqLrN (p∗, q, r)
∑
i,j

s∪t={p}ĵ

eip
∗
j e2iβ − 1

hqiqî

[
e−2iβs

Lq+1 ∗
j 	 − tLr+1 ∗

j �

]
(s|{q}î)Lq−1(t|{r})Lr−1

+ {terms with q � r} . (3.96)

The function h in this formula has exactly the same form (3.20) as in the undeformed

theory when written in terms of the on-shell rapidities, and similarly for the S-matrices

which are implicit in the scalar products. The on-shell rapidities themselves however

depend on the deformation parameter through the Bethe equations.

The overlaps of H+
β now involve additional contributions whenever one of the

traces has length two and are given by

〈{r}|〈{q}|H+
β |{p}〉

= 2LpN+(p, q∗, r∗)
∑
i,j

s∪t={p}ĵ

1

hq
∗
î
q∗i

[
(eiq

∗
i e2iβ − 1)(e−2iβs

Lq−1
j 	 − tLr+1

j � )

− 4δQ,1δLq ,2 sin2 β(eiq
∗
i s
Lq−1
j 	 + tLr+1

j � )
]
({q}î|s)Lq−2({r}|t)Lr

+ {terms with q � r} . (3.97)

As in the undeformed theory, dividing by the norms of the external states we can

define the normalised overlaps V ±β .

4Note that also in the deformed case the solutions of the deformed Bethe equations are invariant
under complex conjugation which can be used to simplify the expressions.
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Diagonal overlaps. The contribution H
(2)
β in (3.94), which does not occur in

the undeformed theory, contains both length-preserving and -changing parts. Here

we are only interested in the former, since the computation of non-planar correc-

tions at O(N−2) to the anomalous dimensions requires solely the diagonal overlap

〈{p}|H(2)
β |{p}〉. Using (3.47) one finds for the action of H

(2)
β on a Bethe state (3.9)

H
(2)
β |{p}〉 = 2Lp(e

iβ − e−iβ)

Lp∑
x=2

P∑
l=1

∑
2≤n1<...<nl−1<nl=x
x<nl+1<...<nP≤Lp

ψ
{p}
{n}

×
(
|[X,Z]β〉 ⊗ |n1 + 1, ..., nl−1 + 1〉x−2 ⊗ |nl+1, ..., nP 〉Lp−x

+ |n1 − 1, ..., nl−1 − 1〉x−2 ⊗ |[X,Z]β〉 ⊗ |nl+1, ..., nP 〉Lp−x − 2δLp,2 |[X,Z]β〉
)

+ {double-trace terms} , (3.98)

where the δLp,2-term arises from the enhanced contribution of the last double-trace

term in (3.92). The diagonal overlap can then be written in terms of ordered partitions

(3.51) as

〈{p}|H(2)
β |{p}〉

= 2LpδLp 6=2 N (p∗, p)(eiβ − e−iβ)
∑
ρ,σ

eiβeip
∗
ρ(1) − e−iβ

h
{p∗ρ}
> h

{pσ}
<

×
Lp∑
x=2

P∑
l=1

(
ei(x−1)pσ(1)

l∏
k=2

Sβ
(
pσ(1), pσ(k)

)
+ 1

)
ei(x−1)(pσ)Pl+1e−i(x−2)(p∗ρ)Pl+1

× Px−1

(
{pσ − p∗ρ}l2

)
PLp−x+1

(
{pσ − p∗ρ}Pl+1

)
. (3.99)

Note that PL(z) vanishes for |z| ≥ L, cf. (3.51). In terms of scalar products of

normalised Bethe states (3.53), the overlap can be written as

〈{p}|H(2)
β |{p}〉

= 2LpδLp 6=2 N (p∗, p)(eiβ − e−iβ)

×
P∑

k,l=1
κ∪κ̄={p}k̂
λ∪λ̄={p∗}l̂

Lp∑
x=2

eiβeip
∗
l − e−iβ

hpkκ̄hκκ̄

(
e−i(x−1)κ

hκpk
+
ei(x−1)κ̄

hpkκ

)
e−i(x−2)λ̄

hp
∗
l̂
p∗l hλ̄λ

(λ|κ)x−2(λ̄|κ̄)Lp−x ,

(3.100)

where κ and λ are of the same cardinality, which must be smaller than x−1. Finally, we

can divide by the square of the norm of the external state, ‖p‖2, to define normalised

overlaps V
(2)
β ({p}) which can be then used to compute the energy corrections of single-

trace states.
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3.3.2 Anomalous dimensions

As the deformation lifts many of the degeneracies present in N = 4 sYM theory, we

can use the overlaps in the deformed theory to compute the corrections to energies

for a wide range of states via (3.95). The additional input to such a calculation are

the solutions to the deformed Bethe equations. Solving the deformed Bethe equations

is generally a non-trivial task, however for short lengths it can be done either for

specific numerical values of β, or by starting with the undeformed result and pertur-

batively solving for β � 1. The latter is particularly useful when we wish to use the

deformation as a regulator of singular solutions of the undeformed Bethe equations.

One must be careful with the order of limits as the one-loop anomalous dimensions

are functions of both β and N . We may choose to first expand in large N and then

small β, E(β � N−1), by computing the energy as in (3.95) at finite β and then

sending β to zero. Alternatively, we can expand first in small β and then large N ,

E(β � N−1), by computing the relevant overlaps at small β and then computing the

energies from the resulting expressions and (3.95). In general these two expansions

will not commute.

Singular L = 6 example. For example, let us consider the L = 6, M = 3 single-

trace operator described in the planar undeformed theory by the roots {u1 = i/2, u2 =

−i/2, u3 = 0} and planar energy E(0) = 12. This solution is singular as it has rapidities

separated by i. In the undeformed theory it has a vanishing E(2) contribution which

is due to the su(2) symmetry ensuring that there is no other operator with which

it can mix. In the deformed theory, where the mixing problem of this operator is

non-trivial, we find from direct diagonalisation that through O(N−4) (and keeping

only the leading terms in the β-expansion) we have

E(β � N−1) = (12− 72β2 +O(β4))

+
1

N2

(
− 2304

23
+O(β2)

)
+

1

N4

( 400896

12167β2
+O(β0)

)
. (3.101)

In this expression we can see that the leading non-planar term does not reduce to the

vanishing undeformed answer at O(N−2) in the β → 0 limit, and in fact the 1/N4

term is singular. There will be additional singular terms at subsequent powers in the

1/N expansion. Resumming these is necessary to recover a smooth β → 0 limit.

As the singular wavefunction in the deformed theory is perfectly regular, we can

use (3.96), (3.97) and (3.100) to compute the overlaps between states relevant for the

corresponding mixing problem, then take the β → 0 limit and use the resulting expres-

sions to perturbatively compute the undeformed non-planar correction for β � N−1.

In order to do so, we first regularise the wavefunction by solving the Bethe equations
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for the deformed rapidities to O(β6), where the first non-vanishing correction occurs5,

specifically

uβ1 − u
β
2 = i+ 24576iβ6 +O(β8) . (3.102)

The corresponding state mixes with the double-trace operator |u(4,2)〉4 |u(2,1)〉2 of pla-

nar energy

E
(0)
(4,2) = 12− 32

3
β2 +O(β4) (3.103)

with normalised overlaps

V +
β = −48

√
2β , V −β = −64

√
2β (3.104)

to leading order in the β-expansion. The deformation is particularly important when

calculating the norm of the singular state, which diverges in the β → 0 limit. However,

the overlaps themselves are smoothly vanishing in this limit and so, consistent with

the symmetries, there is no mixing in the undeformed theory. If we instead use the

overlaps (3.104) in the perturbative formula (3.75) we find a cancellation between the

powers of β in the overlaps and the energy differences. As the diagonal contribution

is of order O(β2) it gives no leading contribution, and we find

E(2)(β � N−1) = −2304

23
+O(β2) (3.105)

in agreement with the result from direct diagonalisation.

Singular L = 8 example. Let us now turn to the L = 8,M = 3 singular Bethe state

|u(8,3s)〉 with planar energy E
(0)
(8,3s) = 12. This state is not protected by symmetry in the

undeformed theory. Instead it mixes with the double-trace operator |u(6,3s)〉6 |∅〉2 made

up of the length-6 singular state and length-2 vacuum. From direct diagonalisation

one can find the corrected spectrum

E± = 12± 12

N
, (3.106)

where we see that due to the degeneracy the correction is O(N−1). Due to the singular

nature of the Bethe solution we cannot directly use the overlap formulas of N = 4

sYM theory to reproduce this result. Nevertheless, we can again compute the overlaps,

and thus mixing matrix, using the regularised singular states in the deformed theory

5For general length-L singular states, one has to find deformed rapidities to O(βL) to resolve the
singularity.
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and find that they are non-vanishing in the β → 0 limit

V +
β = 4

√
6 +O(β2) , V −β = 6

√
6 +O(β2) (3.107)

and give the correct 1/N corrections (3.106) for β � N−1.

Alternatively, in the deformed theory as the degeneracy between the two states is

lifted, with the planar energy of the single-trace state becoming E
(0)
(8,3s) = 12− 36β2 +

O(β4), we can use the same overlaps in non-degenerate perturbation theory in the

small β-limit with β � N−1 to find the 1/N2 corrections in the deformed theory. The

contribution of the overlaps between the two regularised singular states to E
(2)
(8,3s) is

+4/β2, i.e. it is singular in the limit β → 0. There are additional overlaps with other

double-trace states, however they are subleading as is the diagonal contribution which

is O(β4). Thus for β � N−1 the non-planar corrections start at order N−2 but are

singular in the β → 0 limit. This demonstrates that, in general, the two limits β → 0

and N−1 → 0 do not commute.

3.3.3 BMN limit

In the following we focus on two-excitation single-trace solutions and their non-planar

corrections in the BMN limit [172] of large R-charge, J = L−2→∞, in the deformed

theory, where the deformation parameter scales as

β = πb/L (3.108)

with b fixed. Perturbation theory can be rewritten in terms of the effective loop- and

genus-counting parameters

g′ =
|κ|2N

16π2J2
and g2 =

J2

N
, (3.109)

and thus the anomalous dimensions of two-impurity BMN operators can be written

in terms of rescaled energies Ẽ(k) = J2−2kE(k) as

∆n(g′, g2, b, J) = L+ g′
[
Ẽ(0)
n (b, J) + g2

2Ẽ
(2)
n (b, J) +O(g4

2)
]

+O((g′)2) , (3.110)

labelled by the mode number n of the planar Bethe state. We compute Ẽ
(2)
n (b, J)

through O(J−1) in the following. We start by discussing the planar Bethe states, and

then compute the leading non-planar corrections from perturbation theory via the

overlap formulas (3.96), (3.97) and (3.100).
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Figure 3.3: Planar energy levels for L = 25 and M = 2 in the deformed theory.
Although in the BMN regime we take the limit of small β, this plot already hints at
the different nature of the zero-mode solution corresponding to the lowest energy.

Planar states. The Bethe equations (3.13) in the deformed theory for two magnons

with momenta p1,2 are given by

2πn = Lp1 − i log(Sβ(p1, p2)) , (3.111)

and its solutions are parametrised by the integer-valued mode number n. With the

deformed S-matrix (3.39) being periodic in β with period π, the solutions are also

periodic and symmetric around β = π/2. As an example we plot the cyclic solutions

(p1 = −p2 mod 2πi) of (3.111) for L = 25 in Figure 3.3. All but one of the energy levels

become degenerate for β = π/4 and this point splits the spectrum into two regions

β ∈ [0, π/4) and β ∈ (π/4, π/2], where the energy levels correspond to different sets

of mode numbers {n}. In the first region, n takes integer values from the range

[0, bL/2c − 1] and solutions with positive n correspond to deformations of primary

operators in N = 4 sYM theory, while the zero mode (with lowest energy in this

interval) becomes a descendant in the undeformed theory. In the second region, n

takes values in the range [1, bL/2c], with the lowest-energy state now corresponding

to n = bL/2c.
In the BMN limit the deformation parameter scales as (3.108) and thus we ef-

fectively concentrate on a regime of small deformations with mode number n ∈
[0, bL/2c − 1]. We can solve the Bethe equations in this limit perturbatively, and
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find that the rapidity for a strictly positive mode number n+ is given by

un+ =
L

2(n+ + b)π

(
1− n+ − b

n+L
−

(n+ + b)
(
3b(n+ − b) + (n+ + b)n3

+π
2
)

3n3
+L

2
+ . . .

)
.

(3.112)

Momentum conservation requires the second excitation to have rapidity u−n+ . Mean-

while, the zero-mode solutions have a distinct expression where the expansion param-

eter now becomes the square root of the length

u±0 =
L

2bπ

(
1± i

L1/2
− 1

L
± i(b2π2 − 3)

6L3/2
− 2b2π2

3L2
+ . . .

)
. (3.113)

The planar energies in the BMN limit can then be computed through (3.38),

yielding

E(0)
n+

=
16(n2

+ + b2)π2

L2

(
1 +

2(n2
+ − b2)

(n2
+ + b2)L

+
3(3n4

+ − 2b2n2
+ − b4)− (n4 + 6b2n2

+ + b4)n2
+π

2

3(n2
+ + b2)n2

+L
2

+ . . .

)
,

E
(0)
0 =

16b2π2

L2

(
1− 1

L
− (3 + 2b2π2)

3L2
+ . . .

)
. (3.114)

Note that despite the unusual expansion of the zero-mode rapidities u±0 , the expansion

of the corresponding energy is free of any square roots of L. Finally, while at the

leading order the rapidities u±0 seem to be only a particular case n+ = 0 of u±n+ , the

expression for the norm differs already at this order by a factor of two. Labelling the

Bethe states associated to the rapidities (3.112) and (3.113) by the mode number n

as |n〉, their Gaudin norms Nn = ‖ |n〉 ‖2 can be computed and are given by

Nn+ = L2

(
1−

n2
+ + b2

n2
+L

+
2b2(n2

+ − b2)

n4
+L

2
+ . . .

)
,

N0 = 2L2

(
1 +

b2π2 − 3

3L
+

2b2π2(4b2π2 − 15)

45L2
+ . . .

)
. (3.115)

Scaling of non-planar energy corrections. Equipped with the Bethe solutions,

we can now study the non-planar corrections to the energies in the BMN limit. The

strategy is to expand the dilatation operator overlaps obtained in Section 3.3.1 and

plug them into (3.95) written explicitly as

E(2)
n =

∑
I

1

NnNI

〈n|H−β |I〉〈I|H
+
β |n〉

E
(0)
n − E(0)

I

+
1

Nn

〈n|H(2)
β |n〉 . (3.116)

We need to consider three contributions to this expression:
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1. Off-diagonal matrix elements of H±β with double-trace operators where

(a) both excitations end up on the same trace, or

(b) the excitations split over the two traces.

2. Diagonal matrix elements of H
(2)
β .

In general the two-excitation overlaps corresponding to H−β and H+
β scale at most as

L and L2, respectively. The sum over intermediate double-trace states I includes a

sum over the splitting of the lengths (L′, L − L′), which in the large-L limit can be

approximated by the Euler–MacLaurin formula

l2∑
L′=l1

f(L′) ≈ L

∫ l2/L

l1/L

drf(r) +
f(l1) + f(l2)

2
+ . . . , (3.117)

thus leading to a further factor of L. Combined with the scaling of the planar energies

(3.114) and norms (3.115), the off-diagonal contribution to the one-loop non-planar

energies E
(2)
n scales at most as L2. In contrast, the diagonal overlap grows linearly

with L, and so its normalised contribution only starts at O(1/L) and is subleading.

Combined with the associated colour factor 1/N2 of E
(2)
n , the leading contribution of

(3.116) gives a contribution at O(g′g2
2), cf. (3.109), in agreement with the expansion

(3.110) of the scaling dimension. While in principle we can compute the off-diagonal

and diagonal overlaps at any order in the BMN 1/J-expansion, the expansion of

Ẽ
(2)
n (b, J) at O(g′g2

2) eventually breaks down due to the approximation of the sum-

mation over intermediate states by an integration (3.117). More precisely, we find

that for mode numbers n > 1 the subk-leading BMN correction to the integrand with

k > 1 has simple poles at lengths L′/L = n′/n with n′ = 1, . . . , n − 1. As shown in

Figure 3.4 this failure of the BMN expansion is in fact expected and agrees with the

numerical tests performed.

Off-diagonal elements of type (a) for states with positive mode number.

We now move on to the explicit evaluation of overlaps in the BMN limit, starting with

the configuration of uneven splitting in the off-diagonal case, and first consider the

situation where the external state has positive mode number n+. The intermediate

double-trace state |I〉 has one trace with two excitations, whose length we denote

by L′ = rL, and another trace corresponding to a vacuum state. The former is

furthermore characterised by the mode number n′ of the Bethe roots. While L′ < L,

the deformation parameter for the double-trace solution can be expanded in terms

of the length L of the single-trace operator as in (3.108), so the rapidity, energy and
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(i) (ii)

Figure 3.4: Non-planar correction to the energies E
(2)
n for single-trace operators with

varying length L, L ≤ 100, computed from the dilatation-operator matrix elements
at b = 1/3 for mode number (i) n = 1 and (ii) n = 2. We observe that for n = 2 the
large-L limit is approached differently for even- and odd-length operators. However,
fitting the two curves with polynomials in 1/L we find that the mismatch in the
coefficients starts only at subsubleading order.

norm of the double-trace states are written as

u′n′(L, b) = un′(rL, rb) , E ′
(0)
n′ (L, b) = E

(0)
n′ (rL, rb) , N ′n′(L, b) = Nn′(rL, rb) .

(3.118)

In the case where the mode number of the intermediate double-trace state is a positive

integer n′+, the overlaps in the BMN limit become

H−n+n′+
= −

32(1− r)r3n2
+ sin2(πrn+)L2

n′2+ − r2n2
+

(
1− 2

(1− r)n2
+n
′2
+ + r(n′2+ − rn2

+)b2

rn2
+(n′2+ − r2n2

+)L

− π cot(πrn+)
(1− 2r)n2

+ − (3− 2r)b2

n+L
+ . . .

)
,

H+
n′+n+

=
32n′2+ sin2(πrn+)L

n′2+ − r2n2
+

(
1− 2r

(1− r)n2
+n
′2
+ + r(n′2+ − rn2

+)b2

n′2+(n′2+ − r2n2
+)L

− π cot(πrn+)
(3− 2r)n2

+ − (1− 2r)b2

n+L
+ . . .

)
. (3.119)

On the other hand, if the intermediate double-trace operator consists of a zero-mode

solution, then the H+
β overlap is suppressed by a factor of L and we have

H−n+0 = 32(1− r)r sin2(πrn+)L2 + . . . ,

H+
0n+

=
32b2 sin2(πrn+)

rn2
+

+ . . . . (3.120)
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The contribution to the non-planar energies is the combination of those two cases,

which leads to

E
(2)
n+(a) = L

∫ (L−2)/L

2/L

dr

 H−n+0H
+
0n+

Nn+N
′
0

(
E

(0)
n+ − E

′(0)
0

) +
∞∑

n′+=1

H−n+n′+
H+
n′+n+

Nn+N
′
n′+

(
E

(0)
n+ − E

′(0)

n′+

)


=

(
1

3
+

35

8π2n2

)
L2

(
1− 2n2 − 4b2

n2L
+ . . .

)
. (3.121)

Note that in this particular case the subleading correction of the Euler-McLaurin

formula is vanishing and only the leading integral expression of (3.117) contributes.

Furthermore, the contribution of the intermediate zero mode is crucial for the sim-

plicity of this formula, which would otherwise be plagued by more complex functions

such as
∫ z

0
dt sin(t)/t.

As explained above, the integral approximation at the subsubleading order is not

well defined for n+ > 1, which is manifested here by the presence of poles in the

integrand. However, the expression for n = 1 appears to be well defined at any order,

thus allowing us to obtain

E
(2)
1(a) =

(
1

3
+

35

8π2

)
L2 +

(105 + 8π2)(2b2 − 1)

12π2
L

+
1

24π2

(
105(1− 12b2 + 15b4)− (1 + 144b2 − 9b4)π2

−8(3 + 4b2 + b4)π4 − 288(1 + b2)2π2ζ3

)
. (3.122)

Off-diagonal elements of type (a) for states with vanishing mode number.

We now move on to the case where the external state is a zero mode for the uneven

splitting case (a). If the intermediate operator is a zero mode as well, then each of

the overlaps is suppressed by a power of L and given by

H−00 = 32π2(1− r)(2− r)r2b2L

×
(

1− 6(2− r + r2)− π2r(2− r)(3− r(3− 2r))

6r(2− r)L
+ . . .

)
,

H+
00 = 32π2rb2

(
1− 12− π2r(3− r(3− 2r))

6rL
+ . . .

)
. (3.123)

Notice that in this case the difference of planar energies E
(0)
0 −E ′

(0)
0 vanishes at leading

order, therefore enhancing the contribution of the intermediate zero-mode to E
(2)
0 by

a factor of L. In principle, we also need the off-diagonal overlaps with positive-

mode states, H−0n′+
and H+

n′+0, but each of them starts contributing at O(L0) and the

difference E
(0)
0 −E ′

(0)

n′+
is once again O(L2) and so we can safely ignore the contribution

of these modes at the order we wish to consider. The non-planar correction to the
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energy of the zero-mode solution is then given by

E
(2)
0(a) = L

∫ (L−2)/L

2/L

dr

 H−00H
+
00

N0N ′0

(
E

(0)
0 − E ′0

(0)
)
+ 8π2b2

=
20π2b2L

3

(
1 +

2π2b2 − 225

25L
+ . . .

)
, (3.124)

where the second term of the first line corresponds to the subleading correction in the

Euler–MacLaurin formula (3.117).

Off-diagonal elements of type (b) for states with positive mode number.

In order to study the second splitting configuration (b), where H+
β leads to double-

trace operators with an excitation in each of the traces, we need to consider the single-

excitation solution in more detail. The perturbative solution of the one-magnon Bethe

equations for the rapidity is

u(1) =
L

2bπ

(
1− b2π2

3L2
+ . . .

)
. (3.125)

Note that this expression only depends on the length L of the external single-trace

operator via its relation with the scaled deformation parameter (3.108), but is inde-

pendent of the length of the state it characterises. The corresponding energy of this

state is

E
(0)
(1) =

8b2π2

L2

(
1− b2π2

3L2
+ . . .

)
, (3.126)

and the norm is given by the length of the operator. Importantly, the single-excitation

solution of length 2, Tr(ZX), is an exception to this formula and is protected due to

the contribution of the double-trace term to the planar dilatation operator.

The resulting overlaps for an external non-zero mode single-trace operator are

H−n+
= −32r(1− r) sin2(πrn+)L2 + . . . ,

H+
n+

=
16π2b2

L

(
cos(2πrn+)− b2

n2
+

)
+ . . . , (3.127)

which will only contribute at subsubleading order as H+
n is suppressed by two powers

of L. Thus it suffices to consider the leading integral approximation which gives

E
(2)
n+(b) =

L

2

∫ 1

0

dr
H−nH

+
n

Nn+(rL)((1− r)L)(E
(0)
n+ − 2E

(0)
(1))

=
4b2

n4
+

(
n2

+ + 2b2
)

+ . . . . (3.128)
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Off-diagonal elements of type (b) for states with vanishing mode number.

Meanwhile, for an external zero mode, the overlaps are

H−0 = 16π2b2(1− r)rL

×
(

1− 2r(1− r)− 12r(1− r)− (1− 6r(1− r) + 4r2(1− r)2)b2π2

6L
+ . . .

)
,

H+
0 = 16π2b2

(
1 +

π2b2

6L
+ . . .

)
, (3.129)

which are both suppressed by one power in L. We now wish to perform the sum

over intermediate states as in equation (3.116). The difference of planar energies

E
(0)
0 −2E

(0)
(1) vanishes at leading order, cf. (3.114) and (3.126), and so the resulting non-

planar energy correction from these overlaps is O(L1). However this reasoning does

not apply when one of the traces has length 2, in which case the difference of planar

energies has a non-vanishing leading-order contribution. This term separates out of

the Euler–MacLaurin approximation (3.117) and is thus subsubleading. Therefore the

non-planar correction to the energy in this configuration becomes

E
(2)
0(b) =

L

2

∫ (L−3)/L

3/L

dr
H−0 H

+
0

N0(rL)((1− r)L)
(
E

(0)
0 − 2E

(0)
(1)

) − 4π2b2

= −8π2b2L

3

(
1− 120 + 7π2b2

15L
+ . . .

)
, (3.130)

where, as before, the second term of the first line corresponds to a non-vanishing

subleading contribution in the Euler-McLaurin approximation.

Final results in deformed and undeformed theory. As discussed above, the

diagonal contributions in (3.116) are O(L−1) and thus do not contribute to the per-

turbative orders we consider. Therefore, the non-planar corrections to the energy of

two-excitation single-trace operators is, at O(L0) in the BMN limit, given by the sum

of the off-diagonal uneven splittings, (3.121) and (3.124), and symmetric splittings,

(3.128) and (3.130)

E(2)
n+

= E
(2)
n+(a) + E

(2)
n+(b) ,

E
(2)
0 = E

(2)
0(a) + E

(2)
0(b) . (3.131)
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Then the scaling dimensions of two-excitation states in the BMN limit of large R-

charge J = L− 2 can be written as

∆n+ = L+ g′

[
16π2(n2

+ + b2)

(
1−

2(n2
+ + 3b2)

(n2
+ + b2)J

+O(J−2)

)

+ g2
2

(
1

3
+

35

8π2n2
+

)(
1 +

2(n2
+ + 2b2)

n2
+J

+O(J−2)

)
+O(g4

2)

]
+O((g′)2) , (3.132)

for the non-zero modes, while for the zero mode we find

∆0 = L+ g′

[
16π2b2

(
1− 5

J
+

51− 2π2b2

3J2
+O(J−3)

)

+ 4π2b2g2
2

(
1

J
+

4π2b2 − 69

9J2
+O(J−3)

)
+O(g4

2)

]
+O((g′)2) . (3.133)

Taking the b → 0 limit of the expressions above yields the non-planar corrections to

the two-excitation energies of N = 4 sYM theory. In this limit both E
(2)
n+(b) and E

(2)
0(b)

vanish, which is expected as single-excitation solutions correspond to descendants in

the undeformed theory and thus they are not expected to contribute to the non-planar

energies. In fact, all loop- and non-planar corrections in ∆0 to the classical scaling

dimension L vanish for b→ 0, where the zero-mode operator becomes a descendant of

a chiral primary. For positive mode numbers n+ the corrections in (3.132) reproduce

the results of [6] at leading order.





Chapter 4

Statistical properties of sYM

theory spectra

While we have analytic control over the spectrum of scaling dimensions in the planar

limit of N = 4 sYM theory due to integrability, at finite N there are only partial

results, e.g. from perturbation theory as discussed in the previous chapter. Exact

results can, in most cases, only be found for short operators by directly diagonalising

the corresponding mixing problem. For a given integer rank N of the gauge group,

such a direct diagonalisation gives access to numerical spectra of the theory which can

be analysed by statistical means. Studying generic features of numerical spectra gives

insight into the underlying theory where an analytical description is not yet achieved.

Such a statistical analysis of spectra was first performed by Wigner to describe the

spectra of large atomic nuclei, and, as they resemble spectra of random matrices, this

in turn initiated the development of random matrix theory. In Section 4.1 we briefly

review random matrix theory, its connection to quantum chaos, and the statistical

analysis of numerical spectra. In Section 4.2 we then study spectra of both deformed

and undeformed N = 4 sYM theory and show that in the planar limit the spectral

distribution is Poisson, consistent with integrability, while at finite N the distribution

corresponds to that of random matrix theory.

4.1 Random matrix theory and quantum chaos

4.1.1 Review of random matrix theory

Random matrix theory for heavy nuclei. After being introduced by Wishart

[176] in 1928, the study of random matrices gained impetus in the early 50’s with

Wigner’s realisation that random matrix theory (RMT) can be used to describe sta-

tistical properties of spectra of large atomic nuclei [33]. With large nuclei being

complex strongly-interacting many-body systems, analytical control over their spec-

103
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(i) (ii) (iii)

Figure 4.1: Examples of energy spectra corresponding to the (i) uniform, (ii) GOE
and (iii) uncorrelated case, normalised to the same mean level spacing.

tra was and remains a seemingly impossible endeavour. Instead of aiming at a detailed

understanding of the exact location of nuclear energy levels, Wigner concentrated his

analysis on their overall statistical features and realised that certain properties of

experimental nuclear spectra can be modelled by RMT. This initiated the develop-

ment of RMT, in particular by Wigner [33,177–179], Dyson and Mehta [180–186] and

others1, and remains an important field of research with a broad range of applications.

One advantage of the method of spectral statistics is that it allows for the study

of the general properties of a system, while avoiding the exact analytic solution of

the spectral problem. As outlined by Dyson [180] the idea instead is “to renounce

exact knowledge [..] of the nature of the system itself” and “picture a complex nu-

cleus as a black box in which a large number of particles are interacting according to

unknown laws”. Then the route to obtaining an understanding of the physics of the

corresponding model is to find the ensemble of random matrices that contains the

unknown Hamiltonian, and study the general properties of spectra in this ensemble.

According to the ergodic principle, the average spectral properties of this ensemble

(ensemble average) are the same as those of a single spectrum of a member in this

ensemble (spectral average). If the system’s Hamiltonian is a generic member of the

ensemble, it will share these statistical features. For the case of heavy nuclei, and

many more physical systems, the ensemble which gives a remarkably good description

of the spectra is known as the Gaussian orthogonal ensemble (GOE). Figure (4.1) con-

tains an example of a GOE spectrum in the middle, which is contrasted by a uniform

spectrum on the left and a spectrum with uncorrelated energy levels on the right. In

the following we will review the Gaussian orthogonal ensemble before discussing the

1See [187] for a collection of important publications in this field before 1965.
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relevance of these spectra in the context of quantum chaos and integrability.

Gaussian ensembles. A general random matrix H is a square matrix whose en-

tries Hij are chosen randomly from a given probability distribution P [{Hij}]. Its

eigenvalues {Ei} are thus also random and the central problem in RMT is to relate

the choice of distribution P [{Hij}] to the resulting distribution of eigenvalues P [{Ei}]
and its statistical properties. An important role in the development of RMT and its

application to physical systems is played by the Gaussian ensembles and in particular

the Gaussian orthogonal ensemble.

A general matrixH in the GOE is a real symmetric n×nmatrix whose independent

entries Hij = Hji, i ≤ j, are randomly chosen from a Gaussian distribution, with the

joint probability distribution of the entries being

PGOE[{Hij}] = N exp

(
−
∑

iH
2
ii + 2

∑
i<j H

2
ij

(2σ)2

)
(4.1)

with constants N and σ. Note that PGOE factorises into Gaussian distributions for

each entry of H which can thus be sampled independently. This property makes the

GOE easy to study numerically as members of the ensemble can be generated rather

simply via appropriate computer software. A further property of the distribution

(4.1) is that it is invariant under orthogonal transformations R, with R−1 = RT ,

acting as H → RTHR. This can easily be seen from rearranging the exponent of

PGOE as
∑

iH
2
ii+2

∑
i<j H

2
ij =

∑
i,j H

2
ij = Tr(H2). This symmetry property simplifies

the analytical treatment of the GOE and indeed it is among those ensembles for

which P [{Ei}] can be found exactly. What makes the GOE exceptional in RMT

is that it is the only ensemble which combines these two properties of independent

entries and invariance under orthogonal transformations as was shown by Porter and

Rosenzweig [188]. This makes it an ideal starting point for studying more generic

ensembles. Of particular interest are orthogonal matrix models P ∼ exp[−Tr(V (H))]

which, for general potentials V (H), are harder to study numerically due to highly

correlated matrix entries Hij.

The Gaussian orthogonal ensemble is also a representative of the larger class of

classical Gaussian ensembles [180] whose probability distributions for matrix entries

Hij all factorise and which are classified according to the symmetry group of R leaving

P [{Hij}] invariant as H → R−1HR. They are

� the Gaussian orthogonal ensemble (GOE):

ensemble of real symmetric random matrices with R ∈ O(n),

� the Gaussian unitary ensemble (GUE):

ensemble of complex hermitian random matrices with R ∈ U(n), and
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ensemble βD Hamiltonian symmetry physical system

GOE 1 real symmetric O(n) 1) time-reversal invariant & even spin
2) time-reversal invariant & odd spin

& rotational invariant

GUE 2 complex hermitian U(n) not time-reversal invariant

GSE 4 quaternionic Sp(n) time-reversal invariant & odd spin
& not rotational invariant

Table 4.1: Classical Gaussian ensembles.

� the Gaussian symplectic ensemble (GSE):

ensemble of complex quaternionic random matrices with R ∈ Sp(n).

The symmetry properties of the ensembles correspond directly to physical properties

of the systems they model: e.g. a Hamiltonian of a system with both time-reversal

and rotational invariance can be chosen real symmetric in a suitable basis and is thus

a member of the GOE. In contrast, if there is no rotational invariance and the system

has half-integer spin, then the appropriate ensemble is GSE, and for a system with

no time-reversal invariance it is GUE, cf. Table 4.1. The GOE, GUE and GSE are

also known as the “classical” Gaussian ensembles and were supplemented by further

“non-canonical” ensembles in [189].

The probability distribution function of the spectrum of eigenvalues of matrices

in the three Gaussian ensembles can be computed from P [{Hij}] and jointly written

as [180,188]

PβD(E1, ..., En) = N exp

(
−βD

2

n∑
j=1

E2
j

)∏
j<k

|Ej − Ek|βD (4.2)

with normalisation constant N and the Dyson index βD taking different values for

the different ensembles according to Table 4.1. This function (4.2) is the starting

point for computing ensemble expectations for spectral observables which can then

be compared with numerical spectra. We discuss spectral observables in Section 4.1.2,

but firstly we review the occurrence of RMT in the context of quantum chaos.

BGS and Berry–Tabor conjecture. Since Wigner’s realisation that RMT can

be used to describe spectra of complex many-body systems like those of large nu-

clei, more applications both in physics and mathematics were found. For instance,

in mathematics an interest in RMT arose from the realisation [190,191] that the dis-

tribution of zeroes of the Riemann zeta function resemble the spectrum of a certain

ensemble of random matrices. In physics RMT has become more popular due to its

relation with quantum chaos [35].
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In classical mechanics, the definition of chaos usually relies on a trajectory X(t)

describing the time evolution of a system and its dependence on the initial conditions.

If for a small change in the initial conditions the difference between the original X1(t)

and the new path X2(t) differs exponentially in time, i.e.

|X1(t)−X2(t)| ∼ eλLt (4.3)

with so-called Lyapunov exponent λL > 0, the system is called classically chaotic. In

contrast, for regular systems trajectories only separate linearly in time.

While chaos in most classical-mechanics systems is well-defined in terms of the

Lyapunov exponent, the notion of chaos in quantum systems is less understood. Here

the concept of a trajectory usually has no quantum analogue and thus a quantum ver-

sion of the Lyapunov exponent – the out-of-time-order correlator (OTOC) – was only

recently introduced [192]. A more traditional description of quantum chaos is based

on the statistical features of a system’s spectrum. This is connected with the obser-

vation that the transition to chaos in classical systems is usually accompanied by the

development of level repulsion in the spectra of the corresponding quantum models,

i.e. levels are correlated and avoid each other. In contrast, regular systems often have

spectra with no level repulsion and so the levels are independent, see e.g. [193–195].

Figure 4.1 contains examples of spectra with different strengths of level repulsion:

The uniform spectrum (i) and uncorrelated spectrum (iii) have maximal and zero

level repulsion, respectively, while level repulsion in a GOE spectrum is intermedi-

ate. In addition to these observations, it was realised that the spectra of a number

of quantum models with classically-chaotic limits are well-described by RMT, in a

similar fashion to complex many-body systems like heavy nuclei. These developments

culminated in the Bohigas–Giannoni–Schmidt (BGS) conjecture [35] that all spectra

of quantum-chaotic systems with known chaos in the classical case are described by

RMT, specifically the GOE for time-reversal invariant systems according to Table

4.1. Over the years, in lieu of a good definition of quantum chaos, this statement

was reversed and the appearance of RMT features in spectra was, and is continued

to be, used as a sign, or even definition, of quantum chaos. The complementary

Berry–Tabor conjecture [36] relates integrable systems to the occurrence of uncorre-

lated energy levels in a system’s spectrum. There are a number of successful attempts

for proving these conjectures for specific models, e.g. in [36], but their scope is lim-

ited. Thus the connection between the statistical properties of spectra and quantum

integrability/chaos of the underlying model remains conjectural. Nevertheless, they

have been verified for a large number of cases like many integrable models such as the

Heisenberg spin chain, the t-J model and the Hubbard model [196], as well as chaotic

models such as quantum Sinai’s billiard [35] or the Heisenberg chain with a random

magnetic field [197].
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Despite these successes, there are also a few exceptions to these conjectures, e.g. the

Haldane–Shastry integrable spin chain whose spectrum is neither of the uncorrelated

type, nor can it be described by one of the Gaussian ensembles [198]. Another example

is the harmonic oscillator where the level repulsion is maximal and the levels are

uniformly spaced as depicted in Figure 4.1 (i). Furthermore, in families of integrable

models connected by continuous parameters, one can find non-integrable statistics at

finely-tuned values of these parameters, e.g. in Richardson-Gaudin models [199] or

the XXZ spin chain [200]. However in that case even small changes in the parameters

result in a restoration of the integrable distribution.

To sum up, an understanding of the statistical features of a spectrum can give

insights into the symmetry properties of the underlying system. In particular, uncor-

related levels in a spectrum are a sign of integrability, while the occurrence of level

repulsion points towards quantum chaos. Moreover, since RMT relates the distribu-

tion of levels to invariances of the system as summarised in Table 4.1, identifying

the RMT ensemble best describing a spectrum unveils a system’s spacetime symme-

tries. In the following section we will move on to discussing observables that can be

computed to obtain a better understanding of the statistical properties of a spectrum.

4.1.2 Level statistics observables

Degeneracies. When exploring a given numerical spectrum, one of the first prop-

erties one might identify is whether or not there are degeneracies. It was already

noted in the early days of quantum mechanics by von Neumann and Wigner [201]

that, given a generic theory depending on a number of parameters, it is necessary to

tune at least two parameters to cause energy levels to cross and produce a degeneracy.

Subsequently it was shown by Teller [202] that surfaces E = E(β1, β2) representing

energy levels depending on two such parameters β1, β2 are connected at points like

the two sheets of a degenerate cone. The situation is quite different for systems with

additional symmetries where degeneracies can occur between eigenstates with differ-

ent quantum numbers with respect to these symmetries. Since these symmetries are

often well-known, one desymmetrises a spectrum by separating it into sectors where

eigenstates have the same quantum numbers before doing an analysis of its statistical

features. Doing so, the symmetry-induced degeneracies do not overlay the correlations

that can reveal the quantum chaos or integrability of the underlying model.

Global and local properties of spectra. To understand correlations in spectra

we first introduce a quantity ρ(E) that measures the level density at position E in
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the spectrum and is defined as

ρ(E) =
1

n

n∑
i=1

δ(E − Ei) (4.4)

for an ordered spectrum E1 ≤ E2 ≤ ... ≤ En. It is normalised to
∫
dE ρ(E) = 1.

Figure 4.2 (i) depicts the spectral density for a 2000 × 2000 real symmetric random

matrix. Up to statistical fluctuations it follows Wigner’s semi-circle law [179] which

says that the limiting eigenvalue distribution ρ̄(E) of Gaussian ensembles for n→∞
is a semicircle

ρ̄(E) =
2

πr2

√
r2 − E2 . (4.5)

However, this distribution of energy levels is uncommon for a physical system like for

example a heavy nucleus. In fact, RMT does not describe the global properties of

physical spectra which are theory-dependent and, for example, in a nuclear context

differ for different nuclei. Similarly, the anomalous-dimension spectra in sYM theories,

which we will discuss in detail in Section 4.2, do not follow the semi-circle law as

illustrated in Figure 4.2 (ii) and (iii) which show the level density of a non-planar and

planar spectrum, respectively, in the β-deformed theory. Instead, it is the fluctuations

around the smoothed density which can be compared between different systems and

which show universal features according to the BGS and Berry–Tabor conjecture.

In order to separate global and local properties of a spectrum we first introduce

the integrated spectral density I(E) as

I(E) = n

∫ E

−∞
ρ(e)de ≡

n∑
i=1

Θ(E − Ei) . (4.6)

It increases by one at the position of each level Ei and is thus also called the staircase

function. Assuming that fluctuation properties of the spectrum do not depend on the

region in the spectrum, we can separate global from local properties by decomposing

I(E) into an average and fluctuation part

I(E) = Iav(E) + Ifl(E) . (4.7)

Next we map the original spectrum {Ei} to a so-called unfolded spectrum {εi} via

εi = Iav(Ei) . (4.8)
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(i)

(ii) (iii)

Figure 4.2: Spectral densities for (i) a real symmetric random matrix and Wigner’s
semicircle law, (ii) a non-planar and (iii) planar spectrum in the β-deformed theory.

These new variables capture the fluctuations of the original spectrum

εi+1 − εi '
Ei+1 − Ei

Di

, (4.9)

with local spacing Di = (dIav(Ei)/dE)−1 = (nρav(Ei))
−1, but have a constant mean

level spacing over the whole spectrum

〈εi+1 − εi〉 = 1 . (4.10)

In the following we will concentrate on the statistical properties of this unfolded

spectrum with unfolded level density ρ̂(ε) and staircase function Î(ε) defined as in

(4.4) and (4.6) but for the unfolded spectrum. Details of the unfolding procedure used

for the anomalous dimension spectra are discussed in Appendix C.

Edges of spectra. RMT also makes predictions for the distribution of the largest

and smallest eigenvalues of spectra in a given ensemble, the so-called Tracy–Widom

distribution [203]. However, in a physical system the eigenstates with lowest and

highest energies are usually more constrained than the states in the bulk of the spec-

trum, even when the system is chaotic. Therefore, in general they do not follow the
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RMT prediction, but are more regular [204, 205]. We will observe this behaviour in

the information entropy of anomalous dimension eigenstates in Section 4.2.4. In the

meantime we focus on statistical properties in the bulk of spectra and discuss the

clipping of low- and high-energy states for anomalous dimension spectra in Appendix

C.

Nearest-neighbour spacing statistics. The main sign of the presence of chaos

in a given spectrum is level repulsion. This phenomenon can be studied by looking at

the distribution P (s) of spacings

si = εi+1 − εi (4.11)

between consecutive levels in the desymmetrised and unfolded spectrum. P (s)ds

gives the probability for a nearest-neighbour spacing laying in the interval [s, s +

ds]. For integrable systems it is generally the case that P (s) → 1 as s → 0 which

reflects the presence of hidden symmetries in these models. They make eigenstates

decouple and thus their energy levels become uncorrelated in line with the Berry–

Tabor conjecture. Based on this independence of energy levels one can compute the

corresponding nearest-neighbour spacing (NNS) distribution P (s) as follows [206]:

Given an energy level at position ε, the probability for finding the adjacent level at a

spacing [s, s + ds] is the product of the probability of finding no level in the interval

(ε, ε + s) and one level in [ε + s, ε + s + ds]. The latter is just given by the interval

length ds for an unfolded spectrum with mean level spacing 1. The former can be

computed by first partitioning the interval (ε, ε+ s) into m equal segments[
ε+ k

s

m
, ε+ (k + 1)

s

m

]
, k = 0...m− 1 . (4.12)

The probability for having no level in one of these segments is (1− s/m) and thus the

probability for having no level in (ε, ε+ s) is given by

lim
m→∞

(
1− s

m

)m
= exp(−s) . (4.13)

Putting everything together, the probability for finding two adjacent levels at a dis-

tance s is

P (s)ds = e−sds (4.14)

and thus we find that the NNS distribution in the integrable case is given by the

Poisson distribution

P (s) = e−s (integrable case) . (4.15)
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That this distribution is a good description of integrable systems has been numerically

shown in a range of models including many-body systems such as the Heisenberg spin

chain, the t-J model at its integrable supersymmetric point, and the Hubbard model

[196, 207]. There are significantly fewer analytical results, however one important

result by Berry and Tabor [36] showed, on the basis of the existence of action-angle

variables, that for a generic integrable semi-classical system the distribution of energy

levels is indeed Poisson.

For a chaotic quantum system energy levels are correlated and so avoid each other,

i.e. P (s) → 0 as s → 0. The exact NNS distributions follow from (4.2), however

for most practical purposes they can be approximated by the n = 2 distributions

(“Wigner’s surmise”). Then P (s) follows from

P (s) =

∫
dE1 dE2 P(E1, E2)δ(s− |E1 − E2|) (4.16)

via simple integrations and, upon normalisation, one finds the distributions [187,206]

P (s) =
π

2
s exp

(
−π

4
s2
)

(GOE) ,

P (s) =
32

π2
s2 exp

(
− 4

π
s2

)
(GUE) ,

P (s) =
218

36π3
s4 exp

(
− 64

9π
s2

)
(GSE) . (4.17)

For small separations this implies P (s) ∼ sβD and thus the Dyson index βD charac-

terises the strength of the level repulsion in Gaussian ensembles, with GOE having

the smallest and GSE having the strongest repulsion. Figure 4.3 shows the differ-

ent NNS distributions for the Gaussian ensembles, as well as for the uncorrelated

case and the uniform case, the latter having P (s) = δ(s − 1). In addition to a wide

range of numerical evidence, there are also a small number of analytical results sup-

porting the RMT predictions for physical models. In [208] the authors show that in

chaotic semi-classical systems the NNS distribution can be approximated by (4.17).

They also find an interpolating function P (s) for semi-classical systems with both

integrable and chaotic regions in phase space which interpolates between the Pois-

son distribution and Wigner’s surmise. An alternative interpolation is given by the

Brody-distribution [209]

P (s) = Γ

(
ω + 2

ω + 1

)1+ω

(1 + ω)sω exp

(
−Γ

(
ω + 2

ω + 1

)1+ω

s1+ω

)
, (4.18)

which for ω → 0 gives the Poisson distribution (4.15), while for ω → 1 one finds the

GOE prediction in (4.17).
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Figure 4.3: Nearest-neighbour spacing distribution P (s) for the uncorrelated and
uniform case, as well as the three classical Gaussian ensembles.

Spectral rigidity. While the NNS distribution is useful for probing short-range

correlations in a spectrum, there are other observables measuring its long-distance

properties, one of which is the spectral rigidity. In general a spectrum is said to

be rigid when levels are regularly spaced, i.e. the uniform spectrum has maximum

rigidity, while the Poisson spectrum is not rigid at all. This feature of spectra is,

similarly to the NNS distribution, intertwined with the occurrence of level repulsion

which makes spectra more regular and thus more rigid.

A measure for the rigidity of a spectrum is given by the Dyson–Mehta statistic ∆3

introduced in [183]2. It is defined as

∆3(l) =
1

l
〈min
A,B

∫ ε0+l

ε0

dε(Î(ε)− Aε−B)2〉 , (4.19)

where the expression inside the angle brackets computes the least-square deviation

of the unfolded staircase function Î(ε) from the best straight line Aε + B fitting

it in the interval [ε0, ε0 + l]. The bracket 〈..〉 denotes an average over values of ε0

taken from a discretisation of the interval [ε1, εm − l]. Increasing the interval length

l increases the number of probed energy levels and thus this measure probes long-

distance correlations. In an unfolded spectrum {εi} the mean level spacing is 1 and

this makes the statistic ∆3(l) only meaningful for sufficiently large interval lengths

l & 1.

Figure 4.4 shows the Dyson–Mehta statistic as a function of the interval length l

2The index on this quantity was introduced to distinguish three different measures for the rigidity
proposed in this paper. ∆3 was established as the most useful statistic and has since been used as
the most common measure for rigidity. In this work we carry over this established convention. In
this chapter all spectra of scaling dimensions {∆i} are denoted by {Ei}, or {εi} for the unfolded
case, to minimise confusion.
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Figure 4.4: Dyson–Mehta statistic ∆3(l) for the uncorrelated and uniform case, as
well as the three classical Gaussian ensembles.

for an uncorrelated and uniform spectrum, as well as for the three Gaussian ensembles.

For uncorrelated fluctuations ∆3 grows linearly in l, specifically

∆3(l) =
l

15
(uncorrelated spectrum) , (4.20)

while for the uniform case it approaches a constant value for sufficiently large interval

lengths l,

∆3(l) ' 1

12
(uniform spectrum) . (4.21)

For more general spectra the Dyson–Mehta statistic, and thus the spectral rigidity,

lies between these two extremal cases. For the Gaussian ensembles the expectation

for ∆3(l) is shown in Figure 4.4. For small interval lengths l < 1 they follow the

uncorrelated behaviour (4.20), but for large l one finds the slower growth [206]

∆3(l) =
1

π2

(
ln(2πl) + γE −

5

4
− π2

8

)
+O(l−1) (GOE) ,

∆3(l) =
1

2π2

(
ln(2πl) + γE −

5

4

)
+O(l−1) (GUE) ,

∆3(l) =
1

4π2

(
ln(2πl) + γE −

5

4
+
π2

8

)
+O(l−1) (GSE) . (4.22)

The Dyson–Mehta statistic thus quantifies the increasing level repulsion which results

in an increasing rigidity when going from GOE to GUE and GSE.

The Dyson–Mehta statistic is widely used as a measure for long-range correlations

in spectra, see e.g. [183] for its application to atomic nuclei spectra, or [210] where it

was used in the study of the XXZ spin chain. In [211] the expected behaviour (4.20)
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and (4.22) was shown for integrable and chaotic semi-classical theories, respectively,

up to some non-universal length lmax which grows with the number of degrees of

freedom in the system.

For an efficient evaluation of the expression (4.19) over a large spectrum, it is

useful to parametrise the levels

ε0 + lzi (4.23)

by the real numbers {zi} with 0 < z1 < ... < zk < 1, so that (4.19) simplifies to

∆3(l) = 〈6s1s2 − 4s2
1 − 3s2 + s3〉 (4.24)

with [212]

s1 =
k∑
i=1

zi , s2 =
k∑
i=1

z2
i , s3 =

k∑
i=1

(2k − 2i+ 1)zi . (4.25)

Other spectral observables. The Dyson–Mehta statistic is related to other sta-

tistical measures like the number variance and spectral form factor. These relations

can be made manifest by realising that all of these measures are essentially prob-

ing two-level correlations in the spectrum. The general k-level correlation function

Rk(E1, E2, ..., Ek) is the probability density for finding k energy levels at positions

E1, E2, ..., Ek, irrespective of the positions of the remaining levels. Thus we obtain it

by integrating out n− k levels from the energy distribution function P({Ei})

Rk(E1, E2, ..., Ek) =
n!

(n− k)!

∫
dEk+1...dEn P(E1, E2, ..., Ek, Ek+1, ..., En) (4.26)

with a combinatorial prefactor accounting for the fact that Rk is insensitive to which

of the n levels lie at positions E1, E2, ..., Ek.

The two-point correlation R2(E1, E2), which is the probability function for finding

any two levels at positions E1 and E2, effectively only depends on a single variable

E = |E2−E1|, the distance between the two levels, in a translation-invariant unfolded

spectrum. The Dyson–Mehta statistic is related to the two-point correlation function

via

∆3(l) =
l

15
− 1

15l4

∫ l

0

dE (l − E)3(2l2 − 9lE − 3E2)(1−R2(E)) , (4.27)

see e.g. [213].

Another measure that is closely related to both the Dyson–Mehta statistic and

the two-point correlation function is the number variance Σ2(l), which measures the

variance of the number of eigenvalues in an interval of length l and is thus another
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measure for the rigidity of a spectrum. It is based on the level density (4.4) via η(ε0, l)

η(ε0, l) =

∫ ε0+l

ε0

dε ρ̂(ε) , (4.28)

which measures the number of states in an interval [ε0, ε0+l]. In an unfolded spectrum

the average of η(ε0, l) is independent of ε0, i.e.

〈η(ε0, l)〉 = 1 , (4.29)

where we again average over values of ε0 taken from a discretised interval [ε1, εn − l].
The number variance is then

Σ2(l) = 〈η(ε0, l)
2〉 − l2 . (4.30)

In the uniform case it vanishes, while for uncorrelated spectra it is Σ2(l) = l and thus

there are l ±
√
l levels in an interval of length l in the Poisson case. For the three

Gaussian ensembles it lies between these two extremes and the exact RMT predictions

can be found in [206]. The relation to the Dyson–Mehta statistic is given e.g. in [213].

Yet another measure that is often employed to measure correlations in a spectrum

is the spectral form factor K(t). It is based on the spectral auto-correlation function

C(l) = 〈ρ̂(ε0)ρ̂(ε0 + l)〉 − 1 (4.31)

and then the spectral form factor is the Fourier transform

K(t) =

∫ +∞

−∞
dl C(l) exp(−ilt) . (4.32)

Its relation to ∆3(l) can be found in [213].

Statistics of eigenvectors. So far, we have only introduced observables on the

set of eigenvalues of a spectral problem. If the set of eigenvectors is accessible in a

given physical system, one might wonder whether they can also be used to explore its

properties. RMT makes a number of predictions for the distribution of eigenstates,

in particular that they spread out over any non-finely tuned reference basis, i.e. they

are delocalised. As measure for this spreading one can use the information entropy

(also known as Shannon entropy)

Si = −
n∑
a=1

|cia|2 ln |cia|2 (4.33)
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for a given eigenvector |Ei〉 decomposed with respect to a reference basis {|a〉},
i.e. |Ei〉 =

∑n
a=1 cia |a〉 with coefficients cia. For a normalised eigenvector |Ei〉 =∑n

a=1
1√
n
|a〉 which is equally distributed over an orthonormal basis |a〉 the informa-

tion entropy is maximal

Si = ln(n) (evenly spread over whole basis) . (4.34)

In contrast, if an eigenstate is pure, i.e. localised on one basis state such that cia = δia,

the information entropy vanishes

Si = 0 (pure) . (4.35)

In the intermediate case in which |Ei〉 is exponentially localised over 1 � ni � n

basis states, the information entropy is

Si = ln(e ni) +O(n−1
i ) (exponentially localised) . (4.36)

Thus, roughly speaking, the information entropy of a state is the logarithm of the

number of basis vectors it is spread over. The RMT prediction is that

SGOE = ln(2eγE−2n) +O(n−1) ' ln(0.48n) (GOE) , (4.37)

with the Euler–Mascheroni constant γE, for all GOE eigenvectors in the large-n limit,

see e.g. [214]. Thus, the information entropy of the eigenvectors of a spectral problem

can be used to expose the possible chaotic nature of a system. A statistical observable

which is based on the information entropy of eigenstates is the average localisation

length 〈nS〉 defined via

〈nS〉 = exp(〈Si〉 − SGOE) , (4.38)

where 〈Si〉 denotes the mean of the information entropy on the set of eigenvectors.

4.2 Level statistics for sYM theories

We now move on to the level statistics of one-loop anomalous dimension spectra in

N = 4 sYM theory and its β-deformed version. We begin by discussing the specific

spectra to be analysed and how they are desymmetrised in Section 4.2.1. Appendix

C contains further details on how they are set up for a level statistics analysis. Then

we move on to the study of the short- and long-range correlations in these spectra

in Sections 4.2.2 and 4.2.3, as well as of the eigenstates of the spectral problem in

Section 4.2.4. We close with a discussion of the results in Section 4.2.5.
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4.2.1 Desymmetrisation

In order to analyse the spectrum of anomalous dimensions, we must first focus on

specific sectors of operators whose mixing is not forbidden due to the symmetries of the

dilatation operator. We will henceforth restrict to the rank-one sectors su(2) and sl(2),

which are both closed at one-loop order. The N = 4 sYM dilatation operator in these

sectors is given in (1.36) and (1.38). It does not mix operators with different numbers

of fields L and excitations M and S, respectively, and thus we organise operators

with respect to these quantum numbers. Furthermore, the dilatation operator in the

su(2) sector has a residual SU(2) R-symmetry which arranges operators in terms of

primary and descendant fields and the former do not mix with the latter. Thus, in

order to desymmetrise the spectrum, we only work with primary states O, satisfying

J−O = 0 with J−X = Z, which form the biggest sector and allow for better statistics.

Similarly, the sl(2) sector has an SL(2) symmetry and so also here we only work with

operators O with S−O = 0, where S−Z
(n) = nZ(n−1). An additional symmetry in

both these sectors is parity P which reverses the order of fields within a trace

P Tr(χ1 . . . χL)(x) = Tr(χL . . . χ1)(x) , (4.39)

generalising the spin-chain version given in (3.30), and so eigenstates with different

parity are uncorrelated. Therefore, we consider operators with definite parity and all

spectra analysed in this work correspond to the bigger positive-parity sector, with the

similar analysis of negative-parity sectors yielding the same results but with poorer

statistics. To complete the desymmetrisation of the mixing matrix, we remove all zero

energies corresponding to protected states whose dimensions are fixed by supersym-

metry.

In the planar limit, there are additional symmetries we must account for. In

particular the number of traces in a given operator is conserved under the action

of the dilatation operator and so we must work at fixed number of traces. In the

single-trace sector this reduces the problem to essentially that of an integrable spin

chain. In the su(2) sector this is the usual Heisenberg spin chain (3.3) and in the sl(2)

sector its non-compact s = 0 version. Therefore, in order to obtain the planar single-

trace spectra, one can solve the corresponding Bethe equations (3.19) and (3.35). In

the case of the sl(2) sector this method allows one to go to relatively large sectors

quite easily and specifically we will work with the L = 18, S = 7 primary spectrum

comprising 6 804 states. In contrast, the su(2) Bethe equations cannot be solved for

high L and M that easily and direct diagonalisation is more efficient.

Next to an analysis of pure N = 4 sYM theory spectra, we will also consider

spectra in the β-deformed theory in the su(2) sector with dilatation operator (1.67).

Also here the excitation number M is a conserved quantity, however the corresponding
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U(1) symmetry is not part of a larger SU(2) symmetry. Thus, sectors of fixed L and

M do not further decompose into primary and descendant states and this allows for

better statistics than in the undeformed case.

Level repulsion in the β-deformed theory. The lifting of degeneracies in the

spectrum of one-loop dimensions by the β-deformation is related to the phenomenon of

level repulsion. In general, energy surfaces depending on a number of parameters are

connected only at special points where multiple parameters are tuned [201]. For the

spectrum of N = 4 sYM theory this implies that operator dimensions depending on

parameters λ and N avoid crossing for generic fixed values of N as λ is varied, as was

borne out in [215]. In our case, being at one-loop order, the λ-dependence is trivial,

however we can study the spectrum as a function of both the deformation parameter

β and the rank N of the gauge group. By numerically solving for the eigenvalues of

specific families of operators, we can see the behaviour of the scaling dimensions as

we vary β and as an example we consider the L = 6, M = 3 states in Figure 4.5. This

sector has twelve eigenstates, three of which are protected in the β-deformed theory

and we only plot the eigenvalues of the remaining nine states. The top (purple)

line and fourth from the top (brown) correspond in the undeformed planar limit

to descendants of two single-trace two-impurity states. The second and third lines

(yellow and light blue) correspond to the single-trace three-impurity singular solution

and a degenerate double-trace operator. The remaining operators are protected in

the undeformed theory but acquire non-vanishing anomalous dimensions for non-

vanishing β. For finite values of N the energy levels mostly repel and even at points

where they appear to come close they do not in fact cross, maintaining a separation of

∼ 1/N2. There is one obvious exception which clearly does cross other levels at finite

N . This is a double-trace state that does not mix with other operators, receives no

1/N corrections and so is effectively uncorrelated with the other states. This is due to

the fact that at half-filling the charge conjugation transformation Z ↔ X combined

with the parity transformation (4.39) is a symmetry which commutes with both the

impurity number and the one-loop non-planar dilatation operator. This double-trace

operator is the only L = 6,M = 3 state with negative charge with respect to this

transformation. This again points to the fact that, in order to avoid trivial crossings,

we must consider operators which have the same quantum numbers, i.e. desymmetrise

the spectrum. At large values of N we can see the appearance of crossings at special

values where β/π ∈ Q; for example in Figure 4.5 there are crossings in the planar limit

at β = π/4 and β = π/6. These points correspond to values where the β-deformed

theory becomes equivalent to an orbifold of N = 4 sYM theory, see e.g. [216].
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(i) (ii)

Figure 4.5: Nine eigenvalues corresponding to states with L = 6,M = 3 as functions
of β ∈ [0, π] with (i) N = 7 and (ii) N = 106.

(i) (ii)

Figure 4.6: Nearest-neighbour spacing distribution for planar spectra in the (i) β-
deformed su(2) and (ii) undeformed sl(2) sector.

4.2.2 Short-range correlations

After numerically computing desymmetrised spectra {E1, E2, ..., En} by direct diago-

nalisation or integrability techniques, we perform an unfolding procedure to separate

the fluctuations from the overall energy behaviour of the spectrum. Details about this

data preparation are given in Appendix C. Then we label the unfolded spectrum of

anomalous dimensions from smallest to largest, i.e. ε1 ≤ ε2 ≤ ... ≤ εn, and estimate

the distribution of level spacings between consecutive levels by computing nearest-

neighbour spacings si = εi+1 − εi, then sorting the data into bins and calculating

the fraction that occur in each bin. The results naturally depend on the unfolding

procedure and bin size and a choice is made such that small changes do not signifi-

cantly affect the overall results, see Appendix C for more details. The estimate of the

probability distribution naturally improves with larger numbers of states and so one

must compute the dimensions for relatively long operators.
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M n ω α
2 400 0.70 0.44
3 1035 0.91 0.90
4 2316 0.96 0.89
5 4198 0.98 0.91
6 6539 0.97 0.98
7 8431 0.95 0.93

Table 4.2: NNS distribution of the β-deformed spectrum (β = 0.4) of L = 16 states
with M excitations and size n of the Hilbert space fitted to the Brody distribution
with parameter ω and the Wigner–Dyson distribution with parameter α.

Planar results. We first look at the strict planar limit and look at spectra of single-

trace operators in the β-deformed su(2) and undeformed sl(2) sector in Figure 4.6.

The numerical data seem to be well described by the Poisson distribution, reflecting

the integrability of the planar theory which has additional hidden symmetries that

make eigenstates decouple and thus their eigenvalues are independent. To be more

quantitative, we fit the data to the Brody distribution (4.18), which interpolates

between the GOE distribution (ω = 1) and the Poisson distribution (ω = 0). We find

that the best fit data are

ωsu(2) = 0.05 , ωsl(2) = 0.06 , (4.40)

compatible with the Poisson distribution. One can perform a similar level statistics

analysis for multi-trace operators and also in these sectors we find that the NNS

distribution is Poissonian.

Non-planar results for different excitations M . In Figure 4.7 we present the

results for L = N = 16 states in the β-deformed theory and increasing excitation

number M = 2...7. By visual inspection it is apparent that the GOE Wigner–Dyson

distribution closely matches the data for most values of M . To be more quantita-

tive, one can fit the data to the Brody distribution (4.18) and the Wigner–Dyson

distribution

Pα(s) = 2
Γ(1 + α/2)1+α

Γ((1 + α)/2)2+α
sα exp

(
− Γ(1 + α/2)2

Γ((1 + α)/2)2
s2

)
, (4.41)

which interpolates between the different Gaussian ensembles (4.17) for α = βD, in

particular α = 1 for GOE. In Table 4.2 we show the best fit values of ω for different

values of M which are generally close to 1 suggesting that this is the appropriate value

for the distribution at relatively small values of N . This fit captures the Gaussian

behaviour of the exponential decay of the tail and the fact that the distribution goes
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Figure 4.7: Nearest-neighbour spacing distribution for non-planar spectra in the β-
deformed su(2) sector and increasing excitation number M .
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(i) (ii)

Figure 4.8: Nearest-neighbour spacing distribution for a non-planar β-deformed spec-
trum with different clippings of states at the boundary: In (i) 8% (4%) of low-(high-)
energy states and in (ii) 35% on both sides of the spectrum are clipped.

to zero as s→ 0, i.e. the levels are correlated. If we assume the distribution is of the

Wigner–Dyson form we can perform a fit to the general form (4.41) and find the best

fit value of α which from Table 4.2 can again be seen to be approximately ∼ 1. It is

clear that the fit is better for higher excitation number M as the values for M = 2

are furthest from those of the GOE. The values for M = 0, which are protected

operators, and M = 1, which are protected in the undeformed theory, clearly do not

fit the Wigner–Dyson distribution. In the case of L = 16, M = 2 the poor fit of the

Wigner–Dyson distribution is not just an effect of the poor statistics, as one can go to

longer operators with M = 2 where one finds similar behaviour, see Figure 4.8 (i). In

fact, the distribution seems to be a superposition of the Poisson distribution and the

Wigner–Dyson distribution with ω = 0.71. Interestingly, when clipping more states

from the edges of the spectrum, one finds the GOE distribution becomes a good fit,

see Figure 4.8 (ii) where we only do statistics on a third of the states in the middle

of the spectrum and find ω = 0.92. The fact that states at the edges of spectra of

chaotic systems typically are more regular than the ones in the bulk is well-known,

but we do not have a clear explanation for why the fraction of regular states is so high

in the case of small excitation number M . In general however we find that the GOE

describes the non-planar distribution of energy levels in the su(2) sector of deformed

N = 4 sYM theory.

Non-planar results for different undeformed sectors. We can repeat the com-

putation for the undeformed theory where we look at both the su(2) and sl(2) sector in

Figure 4.9. Similarly to the deformed spectra, we encounter level repulsion and, more

precisely, the fluctuations behave like those of the GOE and can be approximated by

the Wigner–Dyson distribution with parameters

αsu(2) = 1.01 , αsl(2) = 0.99 . (4.42)
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(i) (ii)

Figure 4.9: Nearest-neighbour spacing distribution for non-planar spectra in the (i)
su(2) and (ii) sl(2) sector of N = 4 sYM theory.

Non-planar results at small N . So far we have only looked at non-planar spectra

where the rank N of the gauge group is chosen to be N = L. In this case (and for

N > L) the dependence of the spectrum on N is due solely to its appearance in the

matrix elements of the dilatation operator. When N < L there are also relations

between single- and multi-trace operators which effectively reduce the size of the

Hilbert space. Looking for example at the extreme case of the SU(2) gauge theory,

the only surviving states are those built from length-2 traces

Tr(ZZ)
L−M−n

2 Tr(ZX)n Tr(XX)
M−n

2 . (4.43)

We compute all such identities when analysing the energy fluctuations for theories

with 2 < N < L. For given L and M the spectral statistics become poorer for

small N due to the shrinking of the basis of states. It is interesting to note that the

dilatation operator in the N = 2 case is particularly simple, and the mixing problem

becomes solvable in the su(2) sector at one loop, yielding the spectrum of energies

En = 4 cos2 β(L+ 1− 2n)n , (4.44)

with n = 0, ..., bM/2c. Meanwhile, for N > 2 and looking at the β-deformed theory

in the length-16 sector, we find

αN=16 = 0.93 , αN=4 = 0.74 , (4.45)

showing that the GOE distribution is still a good approximation as we decrease the

value of N , see Figure 4.10. The fit for N = 4 is clearly worse, but this is likely due

to the poorer statistics inherent to the smaller size of the Hilbert space.
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(i) (ii)

Figure 4.10: Examples of nearest-neighbour spacing distributions for non-planar spec-
tra in the β-deformed su(2) sector with (i) N < L and (ii) N = L.

(i) (ii)

Figure 4.11: Nearest-neighbour spacing distributions for planar spectra in the β-
deformed su(2) sector (i) at purely one-loop order and (ii) with a small two-loop
contribution.

Results to two-loop order. In the su(2) sector ofN = 4 sYM theory the dilatation

operator is also known at two-loop order, cf. equation (1.37). The corresponding

planar Hamiltonian with next-to-nearest neighbour interactions is given by

H(0) =
L∑
i=1

[(
1− 3λ

16π2

)
1i,i+1 − 4

(
1− λ

4π2

)
~Si ⊗ ~Si+1 −

λ

4π2
~Si ⊗ ~Si+2

]
(4.46)

with spin operators ~Si. The corresponding Hamiltonian in the β-deformed case can

also be found and just corresponds to the undeformed Hamiltonian with appropriate

β-dependent phase factors. The planar integrability of undeformed and β-deformed

N = 4 sYM theory is supposed to hold at all loop orders, but when truncating the

perturbative expansion at two-loop order and using finite values of λ the resulting

system cannot be expected to be integrable. Indeed, a level-statistics analysis shows

that the corresponding model is chaotic and the level spacing distribution is well-

described by the GOE, cf. Figure 4.11 where g = λ/16π2.
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(i) (ii)

Figure 4.12: Distribution of spacings for (i) the dilatation operator through two-loops
for g = 0.1, 0.5, 1, and for (ii) the two-loop part of the dilatation operator by itself in
the su(2) sector.

(i) (ii)

Figure 4.13: Dyson–Mehta statistic for planar spectra in the (i) β-deformed su(2) and
(ii) undeformed sl(2) sector.

If we include the effects of the two-loop dilatation operator at finite N , the qual-

itative behaviour is unchanged as can be seen in Figure 4.12 (i). This is in part a

consequence of the fact that the spectrum of the two-loop part of the dilatation oper-

ator, by itself, has a GOE Wigner–Dyson distribution Figure 4.12 (ii) with α = 0.89.

As the perturbative expansion is asymptotic at finite-N , we are not making any con-

clusions about the finite-g behaviour of the spectrum, but rather are exploring the

qualitative effect of including higher-order terms in the dilatation operator.

4.2.3 Long-range correlations

Next we discuss the results from an analysis of long-range correlations in sYM theory

spectra and in particular study the Dyson–Mehta statistic ∆3.

Planar results. In Figure 4.13 we show that planar spectra in both the su(2)

sector of β-deformed N = 4 sYM theory and in the sl(2) sector of the undeformed
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(i) (ii)

Figure 4.14: Dyson–Mehta statistic for non-planar spectra in the (i) su(2) and (ii)
sl(2) sector of N = 4 sYM theory.

theory follow the linear behaviour (4.20) up to some length lmax. This behaviour of

∆3 reflects the independence of energy levels which is characteristic for spectra of

integrable models. The maximum length lmax differs for different spectra and grows

with the size of the Hilbert space. In the case of the su(2) spectrum of Figure 4.13

(i) the linear behaviour is followed up to a length of lmax ' 15, whereas for the larger

sl(2) spectrum of Figure 4.13 (ii) it is lmax ' 80. For interval lengths l > lmax the

Dyson–Mehta statistic bends down from the linear behaviour, indicating that levels

become correlated over large distances in the spectrum. This is in agreement with the

behaviour of ∆3 for spectra of semi-classical integrable systems [211] which saturates

for large l.

Non-planar results. For non-planar Yang–Mills theories, we find that ∆3(l) for l ≥
1 clearly grows more slowly than the integrable case and follows the GOE prediction

of (4.22) up to some non-universal lmax, as demonstrated in Figure 4.14 where we

find excellent agreement up to lmax ' 25. However, we see that ∆3 of the β-deformed

theory at N = 4 does not match the GOE prediction quite as well, see Figure 4.15

(ii) where the results are consistently above the predicted GOE behaviour for l ≥ 8.

This could be a result of the smaller Hilbert space than in Figure 4.15 (i), where we

find good agreement up to lmax ' 70. Note that above the maximal interval length

l > lmax the Dyson–Mehta statistic ∆3(l) does not saturate as in the integrable case,

but deviates upwards. This is in contradiction with semiclassical chaotic theories as

considered by Berry in [211] where ∆3 saturates, but is a known feature e.g. in the

XXZ spin chain [210].
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(i) (ii)

Figure 4.15: Dyson–Mehta statistic for non-planar spectra in the su(2) sector of the
β-deformed theory with (i) N = 16 and (ii) N = 4.

Figure 4.16: Information entropy of eigenvectors in the sector with L = 16, M =
7, β = 0.4, n = 8512 for different values of N .

4.2.4 Statistics of eigenstates

Going beyond the energy spectrum it is interesting to study the properties of the

eigenstates at different values of N . GOE RMT makes a number of predictions for the

distribution of chaotic eigenstates, in particular that they are spread out over any non-

finely tuned reference basis, i.e. they are delocalised. As a measure of this spreading

we use the information entropy (4.33). As our choice of reference basis we simply

take the multi-trace operators with fixed numbers of excitations which was used to

compute the dilatation operator matrix elements. The GOE RMT prediction is (4.37)

for all eigenvectors. However in most physical systems, for example in nuclei [204] or

spin-1/2 spin chains [217], the RMT result is only approached near the middle of the

energy band, while the states at the edges have significantly lower entropy.

Figure 4.16 shows the information entropy Si of each eigenvector |Ei〉, normalised

to the corresponding RMT values, for the β-deformed theory for different values of N .

Comparing the results for N = 16 and N = 1012, it is clear that the entropy is larger
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Figure 4.17: Information entropy of eigenvectors from the diagonalisation of DT
2 in

the sector with L = 16, M = 7, β = 0.4, n = 8512 for different values of N .

for the smaller value of N and the mean entropy normalised to the GOE prediction

at N = L is 0.94, which is significantly larger than the value at large N which is 0.38.

Perhaps even more noticeably, the fluctuations in the entropy values are much smaller

at N = L where Si somewhat resembles a smooth function of the energy. We also

plot the case of L = N2, and again one finds that the mean value is well above the

integrable large-N result, and the maximum value 0.92 approaches the RMT bound.

As the dimension of the N < L Hilbert space is smaller, the statistics are perhaps not

as reliable, but one interesting feature is the uniformity of the entropy with mixing

being almost independent of the energy.

One issue in comparing RMT with the gauge theory is that while the dilata-

tion operator has real eigenvalues and possesses discrete symmetries analogous to

time-reversal, with the choice of a scalar product for which the basis of multi-trace

operators is orthonormal, it is in fact not symmetric. As a consequence, its eigenvec-

tors are complex rather than real and are not mutually orthogonal with respect to

our scalar product. This can be seen in the different entropies of the eigenvectors of

the transposed matrix, Figure 4.17, but the finite-N states generally still have larger

entropy.

The information entropy can be similarly computed for the two-loop dilatation

operator in the undeformed theory. In Figure 4.18 we consider the value g = 0.1, and

while there is a number of differences in the structure of the states, qualitatively the

results are similar. We can repeat these calculations for the sl(2) sector and while we

find that the mean entropy is still larger at small N than large N , it is generally quite

low and significantly further from the GOE RMT bound.
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Figure 4.18: Information entropy of the two-loop dilatation operator of the unde-
formed theory in the positive-parity sector for different values of N in the sector with
L = 16, M = 7, n = 1201 .

4.2.5 GOE and discrete symmetries

We have provided numerical evidence that the non-planar spectrum of N = 4 sYM

shares the universal properties we expect of chaotic quantum many-body systems

and, specifically is well-described by the GOE of RMT. While we have only displayed

results for specific choices of operator lengths and excitation numbers, we have found

comparable results for all other charges that we have considered.

That GOE describes the non-planar distribution of energy levels best is, in some

respects, to be expected due to the conjecture of [35] that the level statistics of time-

reversal invariant systems are characterised by GOE. This connection is manifest for

RMT systems with space-rotation invariance with generator K, i.e. [H,K] = 0, where

the Hamiltonian can be made real and symmetric, see e.g. [206]. The planar Hamil-

tonian (3.3) is invariant under time-reversal symmetry with operator T = KC, where

C takes the complex conjugate of an operator and K =
∏L

j=1 iσ
y
j . This symmetry can

be extended to the non-planar theory where K essentially exchanges Z and X fields

in the dilatation operator. While the undeformed Hamiltonian in the su(2) sector is

invariant under this symmetry, the introduction of the deformation parameter breaks

the rotation invariance. Fortunately, there is an additional symmetry that explains

why also spectra in the β-deformed theory show GOE behaviour: The deformed, as

well as the undeformed, dilatation operator in the su(2) sector are invariant under a

time-reversal symmetry of the form T = PC, where C is again the complex conjuga-

tion operator, while P is the parity operator which acts as (3.30) on spin chains, and

(4.39) on general multi-trace operators. One can show [206] that in a suitable basis,

the operator P satisfies PP∗ = 1 and this guarantees that any operator commuting

with T = PC can be chosen to be real and symmetric, and is thus a member of the

GOE.
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We have considered various aspects of non-planar anomalous dimensions in pure and

deformed N = 4 sYM theory, and in the following we summarise our results and

discuss possible future directions of research.

We began with a review of the close connection between the dilatation operator

and scattering amplitudes revealed in [31, 32]. This connection allows us to obtain

anomalous dimensions of a given set of operators via an on-shell approach based

on a handful of form factors of these operators, as well as the theory’s scattering

amplitudes. We illustrated this approach for the mixing of SU(4)-invariant dimension-

4 operators in N = 4 sYM theory, and as a by-product of this computation we re-

derived the theory’s on-shell Lagrangian. This computation may be generalised to

the mixing of a larger set of marginal operators, with fewer symmetries and more

general scattering amplitudes, to extract the Leigh–Strassler theories, or maybe even

new conformal deformations of N = 4 sYM theory.

While one can obtain specific anomalous dimensions directly from this on-shell ap-

proach, it also allows one to extract the general form of dilatation operators. Here we

computed the finite-N one-loop dilatation operator of β-deformed N = 4 sYM theory

in the scalar sector including non-planar double-trace contributions. This operator

can in turn be diagonalised in order to obtain non-planar anomalous dimensions and

we did so for the spectrum of length-two scalar operators. We reproduced results for

the Konishi operator previously calculated by direct field-theory methods [75]. The

deformed dilatation operator is also an important ingredient into the perturbative

approach to non-planar anomalous dimensions and we review these results further

below. In the calculation of the dilatation operator, there occur infrared divergences.

They have to be subtracted and can be fixed by exploiting their universality and cal-

culating their explicit form from known protected operators; on more general grounds

we also discussed IR divergences of scattering amplitudes, in particular in the context

of coherent states and asymptotic symmetries.

While the direct diagonalisation of the one-loop dilatation operator for short lo-

cal operators is relatively straightforward, this task gets more and more involved as

the number of field insertions in operators grows. In the planar limit alternative ap-

proaches to the direct diagonalisation based on integrability methods exist, but there
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is no systematic direct approach to non-planar anomalous dimensions. In this work

we have studied the leading non-planar corrections to the planar spectrum pertur-

batively. The approach involves two steps: first one must obtain the mixing matrix

between single- and multi-trace operators at leading non-planar order, and then find

its eigenvalues with the method of quantum-mechanical perturbation theory. In this

work we have mostly focused on the first half of the problem by finding general ex-

pressions for the off-diagonal matrix elements of the one-loop dilatation operator in

terms of the Bethe rapidities. When expressed in terms of off-shell scalar products,

they can be computed efficiently using the algebraic Bethe ansatz. While the direct

application of the dilatation operator can in many cases yield the mixing matrix in a

similarly efficient fashion, our formulas are given in terms of partitions of the Bethe

rapidities, and therefore they are especially advantageous when the number of exci-

tations is small. In those cases we are able to easily evaluate the overlaps even for

long operators, where direct diagonalisation would be infeasible. A bottleneck in the

second step of computing anomalous dimensions is the determination of the Bethe ra-

pidities. While there are tools for efficiently computing such rapidities, most notably

the Baxter Q-function method of [174], carrying out the sums over solutions is still

non-trivial, and so we restricted ourselves to a few examples to illustrate the method.

The problem of summing over intermediate states increases with the excitation num-

ber of the operators under consideration and will rapidly become unfeasible. It might

be possible that the sum over solutions is simpler than the individual terms, but this

needs a better understanding of the involved sums over Bethe states.

At a more conceptual level, we find that the off-diagonal matrix elements can be

written in terms of hexagon-like objects satisfying both the Watson and decoupling

conditions. While our methods are not obviously related to the hexagonalisation of

the torus, this decomposition hints at the possibility of an approach similar to [218],

where four-point functions are built through the OPE, with the OPE data computed

within an integrability framework. Similarly, the matrix elements of the dilatation

operator might have a more general description which determines their form at higher

orders in the perturbative expansion. In order to study this further it would be useful

to determine the overlaps at higher loops and to investigate if hexagon-like objects

can be found in other sectors of the theory.

One issue in our approach to the diagonalisation of the mixing matrix is that

it assumes a non-degenerate spectrum of planar Bethe states. There are however

many degeneracies in the planar spectrum of N = 4 sYM theory, and so we also

considered the β-deformed theory where many degeneracies are lifted. The action

of the dilatation operator in the deformed theory, obtained from the form-factor on-

shell approach discussed above, yields several new structures and for the purpose of

evaluating 1/N2 corrections to the spectrum it is necessary to include an additional
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diagonal overlap. We show that degeneracies between excited states in the undeformed

theory are lifted when deforming the theory and this reduced degeneracy increases

the number of operators for which we can compute the non-planar corrections to

the energies by using non-degenerate perturbation theory. A second advantage of

the β-deformation is that it provides a useful regularisation of the singular solutions

occurring in the su(2) sector of the undeformed N = 4 spin chain. Such solutions

correspond to finite energies, but have singular wavefunctions and so matrix elements

in the undeformed theory are not well defined. Instead they can be computed in

the deformed theory, where the deformation parameter regularises singularities [165],

and the limit of vanishing deformation parameter can be smoothly taken. As an

application of our method we computed anomalous dimensions of two-excitation states

in the BMN limit through subleading order. We compared these analytical results

with numerical data at lower lengths and find that the results agree with at least 8

digits of precision. Since the degeneracies occurring in other sectors of the undeformed

theory are not all lifted by the β-deformation, additional twists are needed to extend

our results to other sectors. For example, to study the sl(2) sector it may be useful

to consider the integrable dipole deformation [219].

In addition to computing anomalous dimensions of specific operators, it is also of

interest to understand their general properties. To this end we analysed the distri-

bution of level spacings and found that at infinite N the one-loop spectra of both

deformed and undeformed N = 4 sYM theory are well described by the Poisson dis-

tribution characteristic of integrable systems. At finite N the distribution transitions

to the Wigner–Dyson distribution of chaotic quantum many-body systems and the

statistical properties of the finite-N spectrum are well described by the GOE ran-

dom matrix model. We constrained this analysis to rank-one sectors of the theories,

which considerably simplifies the analysis, but still showcased the universal chaotic

behaviour at finite N . While we have only displayed results for specific choices of

operator length and excitation number in these sectors, we have found comparable

results for all other charges we considered. Level repulsion, which is characteristic

for chaotic quantum systems, was previously found in N = 4 sYM theory in [215],

where it was shown that finite-N anomalous dimensions do not cross as the ’t Hooft

coupling λ varies. Studying the one-loop spectrum as a function of the deformation

parameter β, we similarly find that at finite N the anomalous dimensions repel and

it is only at large N that they cross.

We have thus provided numerical evidence that the non-planar spectrum of N = 4

sYM theory, in spite of its maximal amount of supersymmetry, exact conformal in-

variance and planar integrability, is quite generic and shares the universal properties

we expect of chaotic quantum many-body systems. The appearance of quantum

chaos in the spectrum is in fact quite natural if we view the dilatation operator as
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the Hamiltonian of the theory defined on R× S3 and multi-trace operators as defin-

ing states somewhat analogous to large nuclei in QCD. While it is possible that by

resumming the perturbative series and including non-perturbative effects the qualita-

tive behaviour will change, it is natural to conjecture that the non-planar spectrum

is described by GOE RMT at finite values of both gYM and N . Such a conjecture is

further motivated by the fact that, at strong coupling λ � 1, operators with scal-

ing dimensions ∆ ∼ N2 are holographically dual to black holes and so are expected

to exhibit chaotic properties [37–40]. This connection was pursued recently in [220],

where the authors considered operators dual to a system of giant gravitons. In that

sector the one-loop dilatation operator can be reformulated as a Hamiltonian acting

on a graph [221], with a large-N counting of graphs matching the expected black

hole entropy and therefore suggesting an interpretation of the operators as black hole

microstates. The natural basis in this context is that of restricted Schur polynomials,

which diagonalise the free-theory two-point functions at finite N . It could be particu-

larly interesting to study the energy eigenfunctions in this basis, where the dilatation

operator becomes symmetric, and find the implications for the information entropy.

While the strong-coupling regime can be difficult to access from the gauge-theory

side of the AdS/CFT correspondence, an interesting connection with gravity has

been made in the context of the holographic duality between the SYK model and

Jackiw-Teitelboim gravity on AdS2 [222–225]. The distribution of the level spacings

in the SYK model of N Majorana fermions with random couplings was numerically

computed in [226], see also [41,227,228], and was shown to be of Wigner–Dyson type

with all three ensembles, GOE, GUE and GSE, occurring depending on the value of

N . It would be naturally interesting to study this chaotic behaviour at higher loop-

orders in N = 4 sYM theory and whether, by the holographic correspondence, we can

describe the properties of interacting quantum strings on AdS space by RMT.

To conclude, we have studied the computation and universal properties of non-

planar anomalous dimensions in conformal sYM theories. We have applied pow-

erful techniques, including integrability and on-shell methods, as well as quantum-

mechanical perturbation theory, to extract the spectrum of anomalous dimensions.

These are important steps towards a systematic framework for the calculation of the

finite-N data of sYM theories, but further work is necessary to generalise the results

to other sectors, and higher orders in both the coupling- and 1/N -expansion, as well

as to turn them into more compact expressions. We furthermore found universal be-

haviours in numerical anomalous-dimension spectra: at infinite N they are consistent

with planar integrability, while at finite N they point towards the quantum-chaotic

nature of the theories and are described by random matrix theory. These studies

open the door for further explorations of universal features of YM theories and, by

the holographic principle, their gravity duals.



Appendix A

Non-minimal form factors in the

SU(4)-invariant marginal sector

In this appendix we compute tree-level non-minimal form factors relevant for the

mixing of operators G, F and ~S given in (2.46). Doing so, we will make use of the result

of [131] for all tree-level MHV form factors of the on-shell Lagrangian (1.17) given in

(2.7). For two external states the Lagrangian effectively becomes G and the only-non-

vanishing contribution comes from two external negative-helicity gluons. Then (2.7)

reproduces the first line in (2.47). For three external states the non-minimal MHV

form factor of G can be obtained from (2.7) by removing the contributions coming

from the minimal form factor of −gYMF in the on-shell Lagrangian and we find

〈g−(p1), g−(p2), g+(p3)|G|0〉 = −2
〈12〉3

〈23〉 〈31〉
,

〈g−(p1), ψ̄ABC(p2), ψD(p3)|G|0〉 = +2εABCD
〈12〉2

〈23〉
,

〈g−(p1), φAB(p2), φCD(p3)|G|0〉 = −2εABCD
〈12〉 〈31〉
〈23〉

. (A.1)

The remaining form factors that are not related to the above by cyclicity and reflection

vanish at this order. These expressions can furthermore be obtained by the BCFW

recursion for form factors discussed in Section 2.1. Similarly we obtain the non-

minimal form factors of G and F with four external states by BCFW recursion and

obtain the non-vanishing components

〈ψA(p1), ψB(p2), ψ̄C(p3), ψ̄D(p4)|F|0〉 = −2(δCAδ
D
B − δDA δCB)

〈34〉
〈12〉

,

〈g+(p1), φAB(p2), ψ̄A(p3), ψ̄B(p4)|F|0〉 = −2
〈24〉 〈34〉
〈12〉 〈14〉

,
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〈g+(p1), ψ̄A(p2), φAB(p3), ψ̄B(p4)|F|0〉 = 2
〈24〉2

〈12〉 〈14〉
,

〈ψA(p1), φBC(p2), φDE(p3), ψ̄E(p4)|F|0〉 = 2
〈24〉
〈12〉

εABCD ,

〈ψA(p1), φBC(p2), ψ̄D(p3), φEF (p4)|F|0〉 = 2
〈23〉
〈12〉

εABCF δ
D
E + 2

〈34〉
〈14〉

εABEF δ
D
C . (A.2)

and

〈g+(p1), g+(p2), g−(p3), g−(p4)|G|0〉 = −2
〈34〉3

〈12〉 〈23〉 〈41〉
,

〈g+(p1), g−(p2), g+(p3), g−(p4)|G|0〉 = −2
〈24〉4

〈12〉 〈23〉 〈34〉 〈41〉
,

〈g+(p1), ψA(p2), ψ̄A(p3), g−(p4)|G|0〉 = 2
〈24〉 〈34〉2

〈12〉 〈23〉 〈41〉
,

〈g+(p1), ψ̄A(p2), ψA(p3), g−(p4)|G|0〉 = −2
〈24〉3

〈12〉 〈23〉 〈41〉
,

〈g+(p1), ψA(p2), g−(p3), ψ̄A(p4)|G|0〉 = −2
〈34〉2

〈12〉 〈41〉
,

〈g+(p1), φAB(p2), φ̄AB(p3), g−(p4)|G|0〉 = −2
〈34〉 〈24〉2

〈12〉 〈23〉 〈41〉
,

〈g+(p1), φAB(p2), g−(p3), φ̄AB(p4)|G|0〉 = 2
〈23〉 〈34〉
〈12〉 〈41〉

,

〈ψA(p1), ψB(p2), φ̄AB(p3), g−(p4)|G|0〉 = 2
〈24〉 〈34〉
〈12〉 〈23〉

,

〈ψA(p1), φ̄AB(p2), ψB(p3), g−(p4)|G|0〉 = 2
〈24〉2

〈12〉 〈23〉
,

〈ψA(p1), φBC(p2), φDE(p3), ψ̄F (p4)|G|0〉 = −2
〈24〉 〈34〉
〈23〉 〈41〉

εBCDEδ
F
A ,

〈ψA(p1), ψB(p2), ψ̄C(p3), ψ̄D(p4)|G|0〉 = 2
〈34〉2

〈23〉 〈41〉
δDA δ

C
B ,

〈ψA(p1), ψ̄B(p2), ψC(p3), ψ̄D(p4)|G|0〉 = 2
〈24〉2

〈12〉 〈34〉
δBAδ

D
C − 2

〈24〉2

〈23〉 〈41〉
δDA δ

B
C ,

〈φAB(p1), φCD(p2), φEF (p3), φGH(p4)|G|0〉

= 2

((
〈24〉 〈31〉
〈23〉 〈41〉

− 1

2

)
εABGHεCDEF −

(
〈24〉 〈31〉
〈12〉 〈34〉

+
1

2

)
εABCDεEFGH

)
. (A.3)

Note that the last expression cannot be obtained by component BCFW as it contains

boundary terms. Instead it was derived from (2.7) and removing the contribution

from −gYMF and −g2
YMS1/2

4.



Appendix B

Overlaps from the algebraic Bethe

ansatz

The algebraic Bethe ansatz, see [139, 229, 230] for introductions, provides a power-

ful framework for studying integrable systems such as the spin chains arising in the

one-loop planar dilatation operator. Of particular interest in this work are the com-

putationally efficient formulas for scalar products of Bethe states [167, 231]. These

scalar products have previously appeared in the context of N = 4 sYM structure

constants and we will mostly follow the conventions of [162].

Central to the algebraic Bethe ansatz approach is the monodromy matrix T̂a(u),

which is an operator depending on the spectral parameter u ∈ C, and acting on the

tensor product (C2)⊗L of the L spin-chain sites, and an extra auxiliary space V ' C2

labelled by the index a. Treating T̂a(u) as a 2 × 2 matrix in auxiliary space whose

entries are operators acting on the spin chain, we can write

T̂a(u) =

(
A(u) B(u)

C(u) D(u)

)
. (B.1)

The commutation relations of these entries can be found from the so-called RTT

relations

Ra1a2(u− v)T̂a1(u)T̂a2(v) = T̂a2(v)T̂a1(u)Ra1a2(u− v) (B.2)

where the R-matrix Ra1a2(u−v) is an operator acting on two auxiliary spaces labelled

by a1 and a2 and, for the theories we consider, it only depends on the difference of the

spectral parameters u and v. Viewed as a 4× 4 matrix mapping as (C2)⊗2 → (C2)⊗2,
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the R-matrix is given by

Ra1a2(u− v) =


f(u, v) 0 0 0

0 1 g(u, v) 0

0 g(u, v) 1 0

0 0 0 f(u, v)

 (B.3)

where we have introduced the functions

f(u, v) ≡ f(u− v) = 1 +
i

u− v
and g(u, v) ≡ g(u− v) =

i

u− v
. (B.4)

The trace of the monodromy matrix over the auxiliary space defines the transfer ma-

trix, T̂ (u) = Tr T̂a(u), and it follows from (B.2) that transfer matrices with different

spectral parameters commute. The Hamiltonian of the spin chain is given by the

logarithmic derivative of the transfer matrix evaluated at u = i/2 while the higher

conserved charges can be found by further expanding the logarithm of the transfer

matrix near u = i/2. The eigenstates of the transfer matrix thus simultaneously

diagonalise the Hamiltonian and all higher charges. One can define Bethe states as

|{u}〉alg =
M∏
i=1

B(ui) |0〉 (B.5)

where the pseudovacuum is defined by C(u) |0〉 = 0 and satisfies

A(u) |0〉 = a(u) |0〉 and D(u) |0〉 = d(u) |0〉 (B.6)

with a(u) = (u+ i/2)L and d(u) = (u− i/2)L. When the spectral parameters {ui} in

(B.5) satisfy the Bethe equations (3.13), using the parametrisations (3.17) and (3.18),

the Bethe states are eigenstates of the transfer matrix with eigenvalues

T̂ (v) |{u}〉 = T (v, {u}) |{u}〉 with T (v, {u}) = a(v)
M∏
i=1

f(v, ui) + d(v)
M∏
i=1

f(ui, v) .

(B.7)

The operators B(ui) can thus be viewed as creating excited states whose relative

normalisation is given by, see [162],

|{p}〉 =
1

√
S
{u}
< f

{u}
< d{u}g{u+i/2}

|{u}〉alg , (B.8)

where we use the product notation (3.23). The dual states in the algebraic Bethe
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ansatz are defined by

alg 〈{u}| = (−1)M 〈0|
M∏
i=1

C(u∗i ) (B.9)

where the dual vacuum satisfies 〈0| B(u) = 0 and

〈0| A(u) = 〈0| a(u) and 〈0| D(u) = 〈0| d(u) . (B.10)

These dual states are related to Bethe states by Hermitian conjugation using the

definition

|0〉 = 〈0|† , and C(u∗) = −B†(u) (B.11)

and are dual eigenstates of T̂ (u) when the spectral parameters satisfy the Bethe

equations.

We will be interested in the quantity IM({v}, {u}), which is related to the scalar

product of Bethe states by the definition

IM({v}, {u}) ≡ 〈0|
M∏
j=1

C(vj)
M∏
j=1

B(uj) |0〉 (B.12)

= (−1)M alg 〈{v∗}|{u}〉alg (B.13)

and, following [167], can be written as a sum over partitions of the excitations. The

partitions are defined by splitting each set of excitations, {u} and {v}, into subsets,

α∪ ᾱ = {u} and β ∪ β̄ = {v}, with the cardinality of α equal to that of β. The scalar

product is then given as

IM({v}, {u}) = g<
{u}g

{v}
>

∑
α∪ᾱ={u}
β∪β̄={v}

sgn(α)sgn(β)dαaᾱaβdβ̄kαβkβ̄ᾱkαᾱkβ̄βdet tαβdet tβ̄ᾱ

(B.14)

where

k(u, v) =
f(u, v)

g(u, v)
= 1− i(u− v) , and t(u, v) =

g2(u, v)

f(u, v)
=

−1

(u− v)(u− v + i)

(B.15)

and sgn(α) is the signature of the permutation required to put α∪ᾱ into the canonical

order {u}. This formula is valid for arbitrary Bethe states, even those whose rapidities

do not satisfy the Bethe equations and which are thus said to be “off-shell”. In the

case where one set of rapidities satisfies the Bethe equations (they are said to be
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“on-shell”), the formula can be dramatically simplified to the calculation of a single

determinant [231]. There is a further simplification when both sets of rapidities are

on-shell and equal. In this case, as the set of rapidities is invariant under complex

conjugation, the quantity IM is related to the norm of the Bethe state and is given

by Gaudin’s formula

IM({u}, {u}) = d{u}a{u}f
{u}
> f

{u}
< detj,k ∂ujφk (B.16)

where φk is defined in (3.13).



Appendix C

Data preparation

In this appendix we discuss the data preparation of numerical spectra obtained from

integrability methods or direct diagonalisation of the dilatation operator, as intro-

duced in the main text. We perform the computation of these spectra in Mathe-

matica. The major bottleneck when trying to achieve better statistics by going to

larger spectra in the direct diagonalisation method is the calculation of the mixing

matrix whose size grows roughly exponentially when going to higher operator lengths

L. Therefore we perform these calculations on the Londsdale cluster of the Trinity

Centre for High-Performance Computing. The remaining calculations, including the

data preparation of the spectra, as well as the computation of statistical observables,

can be performed on a standard desktop or laptop computer.

Unfolding method. As discussed in Section 4.1.2, when comparing spectra of phys-

ical systems and RMT spectra we must first separate the overall energy dependence

Iav(E) from the fluctuations. The former typically depends on the specifics of the

model, whereas the latter reveal the underlying chaos or integrability. We unfold the

spectrum via (4.8) by first approximating Iav. In order to do so, one can for example

select each i-th energy state, with i � 1, and perform a piecewise linear interpola-

tion. However we find that some of the subsequent results for the NNS distribution

and Dyson–Mehta statistic considerably vary as one varies i. Therefore, we choose

to approximate Iav with a polynomial fit to the set of {I(Ei)}. The degree p of the

polynomial is a parameter that needs to be tuned, but we find that the results are

virtually unchanged for a wide range of values.

Specifics for NNS distribution. Since I(E) is usually quite flat at the ends of

the spectrum, we find it useful to clip at least 4% of the states on each end before

fitting the distribution, see Figure C.1. Fitting Iav(E) on the whole of the spectrum

yields poor behaviour for extreme values of E, while clipping states at the ends of

the spectrum yields a fit that captures Iav(E) more accurately. While this clipping is
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(i) (ii)

Figure C.1: Integrated spectral density I(E) for the β-deformed theory and a poly-
nomial fit approximating its average behaviour Iav(E) for (i) the whole spectrum and
(ii) with 4% of the states at each end clipped.

(i) (ii)

Figure C.2: Values of α for the Wigner–Dyson distribution which best fit the data
under different clipping fractions f of low-energy states (with 4% of the high-energy
levels clipped) for a spectrum in (i) the su(2) sector of the β-deformed theory, and
(ii) the sl(2) sector (nb = 50 in both cases).

necessary in order to obtain a good unfolding, there are still states at the ends of the

spectrum that do not exhibit the chaotic properties of RMT. In order to assess which

minimal clippings lead to stable results for the NNS distribution, we fit the results to

the Wigner–Dyson distribution (4.41). The minimal percentage of states that need

to be clipped to lead to stable values of α is theory-dependent, but can be found

systematically, see Figure C.2. Note that in order for the results to be stable one

needs to clip a larger percentage of states in the sl(2) sector. Regarding the degree p

of the polynomial unfolding and the number of bins nb, the variations are small, see

Figure C.3. The results are rather insensitive to variations in these parameters, as

long as p ≥ 11 and nb ≥ 20. We use p = 17 in all examples shown in this work.

Specifics for the Dyson–Mehta statistics. For the Dyson–Mehta statistic ∆3(l)

it is similarly important to remove a sufficient number of low-energy states. In Figure
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(i) (ii)

Figure C.3: Variation of the best fit parameter α in the β-deformed theory, with 8%
(4%) clipping of low-(high-)energy states, as (i) we vary the number of bins nb used
for obtaining the NNS distribution with p = 17 fixed, and as (ii) we vary the degree
p of the polynomial unfolding of the spectrum with nb = 50.

(i) (ii)

Figure C.4: Plot of the ratio r between ∆3(l) for a spectrum in (i) the β-deformed
su(2) sector, and (ii) the undeformed sl(2) sector, and its GOE prediction at l = 30
as we vary the clipping fraction f .

C.4 we plot the ratio r of ∆3(30) for a given theory with that of the GOE prediction.

One can see that the ratio converges as one increases the clipping fraction. The

stabilisation in the case of ∆3 seems to occur at slightly higher values of f than those

found in the analogous analysis of the spacings in Figure C.2, but is otherwise similar.

Meanwhile the dependence on the degree of the polynomial unfolding is negligible for

p ≥ 11 and also consistent with the plot in Figure C.3.
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